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Aims: To describe genetic and clinical findings in a French family affected by best vitelliform macular dystrophy (BVMD).
Methods: We screened eight at-risk members of a family, including a BVMD-affected proband, by direct sequencing of
11 bestrophin-1 (BEST1) exons. Individuals underwent ophthalmic examination and autofluorescent fundus imaging,
indocyanine green angiography, electro-oculogram (EOG), electroretinogram (ERG), multifocal ERG, optical coherence
tomography (OCT), and where possible, spectral domain OCT.
Results: The sequence analysis of the BEST1 gene revealed one previously unknown mutation, c.15C>A (p.Y5X), in two
family members and one recently described mutation, c.430A>G (p.S144G), in five family members. Fundus examination
and electrophysiological responses provided no evidence of the disease in the patient carrying only the p.Y5X mutation.
Three patients with the p.S144G mutation did not show any preclinical sign of BVMD except altered EOGs. Two
individuals of the family exhibited a particularly severe phenotype of multifocal BVMD—one individual carrying the
p.S144G mutation heterozygously and one individual harboring both BEST1 mutations (p.S144G inherited from his mother
and p.Y5X from his father). Both of these family members had multifocal vitelliform autofluorescent lesions combined
with abnormal EOG, and the spectral domain OCT displayed a serous retinal detachment. In addition, ERGs demonstrated
widespread retinal degeneration and multifocal ERGs showed a reduction in the central retina function, which could be
correlated with the decreased visual acuity and visual field scotomas.
Conclusions: A thorough clinical evaluation found no pathological phenotype in the patient carrying the isolated p.Y5X
mutation. The patients carrying the p.S144G variation in the protein exhibited considerable intrafamilial phenotypic
variability. Two young affected patients in this family exhibited an early onset, severe, multifocal BVMD with a diffuse
distribution of autofluorescent deposits throughout the retina and rapid evolution toward the loss of central vision. The
other genetically affected relatives had only abnormal EOGs and displayed no or extremely slow electrophysiological
evolution.

Best vitelliform macular dystrophy (BVMD) [1] is one
of the most frequent form of autosomal dominant macular
dystrophy. It is associated with mutations in the bestrophin 1
gene (BEST1) [2,3] and results from dysfunction of the retinal
pigment epithelium (RPE). Mutations in the BEST1 gene are
detected in nearly all BVMD cases with a positive family
history. Cases reported as BVMD without BEST1 mutations
have no family history of the disease and may have either been
misdiagnosed or may represent phenocopies [4-6]. The
BEST1 gene is on chromosome 11q12 (NM_004183), spans
15 kb of genomic DNA, and contains 11 exons of which ten
are protein coding [2,3]. The gene encodes a protein of 585
amino acids called bestrophin-1 (BEST-1 protein) [7],
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predominantly expressed in the basolateral plasma membrane
of the RPE. The BEST1 gene is the founding member of a
family of four paralogs; the other three are called
BEST2,BEST3, and BEST4 [8]. There is various evidence that
BEST-1 protein, as assessed in overexpression experiments,
functions as a Cl- channel influenced by [Ca2+]i [9] and that
human BEST-1 protein is also highly permeable to HCO3

-,
indicating that human BEST-1 protein may also function as
an HCO3

- channel [10]. Alterations of the BEST-1 channel
caused by BEST1 gene mutations may account for the
diminished light peak–dark trough ratio (Arden ratio typically
≤150%) of the electro-oculogram (EOG) [11,12], which is
characteristic of BVMD and associated in most cases with a
normal full-field electroretinogram (ERG). An abnormal
EOG has been considered essential for a diagnosis of BVMD
in patients with vitelliform lesions detected by fundoscopy.
Although a large majority of BVMD patients meets this
criterion, several studies indicate that the EOG may initially
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be normal or even remains normal in BEST1 mutation carriers,
even in those who are clinically affected [13]. Multifocal ERG
(mfERG) findings [14] for most BVMD patients are
abnormal.

Several classifications of BVMD based on the aspect of
fundus have been proposed. The most frequently cited
classifications [11,15,16] are those by Deutman, Mohler, and
Gass. In its initial stages, the deposits resemble an egg yolk
(vitelliform stage), but later the vitelliform lesions disperse
like “scrambled egg” (vitelliruptive stage). The next stage
involves the formation of pseudohypopyon lesions in which
the affected area becomes deeply and irregularly pigmented
due to the accumulation of yellowish autofluorescent material
in the subretinal space. The final atrophic stage has the
appearance of scarring, sometimes associated with choroidal
neovascularization. Although the classifications generally
agree, the evolution of BMVD stage by stage described by
these classifications is not always followed. The stages do not
always occur consecutively or even inevitably in all patients.
Many BVMD lesions simultaneously show characteristics of
different BVMD stages [1]. Indeed, there is a substantial
clinical heterogeneity in classical BVMD, including variable
presentation and unpredictable course. The considerable
variability of ophthalmoscopic lesions can make a clinical
diagnosis of BVMD challenging. The disease shows an
irregular mode of inheritance with highly variable
expressivity [17] within families and even between eyes of an
affected individual.

