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Abstract

Background: DNA methylation levels are known to vary over time, and modelling these
trajectories is crucial for our understanding of the biological relevance of these changes
over time. However, due to the computational cost of fitting multilevel models across the
epigenome, most trajectory modelling efforts to date have focused on a subset of CpG
sites identified through epigenome-wide association studies (EWAS) at individual time-
points.

Methods: We propose using linear regression across the repeated measures, estimating
cluster-robust standard errors using a sandwich estimator, as a less computationally in-
tensive strategy than multilevel modelling. We compared these two longitudinal
approaches, as well as three approaches based on EWAS (associated at baseline, at any
time-point and at all time-points), for identifying epigenetic change over time related to
an exposure using simulations and by applying them to blood DNA methylation profiles
from the Accessible Resource for Integrated Epigenomics Studies (ARIES).

Results: Restricting association testing to EWAS at baseline identified a less complete
set of associations than performing EWAS at each time-point or applying the longitudinal
modelling approaches to the full dataset. Linear regression models with cluster-robust
standard errors identified similar sets of associations with almost identical estimates of
effect as the multilevel models, while also being 74 times more efficient. Both longitu-
dinal modelling approaches identified comparable sets of CpG sites in ARIES with an as-
sociation with prenatal exposure to smoking (>70% agreement).

Conclusions: Linear regression with cluster-robust standard errors is an appropriate and
efficient approach for longitudinal analysis of DNA methylation data.

Key words: epigenetics, epigenome-wide association study, longitudinal data analysis, DNA methylation, ARIES,
ALSPAC
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efficient alternative to multilevel models for the longitu-

Introduction

Epigenome-wide association studies (EWAS) have been
used to investigate the associations between DNA methyla-
tion and a wide range of phenotypes and diseases (see
Supplementary Material for short summary of EWAS,
available as Supplementary Data at IJE online)."* These
analyses tend to be cross-sectional, testing for associations
between methylation at CpG sites and the phenotype at
one point in time. However, DNA methylation levels are
known to vary over time®> and modelling these trajectories
could aid in understanding the biological relevance of epi-
genetic change over time.* Previous investigations into epi-
genetic change have, so far, focused on analysing CpGs
that are associated with the phenotype at baseline or at
later time-points, as opposed to fitting longitudinal trajec-
tories for all available sites.>*® These cross-sectional (time-
point-specific) approaches are practical and will identify
the CpGs with the largest effects at baseline and those sites
that diverge the most based on the exposure over time. The
drawback, however, is that additional CpGs that have a
time-varying association with an exposure might be missed
due to the misspecification of the model in relation to the
question of interest.

Multilevel models are often used in traditional epidemi-
ology to investigate associations between an exposure and
repeated measures of an outcome over time, while account-
ing for clustering within individuals using random effects.”
However, these models are computationally expensive
when fitting many separate outcomes, as is the case in
DNA methylation data using the Infinium Human
Methylation450 BeadChip (485 000 CpGs).® An alterna-
tive approach is to fit linear regression models across
time-points and account for the non-independence with
cluster-robust standard errors.” Although, these models are
less flexible than multilevel models,'° they will yield com-
parable population average estimates and inferences, while
being computationally more efficient.""

Here, we have compared cross-sectional and longitu-
dinal modelling approaches for identifying CpGs that
change over time in relation to an exposure. We first

performed a simulation study, and then applied these mod-
elling approaches to investigate the effect of prenatal ex-
posure to smoking on offspring DNA methylation change
over childhood and adolescence.

Methods
Modelling approaches

EWAS

The most widely used approach of identifying epigenetic
change over time is to perform an EWAS at baseline, and
investigate whether these associations persist over time.>*®
A more comprehensive approach is to perform an EWAS
at each time-point and fit the trajectories of those CpGs
that are associated with the exposure at one or more time-
points.'* Another possible approach is to model the trajec-
tories of those CpGs that are associated with the exposure

at all time-points.