The clinical spectrum has recently been enlarged [18] by
the description of atypical forms of BVMD in patients with a
BEST1 mutation. These forms include lesions simulating
pattern dystrophy with a mildly reduced EOG Arden ratio,
multifocal vitelliform macular dystrophy with an absent light
peak on EOG, and discrete RPE changes in the fovea.

Here, we report the clinical features of eight at-risk
members of a French family; two young members of this
family have multifocal BVMD. We identified two novel
nucleotide mutations in the BEST1 gene. Clinical ophthalmic
investigations, including fundus autofluorescence,
indocyanine green angiography (ICG), optical coherence
tomography (OCT), full-field ERGs, and mfERGs, of these
individuals confirm the incomplete penetrance and the highly
variable expression of BEST1 mutations between affected
individuals of the same family.

METHODS
Patients: We performed a genetic analysis and a complete
ophthalmological examination of eight members of a single
family (Figure 1), one of whom was diagnosed with BVMD.
The members of this family were recruited from the north and
the east of France as well as from Ile de France. They were
not affected by any extra-retinal disease. The proband, patient
III-1, a boy, was born in 1987 as the first of three children,
and the onset of visual symptoms was diagnosed at the age of
6 years. At 20 years of age, the symptoms started to severely
affect his everyday activities. Molecular screening of the
BEST1 gene and clinical examination were performed in the
proband, his parents (II-1, 48 years old is the father; II-2, 44
years old is the mother), his 19-year-old brother (III-2) and
his 16-year-old sister (III-3), his aunt (II-3, 33 years old) and
his uncle (II-4, 41 years old), and his 9-year-old cousin (III-4).

Clinical examination: All family members underwent
standard methods of ophthalmic examination (interrogation
of the patients, best-corrected visual acuity, study of the
lacrimal film, slit-lamp examination, measurement of the
intraocular pressure, study of color vision, study of the visual
field by the Humphrey® Field Analyzer which is one of the
world’s most widely used perimeter (Carl Zeiss Meditec
France SAS, Le Pecq), manual fundoscopy, and digital

Figure 1. Pedigree of the family studied
and segregation of the BEST1 mutant
alleles. This figure shows the pedigree
of a french family displaying an unusual
phenotype reminiscent of very atypic
bestrophinopathy. The clinical status of
I-1 and I-2 are unknown. The red shapes
denote genotyped individuals. White
circles represent unaffected females,
filled circles affected females, white
squares represent unaffected males and
filled squares affected males. The
p.Y5X mutation is shown in gray and the
p.S144G mutation is shown in black.
Individual III-1 (the proband) harbors
both mutations.
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fundoscopy imaging obtained with the Topcon SL-D7 slit
lamp (Topcon S.A.RL. Clichy, France) for each eye,
autofluorescent imaging analysis, OCT imaging analysis,
ICG, and an electrophysiological examination as described
below. The slit-lamp examinations were performed with the
latest biomicroscope produced by HAAG-STREIT
(Chambery, France). The digital imaging of the ocular fundus
was performed by the latest digital TOPCON biomicroscope
available (TOPCON SLD7) equipped with a high-resolution
camera (TOPCON SARL, Clichy, France). The
autofluorescent imaging ICG, and OCT scans were in most
cases performed with the SPECTRALIS HRA-OCT
combined with the optical coherent tomography module
device - produced by Heidelberg Engineering- (SANOTEK,
L’Hay Les roses, France). OCT3 Stratus devices (Carl Zeiss
Meditec France SAS, Le Pecq) were used for some of the OCT
scans. The HRA platform was the first commercial
angiography system to use lasers in combination with marker
dyes. Using the HRA instead of white light photography
allows clinicians to capture detailed images of the blood vessel
structure within the retina. Spectralis HRA+OCT is a spectral
domain system, sometimes called fourier domain, which
scans the retina at 40,000 scans per second, to create highly
detailed images of the structure of the retina. Because the OCT
and HRA images are captured simultaneously, the clinician
can be sure of the exact location of the area of interest and can
correlate the outer visible retina structure with the internal
structure.
BEST1 gene analysis: The study was performed in accordance
with the French and European Union bioethics laws and with
the guidelines of the Declaration of Helsinki. Blood samples
were collected from patients after informed consent was
signed by the adults or by both parents of each child involved
(under 12 years-old). The veinous blood samples were
collected into EDTA tubes by specialized nurses using BD
vacutainer systems (Becton-Dickinson SAS, Le Pont de
Claix, France), kept at room temperature and used for DNA
extraction less than 24 h after they had been collected. The
blood (10 ml) was prepared in lysis buffer (100 mM Tris-HCl
pH 7.5, 5 mM EDTA) and then centrifuged several times at
500 xg for 15 min at 4 °C to collect a clean pellet with blood
lymphocytes. The pellet was solubilized using 0.5% Lauryl-
sarcosyl (Sigma Aldrich, Lyon, France), and incubated with
1 µg of proteinase K (Invitrogen, Cergy Pontoise, France) in
5 ml lysis buffer overnight at 55 °C. The DNA was then
purified by ethanol precipitation.

Each exon of the BEST1 gene was amplified from
genomic DNA by PCR using the intronic oligonucleotide
primers and the PCR conditions described in Table 1.

Each PCR was performed in a reaction volume of 60 μl
containing 150 ng of patient genomic DNA as a template,
10 mM Tris-HCl at pH 8.3, flanking primers, MgCl2, dNTP,
DMSO, and 0.4 U of Taq DNA polymerase (Invitrogen, Cergy

Pontoise, France). PCR was performed in a PTC 225
automated thermal cycler (MJ Research, Waltham, MA).
Amplified fragments were purified using the Concert kit with
NucleoFast 96-well PCR plates (Macherey-Nagel, Hoerdt,
France) and then analyzed by direct sequencing using an ABI
PRISM 3100 DNA sequencer (Applied Biosystems,
Courtaboeuf, France).

A control group was constituted from 100 unrelated
individuals from France who were unaffected by any form of
macular degeneration or inherited retinal dystrophy and with
no family history of BMVD. These controls served to ensure
that the mutations identified were not simply common
polymorphisms.
Information retrieved from DNA and protein databases:
Genomic DNA and cDNA sequences of the human BEST1
gene are available at the GenBank database (NM_004183).

Using the multiple alignment program CLUSTALW,
protein sequences were aligned with the reference sequence
NP_004174. Nucleotide variations leading to unchanged
amino acids in the protein sequence were analyzed using ESE
finder to determine whether these nucleotidic changes had any
effect on mRNA splicing. A check was performed at the
Regensburg University database Website to verify whether
the nucleotide sequence variants of the BEST1 gene that we
found had already been submitted to the database.
Electrophysiological testing: The electroretinograms (flash
ERG, mfERG) and EOG [19,20] were obtained during routine
clinical examination in accordance with the standards of the
International Society for Clinical Electrophysiology of
Vision. The EOG was recorded first, followed by flash ERG
and mfERG. Stimulus and data acquisition were controlled
with a Moniteur Ophtalmologique system (Métrovision, Lille,
France). The pupils were fully dilated before the three tests
(Tropicamide [CIBA-vision, Blagnac, France] 2 mg/0.4 ml
instilled 30 min before test recordings). The EOG mainly
included the response of the basolateral membrane of the RPE.
Flash ERG included the scotopic responses (rod and mixed
response) and the photopic responses (photopic-oscillary
potentials, cone and flicker responses). MfERG included the
photopic responses of 61 hexagons distributed into five
concentric rings on the posterior pole (40°). The central
response corresponded to the fovea.
Data analysis: Amplitudes and implicit times of a- and b-
flash-ERG waves were compared to those measured in normal
subjects. N1-P1 and N2-P2 summated amplitudes of each
mfERG ring were measured and compared to normal values.
Data falling within plus or minus two standard deviations
(SDs) of the mean for normal subjects were considered as
normal. Response amplitudes superior to the mean plus
two SDs or inferior to the mean minus two SDs were
considered to be abnormally high or decreased, respectively.
The EOG Arden ratio is the light peak as a percentage of the
dark trough and was calculated automatically. Patients
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displaying an Arden ratio below 150% are usually considered
as affected patients.