Multilevel models

Multilevel models are often used to model trajectories over
time between repeated measures of an outcome and an ex-
posure. These models contain random-effect parameters
that model the within-and-between-individual variance
components.” Assuming a (between-individual) random
intercept and slope for the exposure, then the model takes
the form:

yi = (Boo + Borzj +uo;) + (Bro + Biazj + u1j)xij + &,

where y;; and x;; are the repeated measures of the outcome
and age/time for the i-th measurement for the j-th individ-
ual and z; is the exposure of interest. The #’s are the ran-
dom effects for the intercept and slope, and are assumed to
be uncorrelated with &; and #; ~ N(0, %,,) (where %, is an
unstructured covariance matrix) and &; ~ N(0, a.2).

Linear regression with cluster-robust standard errors
Standard linear regression provides valid effect estimates
ignoring the repeated measures within individuals:
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However, since the observations are clustered within
groups, the residual errors (g;) will not be independent,
thus the standard errors and subsequent inference from the
linear regression model will not be valid. To address this, a
sandwich estimator can be used to estimate cluster-robust

variances:

V= (XX W rw(XX)7

=1

where 7 is the total number of clusters and w; = 3"} | ¢
xx, with x; the row vector of predictors including the
intercept and e, the residual from the linear regression
model.”

We have developed an R package based on Repp'?® to
fit cluster-robust standard errors across CpG sites (https:/
github.com/jrs95/Imrse).

Simulation study

We assessed the performance of these approaches for iden-
tifying CpGs that change over time in relation to a binary
exposure through a simulation study. Specifically, we as-
sessed the following approaches: EWAS at the first time-
point only, EWAS at each time-point (considering two
strategies for identifying CpGs as being associated: CpGs
that are associated with the exposure at any, or at all,
time-points), multilevel models with a random intercept,
multilevel models with a random intercept and slope, and
linear regression with cluster-robust standard errors. This
simulation study was performed based on data from the
Tsaprouni et al. study,’® which investigated the relation-
ship between smoking and DNA methylation (data access-
ible at NCBI GEO database,'’ accession GSES0660).

In each simulation, 100 CpGs were selected at random,
of which six CpGs were simulated to be associated with the
binary exposure (Supplementary Figure 1, available as
Supplementary Data at IJE online). These effects reflect the
likely epigenetic associations over time: (i) a constant effect
of the exposure but no effect of age on methylation; (ii) a
diverging effect of the exposure over time starting at the
same baseline value, where, for one level of the exposure,
there is no effect of age on methylation; (iii) a diverging ef-
fect of the exposure over time starting at the same baseline
value; (iv) a constant effect of the exposure as well as an
effect of age on methylation; (v) a diverging effect of the
exposure over time as well as an effect at baseline; (vi) a
converging effect of the exposure over time. The data
were simulated using a multilevel model with a random
intercept and slope as the underlying data-generating model

(Supplementary Material, available as Supplementary Data
at IJE online).

We considered various numbers of equally spaced re-
peated measures over childhood and adolescence from the
age of 10 to 18 years. The primary analyses were based on
five repeated measures, each 2 years apart. In secondary
analyses, we also considered three repeats, each 4 years
apart, and nine repeats, each 1 year apart.

Statistical power (and Type I error) of the parameters
relating to the binary exposure were calculated as the pro-
portion of simulation replicates that have a p<1x107".
Type I error was assessed using the 94 CpGs that were not
associated with the exposure either at baseline or over
time. Relative bias (i.e. (E —B)/p) of the parameters
related to the exposure was also used to compare the linear
regression model with robust standard errors in relation to
the multilevel model with both a random intercept and
slope. For each simulation scenario, 1000 simulation repli-
cates were performed.