RESULTS
Genetic analysis: Patients II-2, II-3, III-2, and III-4 (Figure 1)
all carried the same, previously unreported, heterozygous
nucleotide mutation, located in exon 4 of the genomic
sequence (Figure 2A): an A to G substitution at position 430
of the BEST1 coding sequence (c.430A>G). The codon AGC
was thus transformed into the codon GGC, which corresponds
to a serine to glycine substitution at position 144 of BEST-1
protein (p.S144G). The mutation is located between the
second (TM2) and the third putative transmembrane (TM3)
domain of BEST-1 protein, a region displaying good
conservation in phylogenetically distant orthologs of
bestrophin (Figure 2B). Furthermore, this position is
completely conserved in human bestrophin-related family
members (BEST2, BEST3, and BEST4; Figure 2C). The
p.S144G mutation is thus in a BEST-1 protein region that has
not been previously considered as a hotspot, despite harboring
many mutations. A different nucleotide mutation, c.431G>A,
affecting the same codon and resulting in the same amino acid
substitution (p.S144G) [21] has recently been shown to cause
typical monofocal BVMD in a Chinese family.

We also detected a heterozygous c.15C>A mutation
(Figure 2A) in the BEST1 gene in exon 2 in one patient (II-1),
resulting in a premature stop codon instead of a tyrosine at the
fifth codon (p.Y5X). The tyrosine residue at this position is
highly conserved in phylogenetically distant orthologs and
also in bestrophin-related family members (BEST2, BEST3,
and BEST4; Figure 2B,C).

One of the eight related subjects enrolled in this study was
the proband (III-1). We found that he had inherited both
BEST1 mutations, c.430A>G (p.S144G) from his mother
(II-2) and c.15C>A (p.Y5X) from his father (II-1). Neither of
these two mutations were found in any of the 100 unaffected
controls.
Clinical results: II-1, II-2, II-3, III-2, and III-3 had completely
normal ophthalmic examinations (Table 2, Figure 3), with
normal visual acuity (200/200 for each eye) and binocularly,
normal fundi, and normal OCT.

III-1 is the proband. He was 23 years old with no known
familial history of ocular disease at diagnosis of BVMD at the
age of 6 years. His best-corrected visual acuity is 20/200 in
the right eye and 130/200 in the left eye. Fundus examination
showed vitelliruptive lesions with a scrambled egg
appearance and dispersion of the vitelliform material but no
sign of atrophy (Figure 4A,E) confirmed by autofluorescence
imaging (Figure 4B,F). The ICG detected a hypofluorescence
at the early stages of the angiographic sequence in both eyes
(Figure 4C,G) and subsequently abnormal hyperfluorescence
at the late stages. Fluorescein angiography revealed
significant early hyperfluorescence that increased in intensity

at the late stage of the angiographic sequence in both eyes and
was associated with moderate leakage (data not shown).
Spectral domain OCT scans showed striking abnormalities
(Figure 4D,H) with the absence of the foveal pit, serous retinal
detachment, and cystoid macular edema and interruption of
the outer limiting membrane. The deep retinal layers were
irregular, with an abnormal junction between the inner and the
outer segments, multiple hyper-reflective foci, and deep
material deposits on the pigment epithelial layer.

III-4 is the proband’s first cousin. He was 9 years old on
inclusion in this study and he had been diagnosed as having
multifocal BVMD at the age of 4 years. Right eye ocular
fundoscopy showed (Figure 5A) a major macular yellow
lesion associated with multiple smaller more peripheral
vitelliform foci in the vitreous cavity. This lesion was also
apparent on autofluorescence images (Figure 5B),
corresponding to the classic appearance of the vitelliruptive
stage. OCT along a central horizontal axis of the same eye
revealed a highly reflective area (Figure 5C,D) corresponding
to a prominent mass of heterogenous material emerging from
the choroid and disrupting the RPE completely, pushing the
central photoreceptor layer toward the vitreous cavity. The
macula of the left eye was surrounded by yellow deposits
(Figure 5E,F) but was devoid of any central vitelliform disc.
Nevertheless, OCT revealed (Figure 5G,H) that the foveal
region was abnormally thick due to abnormal neuroretinal
detachment from the RPE in the region. This detachment had
probably been triggered by an abnormal accumulation of fluid
within the choriocapillaris and between the RPE and the
fovea. This serous detachment had already caused
displacement, without any significant disorganization, of the
photoreceptor layer. The visual acuity of the left eye was
preserved, whereas that of the right eye had progressively
declined since early childhood to 30/200. The decline in the
visual acuity of the right eye was rigorously evaluated and
corresponded to the lesions detected by fundoscopy,
autofluorescence imaging, and OCT and especially to the
complete disruption of the RPE and the prominent
disorganization of the neuroretinal layers in the macular
region. The preservation of the visual acuity of the left eye
was consistent with the central ocular fundoscopic aspect that
showed the absence of a central macular vitelliform disk in
association with multiple small diffuse vitelliform lesions
throughout the retina. These lesions were especially dense and
numerous around the foveal and macular regions. Despite the
existence of a subretinal edema in the foveal region, numerous
abnormal RPE abnormalities throughout the retina, the
existence of multiple vitelliform autofluorescent lesions
outside the foveal area, the relative preservation of the outer
retinal structure in the foveal region, combined with a normal
organization of all the inner layers in a large part of the
macular region explains the relative preservation of the visual
acuity of the left eye.
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Figure 2. Two novel nucleotidic mutations in the BEST1 gene. Electrophoregrams of the BEST1 gene mutations found in the affected members
of the French family studied and phylogenetic conservation throughout evolution of the normal BEST-1 amino-acid residues affected by these
mutations. A: These electrophoregrams show heterozygous mutated nucleotides in the BEST1 gene: An adenine (A) is replaced by a guanine
(G) at the 430th nucleotidic position of the BEST1 cDNA sequence (c.430A>G) and and a cytosine (C) is replaced by an adenine (A) at the
15th nucleotidic position of the BEST1 cDNA sequence (c.15C>A) (top panel), and normal sequences (low panel). The peaks in red indicate
thymidine (T), green indicate A, black indicate G, and blue indicate C. B: This panel shows the multiple sequence alignment of human
bestrophin-1 protein (BEST-1 protein; NP_004174) with the BEST-1 protein sequences from Mus musculus (NP_036043.2), Rattus
norvegicus (NP_001011940.1), Xenopus tropicalis (BAH70274.1), and Drosophila melanogaster (AAF54503.1). This multiple sequence
alignment highlights the strong conservation throughout evolution of the amino-acid residues of the normal BEST-1 protein which were found
affected by mutations in this study. C: This panel shows the multiple sequence alignment of the human BEST1 protein with the bestrophin
paralogs: BEST2, BEST3, and BEST4. Alignments are zoomed into the relevant region. The amino- acids affected by a mutation are shown
in red. The stars indicate 100% conservation.
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Electrophysiological results: Two of the eight family
members declined to undergo electrophysiological
examinations, and consequently only the following six were
examined: II-1 (proband’s father), II-2 (proband’s mother),
II-3 (proband’s aunt), the proband III-1, III-2 (proband’s
young brother), and III-4 (proband’s young cousin; see Figure
1).

The electrophysiological results for patients II-1, III-1,
and III-2 are shown in Figure 6, and those for patients II-2 and
II-3 were similar to III-2 (data not shown).

The EOG of II-1 was normal (Arden ratio ≥150%).
Despite being clinically normal, EOGs (Figure 6A) for II-2,
II-3, and III-2 were flat with no light peak rise. Flash ERGs
(Figure 6B) for II-1, II-2, II-3, and III-2, which reflect rod and
cone function, were normal (scotopic and photopic
responses). MfERGs (Figure 6C), which reflect the function
in the macular region, were within normal limits for all four
of these patients.

The proband III-1 and his cousin III-4 showed no EOG
light peak rise (“flat” EOG) in both eyes (Figure 6A),
indicating a disorder between the photoreceptor layer of the
outer retina and the RPE. Flash ERGs for III-1 showed (Figure
6B) a significant decrease in scotopic and photopic response
amplitudes. Similarly, mfERGs (response of the posterior
fundus) for III-1 showed (Figure 6C) a significant decrease in
the amplitude of the foveal response for each eye, although

the peripheral mfERG amplitudes were within normal limits.
Decreased mfERG amplitudes, reflecting the macular
dysfunction associated with the macular oedema, very well
detected by OCT imaging, and loss of integrity of the foveal
photoreceptor inner/outer segment junction correlated with
decreased vision. MfERGs could not be performed for III-4,
but he displayed low flash ERGs, similar to III-1 (data not
shown).

In summary, examinations of this family (Table 2), found
unremarkable fundi but altered EOGs with low Arden ratios
for the proband’s mother (II-2), young brother (III-2), and aunt
(II-3). Findings for II-2, II-3, and III-2 are consistent with the
early stages of BVMD (probably still in the previtelliform
stage), although these individuals did not suffer any
symptomatic visual handicap at the time of examination. It is
possible that they will not develop clinical manifestations of
BVMD during their life if the pathogenic allele that they carry
is not clinically penetrant.