Application to prenatal exposure to smoking and
DNA methylation change

Study population

This study used DNA methylation data generated as part
of the Avon Longitudinal Study of Parents and Children
(ALSPAC).'®'7 ALSPAC recruited 14 541 pregnant
women with expected delivery dates between April 1991
and December 1992. Of these initial pregnancies, there
were 14 062 live births and 13 988 children who were alive
at 1 year of age. The study website contains details of all
the data that are available through a fully searchable data
dictionary (http://www.bris.ac.uk/alspac/researchers/data-
access/data-dictionary). Ethical approval for the study was
obtained from the ALSPAC Ethics and Law Committee
and the Local Research Ethics Committees. As part of the
Accessible Resource for Integrated Studies (ARIES) project
(http://www.ariesepigenomics.org.uk),'® a sub-sample of
1018 ALSPAC child-mother pairs had DNA methylation
measured. The ARIES participants were selected based on
availability of DNA samples at two time-points for the
mother (antenatal and at follow-up when the offspring was
in adolescence) and at three time-points for the offspring
(neonatal from cord blood, childhood (age 7) and adoles-
cence (age 17)).

Laboratory methods, quality control and preprocessing

The laboratory methods and quality-control procedures
used have been described elsewhere.’ In brief, the DNA
methylation wet laboratory and preprocessing analyses
were performed at the University of Bristol as part of the
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ARIES project, where the Infinium HumanMethylation450
BeadChip® was used to measure genome-wide DNA
methylation levels at over 485 000 CpG sites. The methyla-
tion level at each CpG site was calculated as a beta value:
the ratio of the methylated probe intensity and the overall
intensity. These beta values range from 0 (no methylation)
to 1 (complete methylation). The samples were processed
using functional normalization with the meffil pack-
age.'”?° Further quality-control procedures are described
in the Supplementary Material, available as Supplementary
Data at IJE online.

Prenatal exposure to smoking

Prenatal exposure to smoking was defined as sustained
smoking of the mother during pregnancy. A mother was
classified as a sustained smoker if she smoked in the third
trimester and at least one of the first two trimesters. The
reference group consisted of mothers who had reported
not smoking in all three trimesters. We excluded all indi-
viduals who smoked in one trimester only (i.e. not sus-
tained), had missing data for more than one trimester or
had stopped smoking by the third trimester.

Statistical analyses

The cross-sectional and longitudinal approaches were fitted
to the three repeated measures of methylation in the off-
spring (neonatal, at age 7 and at age 17) to investigate the ef-
fect of sustained maternal smoking during pregnancy on

offspring DNA methylation. An EWAS was fitted at each of
the three time-points. Multilevel models (with random inter-
cept and slope) were fitted individually for each CpG, with
sustained maternal smoking during pregnancy as the expos-
ure of interest (with a baseline effect and an interaction with
age). The linear regression model with robust standard errors
takes on the same form as the multilevel models in terms of
fixed-effects parameters. All analyses were adjusted for off-
spring gender, maternal age, pre-pregnancy BMI, pre-
pregnancy weight, parity, maternal education, family social
class, alcohol intake during pregnancy and paternal smoking,
as well as cell counts estimated using the method described
by Houseman et al.*' We further adjusted the models for 20
(time-point specific) surrogate variables to account for re-
sidual batch effects.”? CpGs were considered to be associated
with prenatal exposure to smoking if any parameter related
to prenatal smoking was associated at EWAS level of signifi-
cance (p < 1 x 1077). The computational times of performing
each strategy were assessed using 100 000 CpGs using 10
cores (2.6 GHz; 4 GB) on a linux server.
All analyses were performed using R (version 3.31).

Results

Simulation study

Figure 1 displays the simulation results of the statistical
power of each strategy (at p <1 x 107 for any parameter
related to the binary exposure in the model) to identify
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Figure 1. Simulation results for five repeated measures comparing approaches for identifying CpG sites associated with the exposure. Power refers
to the proportion of simulation replicates with any parameter related to the exposure with p<1E-7. EWAS, epigenome-wide association study;
Intercept, random intercept model; Slope, random intercept and slope model; Robust SEs, linear regression with cluster robust SEs.
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methylated CpGs associated with the binary exposure
when there were five repeated measures. The statistical
power of each time-specific EWAS and the baseline effect
and interaction with age of the exposure in the longitudinal
models (at p<1x1077) for five repeated measures is shown
in Supplementary Figure 2, available as Supplementary
Data at IJE online. As expected, EWAS at the first time-
point failed to identify methylation at CpGs that are not
associated with the exposure at baseline but are as time
progresses (Figure 1(ii) and (iii)). However, this approach
did identify methylated CpGs that are associated with the
binary exposure at baseline, so is relevant for identifying
CpGs to investigate persistence of an effect over time using
multilevel models (Figure 1(i), (iv) and (v)). The approach
where only CpGs that are associated with the exposure at
all time-points are considered was highly conservative,
whereas the approach that selects CpGs that are associated
with the exposure at any time-point performed well across
the board, and on some occasions outperformed the longi-
tudinal approaches. However, this is likely to come at the
expense of a small inflation in Type I error as the number
of repeated measures increases.

The simulation results for the multilevel model with
only a random intercept differed slightly from the other
two longitudinal approaches (Figure 1 and Supplementary
Figure 2, available as Supplementary Data at IJE online).
In particular, there was less power to detect an association
at baseline, while there was greater power to detect the
interaction between the exposure and age (Supplementary
Figure 2, available as Supplementary Data at IJE online).

This is because the between-individual variability is mod-
elled in the intercept only, making the slope parameter
overly precise. This model misspecification manifests itself
in inflated Type I error for this model (Supplementary
Table 1, available as Supplementary Data at IJE online).
The multilevel model with random intercept and slope and
the linear regression model with robust standard errors
yielded very similar results in terms of power, bias and pre-
cision (Table 1).

The results for the simulations using three repeated
measures and nine repeated measures yielded similar re-
sults and inferences to those with five repeated measures
(Supplementary Figures 3-6, available as Supplementary
Data at IJE online). There was increased power of the
longitudinal approaches in comparison to cross-sectional
approaches as the number of repeated measures increased.
However, there were no material differences between
the two longitudinal modelling approaches when
the number of repeated measures was increased or
decreased (Supplementary Figures 3-6 and Supplementary
Tables 2 and 3, available as Supplementary Data at IJE

online).

Application to prenatal exposure to smoking and
DNA methylation change

In ARIES, 724 mother—offspring pairs had information on
prenatal exposure to smoking as well as all the other cova-
riates and methylation. Overall, this left 2044 observations
in the offspring available for analysis: 645 neonatal from

Table 1. Simulation results comparing the longitudinal model with random intercept and slope and linear regression models

with cluster-robust standard errors for the causal CpGs for five repeated measures

Longitudinal model with random intercept and slope

Linear regression with cluster-robust SEs

CpG Boz Bi1 Boz Bz
Relative bias SE Relative bias Relative bias SE Relative bias SE

(1) —-0.0266 (0.194) 0.0034 NA 0.0008 -0.0269 (0.194) 0.0034 NA 0.0008
[<0.107,0.076] (0.0016) (0.0004)  [-0.105,0.076]  (0.0016) (0.0004)
(ii) NA 0.0033 -0.0330(0.222) 0.0008 NA 0.0033 -0.0330(0.222) 0.0008
(0.0017)  [-0.151,0.106] (0.0004) (0.0017)  [<0.146,0.106]  (0.0004)
(iii) NA 0.0033 -0.0200 (0.216) 0.0008 NA 0.0033 -0.0195 (0.217) 0.0008
(0.0013)  [-0.121,0.106] (0.0004) (0.0014)  [<0.117,0.107]  (0.0004)
(iv) -0.0236 (0.195) 0.0033 NA 0.0008 -0.0237 (0.196) 0.0033 NA 0.0008
[<0.110, 0.083] (0.0016) (0.0003)  [-0.111,0.081]  (0.0016) (0.0004)
(v) -0.0294 (0.212) 0.0033 -0.0113 (0.216) 0.0008 -0.0294 (0.212) 0.0033 -0.0112 (0.217) 0.0008
[<0.112, 0.079] (0.0014)  [-0.119,0.108] (0.0003)  [-0.118,0.081]  (0.0014)  [-0.123,0.109]  (0.0003)
(vi) —-0.0258 (0.198) 0.0032 0.0210 (0.302) 0.0007 —-0.0257 (0.198) 0.0033 0.0210 (0.304) 0.0007
[<0.112, 0.084] (0.0013)  [~0.149,0.163] (0.0003)  [-0.108,0.084]  (0.0013)  [-0.151,0.167]  (0.0003)