Patients III-1 and III-4, who presented with visual failure
and macular degeneration since childhood, exhibited a
phenotype consistent with bestrophinopathy (EOG, OCT),
probably at the vitelliruptive stage, associated with multiple
vitelliform autofluorescent foci localized outside the foveal
region (mostly around the macular region and in the peripheral
retina). However, the flash ERG and mfERG for III-1
indicated a diffuse altered RPE–neuroretina junction and a
generalized effect on cone and rod function with a

Figure 3. Color fundus and autofluorescent fundus/optical coherence tomography scans in patients II-1, II-2, II-3, III-2, and III-3. No macular
lesion was detectable by autofluorescence imaging or optical coherence tomography scanning for patients II-1 or III-2. No macular lesion was
detectable in the color fundus for patients II-2, II-3, or III-3.
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predominance of the functional alterations in the foveolar
region.

DISCUSSION
We report an analysis of BEST1 gene mutations of eight
subjects from a French family in which initially only the
proband III-1 was known to be affected by early onset
multifocal BVMD. Genetic analysis identified two mutations

— p.Y5X and p.S144G — one of which, p.S144G, co-
segregates with numerous characteristics of the clinical
spectrum of BVMD and appears to be the pathogenic mutation
[22]. We studied the different phenotypes in detail by
performing repeated clinical examinations and integrated
imaging analysis with recently available equipment (fundus
photography, fundus autofluorescent photography, ICG, OCT

Figure 4. Right and left eye color fundus, autofluorescent fundus, indocyanine green angiography, and optical coherence tomography scans
in the proband (patient III-1). Well demarcated vitelliform lesions in the central macula are detected by fundoscopy (A-E) and are also apparent
on the autofluorescence image (B-F) and indocyanine green angiography (C-G) in both eyes. Optical coherence tomography images through
the fovea show a highly reflective thickened layer at the level of the retinal pigment epithelium and choriocapillaris of both eyes and well
circumscribed elevation of the retinal pigment epithelium in both eyes (D-H).

Figure 5. Fundoscopy, autofluorescence and optical coherence tomography (OCT3) imaging of a severely affected patient (III-4). Typical
vitelliform lesions are visible on the ophthalmoscopic appearance of the right eye (A, B, C) and left eye shows fragmented vitelliform lesions
(D, E, F). Green lines indicate abrupt transitions and the frame of the fundus that was scanned by optical coherent tomography (OCT). The
middle green lines of (A, D) indicate the horizontal axis of the OCT scan shown in (C, F).
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Figure 6. Electrophysiology measurements of three representative cases of the family studied. This figure represents electro-oculograms
(EOGs; A), right eye flash electroretinograms (ERGs; B) and right eye multifocal electroretinograms (mfERGs; C) in patients carrying one
mutation heterozygously (II-1: p.Y5X; III-2: p.S144G) or both mutations (III-1). Findings are based on ISCEV standard. Patients II-2 and
II-3 displayed electrophysiological findings similar to III-2 and patient III-4 displayed electrophysiological findings similar to III-1. Except
for II-1, the amplitudes for the light phase of the EOG (A) were abnormal with a reduction in the Arden ratio (EOG light rise <150%). In
patient III-1 (and III-4), flash ERGs show generalized decreased rod and cone photoreceptor amplitudes and decreased photopic oscillatory
potentials amplitude (Phot-Ops; B). MfERG records a reduced central function with relative preservation of the amplitude response and timing
from the surrounding macula (C).
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scans) and electrophysiological tests (ERGs, EOG) of the
family members who consented to clinical and genetic
investigations. Our study and a recent description of a Danish
family show the importance of combining thorough and
repeated clinical examinations involving the use of the latest
methods available for exploring the retinal function with
rigorous molecular genetics analysis to address the
complexity of BVMD.

A large number of allelic variants of the BEST1 gene have
been identified and are recorded in the Regensburg University
database. Missense mutations comprise 92% of the mutations
[6], and only five null BEST1 mutations have been reported,
three of which have been associated with a BVMD phenotype.
Two of these mutations, p.P260fsX288 [23] and
p.H490fsX514 [24], were identified as heterozygous in
isolated BVMD cases with no information available about any
of the family members and no mutation identified on the
counter allele. The third mutation, p.Y29X, was detected in a
Swedish family with a rare BEST1 genotype in which two
sisters, aged 30 and 33, were compound heterozygous for a
missense mutation and a null mutation and presented with
vitelliform dystrophy and electrophysiological signs of
widespread retinal degeneration [22]. This phenotype shares
similarities with that of the proband (patient III-1) of our
French family. In addition, p.R200X [25] was found to cause
ARB. In two AMD patients the p.L149X [5] mutation was
identified heterozygously.