Relative bias refers to the estimated effect minus the underlying effect divided by the underlying effect. Relative bias is given in mean (standard deviation)

[lower quantile, upper quantile]. SE is given in mean (standard deviation). The mean bias for the null underlying effects were approximately zero. SE, standard

eror; NA, not applicable.
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cord blood, 698 during childhood at age 7 and 701 in ado-
lescence at age 17. In the mother—offspring pairs, 650
(89.8%) of the mothers were classified as non-smokers and
74 (10.2%) were classified as sustained smokers during
pregnancy (Table 2).

Methylation levels at 23 CpGs were associated with
prenatal smoking either through time-point specific EWAS
or longitudinally (with p<1x107; Table 3), of which 21
have previously been found to be associated with either
prenatal or own smoking.>**** Nineteen CpGs were iden-
tified with prenatal exposure to smoking in the longitu-
dinal models either through an association at baseline or
with an interaction with age (16 CpGs were identified by
the multilevel model, 17 CpGs were identified by linear re-
gression with cluster-robust standard errors, 14 in com-
mon). In general, the multilevel models were more precise
in estimating the interaction between prenatal smoking
and age. However, the effect estimates across all of the
CpGs were very similar across both modelling approaches.
Four CpGs were solely identified through the longitudinal

analyses (cg09662411 and cgl14179389 (GFI1), cg2746
2475 (DOCKDY) and ¢g04224247 (WWC3)). An additional
four CpGs were identified through time-point-specific
EWAS exclusively (cg02586610 (SEMASB), cg22089736
(PXT1), ¢g19089201 (MYO1G) and ¢g00213123 (CYP
1A1)); these CpGs were associated with prenatal exposure
to smoking at the later time-points (age 7 and age 17).
However, two of these CpGs showed little evidence of a
longitudinal association (SEMASB and PXT1) with all
p-values > 0.001.

The longitudinal associations for a key subset of
the 23 methylated CpGs that are associated with pre-
natal smoking are displayed in Figure 2 (all 23 are pre-
sented in Supplementary Figures 7 and 8, available as
Supplementary Data at IJE online). Some of the methy-
lated CpGs that are associated with prenatal exposure to
smoking at baseline resolve over childhood and adoles-
cence to a similar methylation level (e.g. GFI1, AHRR and
WWC3). Other associations remained reasonably constant
over time (e.g. CNTNAP2, MYO1G and CYP1A1).

Table 2. Differences between individuals in ARIES whose mothers did not smoke in pregnancy compared with sustained

smokers
Smoking status

Covariate Non-smoker (N =650) Sustained smoker (N = 74) p-value Overall (N =724)
Sex

Male 49.5 47.3 0.81 49.6

Female 50.5 52.7 50.4
Maternal age 30.1 (4.4) 28.2(5.3) 0.004 29.9 (4.5)
Parity

0 43.4 48.7 0.66 44.0

1 40.1 351 39.6

2+ 16.5 16.2 16.4
Maternal education

CSE or Vocational 11.9 27.0 <0.001 13.4

O-level 33.4 45.9 34.7

A-level 54.7% 27.1% 29.8

Degree * * 22.1
Social class

TorIl 67.2 50.0 <0.001 65.5

1II (non-manual) 24.0 21.6 23.7

III (manual) 5.7 16.2 6.8

VorV 31 12.2 4.0
Maternal BMI 22.7(3.7) 22.9(3.8) 0.70 22.7(3.7)
Maternal weight 61.5(10.3) 61.4 (11.0) 0.97 61.5(10.4)
Alcohol

Non-drinker 34.0 40.5 0.32 34.7

Drank during pregnancy 66.0 59.5 65.3
Partner smoking

Non-smoker 82.6 31.1 <0.001 77.3

Smoker 17.4 68.9 22.7

Continuous variables are given in mean (standard deviation) and binary variables are given in %. *Percentage given for ‘A-level’ and ‘Degree’ combined, due to

small cell sizes.
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Figure 2. Longitudinal trajectories of methylation for a subset of the CpGs associated with prenatal smoking during pregnancy (Table 3; Figures S7 &
S8) in the offspring of non-smokers and sustained smokers during pregnancy from birth to age 20. The solid and dashed lines are the longitudinal
models for offspring of nonsmokers and sustained smokers respectively (the bands represent the 95% confidence intervals).