We found a novel c.15C>A mutation (p.Y5X) in the
BEST1 gene that gave rise to a truncated BEST-1 protein.
Patient II-1 (the father of the proband III-1) had inherited the
p.Y5X mutation heterozygously and had a normal-appearing
fundus, a completely normal OCT in each retina, and even
normal findings by EOG and other electrophysiological tests.
Consequently, II-1 appears to have neuroretina and RPE with
completely normal functioning. Therefore, one single normal
copy of the BEST1 gene might be sufficient to confer a normal
phenotype. The phenotype of II-1 is that of an asymptomatic
carrier.

Both missense and truncating mutations can provoke a
disease phenotype by a haploinsufficiency [26] mechanism,
as exemplified by the mutations causing aniridia. Most of the
investigations studying function of the mutant BEST-1
protein [27-29] reported a loss of function mechanism.
However, if the BVMD phenotype was caused exclusively by
haploinsufficiency [21], many more truncating mutations
should be observed. Neither our report nor any other report in
which BVMD-affected patients and all their family members
have been carefully studied clinically and molecularly
provides any support for a universal haploinsufficiency
mechanism. The observed BVMD phenotype of most
clinically affected individuals apparently carrying
heterozygous null mutations in BEST1 [22,23] probably
correspond to compound heterozygotes who carry a missense

mutation on the counter allele overlooked during the first
genomic screening.

Nevertheless, given that vitelliform macular dystrophy
appears with incomplete penetrance and variable age onset
[30], we cannot exclude the possibility that II-1 may
subsequently develop a late onset form of BVMD, although
this appears unlikely from the thorough and accurate data we
have for this family.

In this report we also describe five related patients
carrying a novel heterozygous c.430A>G transition in the
BEST1 gene, which leads to a p.S144G substitution in the
BEST-1 protein. This substitution replaces a noncharged polar
amino acid (serine) with a small nonpolar or apolar amino acid
(glycine). The serine at position 144 is an invariant residue in
human bestrophin-related family members and is highly
conserved in other species, suggesting an important functional
or structural role of this amino acid in normal BEST-1 protein.
The p.S144G substitution may therefore affect the functioning
of the BEST-1 calcium-activated chloride channel. However,
rather than causing a severe phenotype, the p.S144G mutation
segregates with a phenotype that varies from generation to
generation for probably more than two generations. The
reduced light peak on the EOG was a completely penetrant
electrophysiological manifestation. BEST-1 calcium-
activated chloride channels are in the RPE basolateral
membrane and contribute to the generation of EOG light peak.
Thus, the substitution in the BEST1 protein probably modifies
the function of these channels and provokes an abnormal
electrophysiological coupling between the RPE and the
neuroretina (EOG). Alternatively, the coupling may still exist,
whereas the intracellular downstream signaling pathways of
the BEST1-mutated channels might be altered. Three family
members of the family were found to be carriers of this BEST1
mutation without any clinical expression of the disease except
an abnormal EOG. Two family members exhibited
characteristic lesions of multifocal BVMD. We report an early
onset and fast-evolving form of multifocal BVMD first in the
proband (III-1), before any family clinical history was known,
and then in his younger first cousin (III-4).

The proband was compound heterozygous for mutations
in the BEST1 gene, carrying the p.Y5X mutation transmitted
by his father and the p.S144G mutation transmitted by his
mother. This is only the second report [22], as far as we are
aware, of a patient who is compound heterozygous for the
BEST1 gene. As with most BVMD patients, mfERG for III-1
was abnormal. However, patient III-4, carrying solely the
p.S144G mutation, displayed an unexpectedly severe
phenotype, extremely similar to that of III-1. Indeed, the
decreased vision, marked scrambled egg appearance of the
central fundus, structural and functional abnormalities of the
fovea (revealed by OCT scans), abnormal EOG Arden ratio,
and abnormal mfERG are typical features of BVMD.

Patients III-1 and III-4 also share abnormally low and
delayed rod and cone responses, indicating widespread retinal
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involvement, although photopic and scotopic ERGs are
generally normal in BVMD patients. The mutation p.S144G
was recently described in a Chinese patient with monofocal
BVMD in a study that included fundus autofluorescence,
EOG, and OCT. Apparently no full-field ERGs were
performed [21] for this particular patient or his relatives. Our
data collected from the French family confirm a generalized
RPE dysfunction associated with the p.S144G mutation,
possibly suggestive of an ARB pattern. Indeed, mutations in
the BEST1 gene have been found not only in patients with
BVMD [2,3] but also in patients with ARB [25] and AVMD
[4] as well as in patients affected by autosomal dominant or
autosomal recessive retinitis pigmentosa [31].

ARB [25] has an autosomal recessive inheritance pattern.
This means that homozygosity or compound heterozygosity
[25,32] is required to contribute to the severity of the ARB
phenotype. In the French family, the electrodiagnostic tests
(EOG) and the DNA analysis were consistent with an
autosomal dominant mode of BVMD transmission. In
addition the p.Y5X mutation was initially suspected to result
in haplosufficiency and, as stated previously, the abnormal
EOG is probably caused by the observed genotype in the
heterozygous carriers of the p.S144G mutation. Although
ARB exhibits some pathologic similarities to BVMD, the
recessive pattern of inheritance of ARB and the distinct
clinical characteristics (including the characteristic
vitelliform lesions) indicate that the phenotypes observed in
the French family most likely belong to the BVMD clinical
spectrum. Furthermore, a low Arden ratio (≤150%)
differentiates BVMD from all other bestrophinopathies [1].

The phenotypes observed in the French family studied are
clearly different from most bestrophinopathies described so
far. Actually, they are reminiscent of the atypic BVMD
phenotypes caused by other BEST1 mutations reported
recently [18]. Finally, the abnormal ERGs recorded from the
proband III-1 and his first cousin III-4 and the similar clinical,
imaging, and electrophysiological data collected in these two
patients can be easily reconciled with the diagnosis of BVMD.
Significantly, it was previously reported that flash ERGs may
decline with time during the evolution of the disease
phenotype, reflecting severe rod and cone photoreceptor
dysfunction [22,30]. Thus, these patients with multifocal
vitelliform lesions combined with an autosomal dominant
inheritance pattern, abnormal EOG findings, and a mutation
in the BEST1 gene should be diagnosed as having multifocal
BVMD [12], even though there are abnormal ERGs.

Our data indicate an incomplete penetrance and a variable
expressivity of a mutation in the BEST1 gene in a single
family. The EOG and the DNA analysis suggest an autosomal
dominant mode of BVMD transmission, and there is clearly
a highly variable phenotype associated with the p.S144G
mutation. The clinical onset was late with a slow evolution in
some patients (II-2, II-3, III-2), but the onset of a severe

multifocal BVMD was early with a fast evolution toward the
central vision loss in at least two other patients (III-1 and
III-4). This single p.S144G mutation seems to cause a broad
phenotypic range, including typical monofocal BVMD in a
Chinese family [21], severe multifocal BVMD with early
onset in two patients of this study’s French family, and
isolated abnormal EOGs in other members of the same family.
This observation raises the crucial issue of the differential
regulation of transcription of the mutated BEST1 alleles
within the same family and between different families and
highlights the complexity of monogenic diseases in general.
BEST1 mutations do not correlate with clinical severity of
BVMD patients. Indeed, some patients [33] never manifest
fundus changes even with genetically confirmed BVMD and
an abnormal EOG. These various observations suggest that a
normal eye fundus does not rule out a diagnosis of BVMD and
indicate the importance of EOG and molecular analysis.

This study leads us to the conclusion that four issues are
too often overlooked in the diagnosis, follow-up, and
management of BVMD: 1) This disease affects, sometimes
with dramatic clinical consequences, young children and may
evolve quickly toward the loss of central vision. Thus, a
reassessment of the age of onset of this disease would be
valuable. It would also be useful to conduct studies on
independent cohorts of children belonging to families known
to be affected by BVMD, including rigorous follow-up of
disease evolution according to the genotype, with the
systematic use of the latest generation of noninvasive
diagnostic devices for the study of the human retina; 2) more
than 300 different BEST1 allelic variants have been reported
in BVMD, but we are far from having a comprehensive
database of BEST1 mutations causing BVMD worldwide,
largely because there is no systematic whole BEST1 gene
sequencing in affected patients; 3) the collection of accurate
clinical and biologic information (most, if not all, BEST1
mutations have been detected by sequencing BEST1 gene
coding exons without always checking the co-segregation of
the nucleotide variant with the disease) and
electrophysiological data at the cellular level, using patch-
clamp technology [29] may help establish phenotype–
genotype correlations, leading to a better understanding of
BVMD; 4) various investigations and approaches need to be
applied in a more systematic manner, in particular illegitimate
transcription with total RNA extracted from white blood cells
or from lymphoblastoid cell lines of affected patients to detect
intronic mutations, PCR of genomic DNA to study gene copy
numbers and long- range genomic PCR detection of deletions
or rearrangements of the BEST1 gene, systematic sequencing
of the regulatory regions controlling BEST1 gene
transcription, analysis of BEST1 gene epigenetics, and
functional studies of the mutant bestrophin-1 proteins in vitro
and in vivo.
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