The computational time required to complete each ap-
proach for 100 000 CpGs were as follows: 15 seconds for
EWAS at baseline only, 45 seconds for EWAS at each time-
point, 1894 minutes for the multilevel model with a
random intercept and slope, and 26 minutes for the linear
regression model with cluster-robust standard errors.

Discussion

In this study, we have investigated approaches for identify-
ing epigenetic change between DNA methylation and an
exposure. These approaches were tested in simulations and
were used to investigate the effect of sustained maternal
smoking during pregnancy on offspring DNA methylation
change during childhood and adolescence.

Out of the three approaches that involved performing
an EWAS at baseline or at each time-point, the approach
of taking forward CpGs that are associated at any time-
point performed best. This approach will have increased
Type I error as the number of repeats increase (unless
appropriately accounted for); however, as the Bonferroni
significance threshold used in EWAS is already conserva-
tive, this is unlikely to be problem in practice. The multi-
level model with only a random intercept had increased
Type I error, through inflated power to detect a difference
in slope between those who are exposed and not exposed.

Thus, this model is likely to be an inappropriate choice of
model to fit across all CpGs. Linear regression with cluster-
robust standard errors performed well in comparison to the
multilevel model with a random intercept and slope. This
approach was also much more computationally efficient (74
times faster) than multilevel models. Further advantages of
this approach are consistent convergence and no depend-
ence on choice of random-effects parameters. '

Well-known associations of prenatal smoking were
identified through EWAS and through longitudinal ana-
lyses (GFI1, AHRR, MYO1G and CYP1A1),>>3** as well
as a few potentially novel associations (SEMASB and
PXT1). Three-fifths of the associations that were identified
using the cross-sectional approaches and the longitudinal
approaches overlap (15 out of 23), with the cross-sectional
approaches identifying an additional four CpGs (of which
two showed little evidence of a longitudinal association in
follow-up analyses or an association in the literature and
therefore might be false positives) and the longitudinal
approaches identifying a further four CpGs. Some of these
longitudinal associations resolved over time (e.g. GFI1,
AHRR and WWC3), while others remained constant (e.g.
CNTNAP2, MYO1G and CYP1A1).

This study is also applicable to other areas of medical
research where repeated measures of high-dimensional
phenotypes are available, such as metabolomics.”® Indeed,


https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy012#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy012#supplementary-data

524

International Journal of Epidemiology, 2018, Vol. 47, No. 2

the results of this study are broadly generalizable to any
study where large numbers of longitudinal analyses need to
be performed, including genome-wide association studies
(GWAS) with repeated measures of an outcome.”®*”
However, fast approximate (two-stage) methods are avail-
able for GWAS of a longitudinal outcome where: (i) a
single longitudinal model of the outcome is fitted with
time/age and covariates only and (ii) the subject-specific
beta estimates of time/age from this model are then tested
against the genetic variants using linear regression.”®>’

The limitations of this study also warrant consideration.
In the simulations and applied example, only a binary
exposure was considered, although we fully expect these
results to extrapolate to continuous exposures. The appli-
cation of the approaches to prenatal exposure to smoking
also has several limitations, especially with regard to re-
sidual confounding. In particular, the CpGs where the as-
sociation with prenatal exposure to smoking diverged over
time are perhaps more likely to be due to other factors (e.g.
exposure to smoking during childhood and adolescence),
which are not captured fully in the questionnaire data
available. The ARIES cohort is also not selected at random
from the full ALSPAC cohort and, as such, the results from
this study may not generalizable to the full ALSPAC cohort
or the general population.

In summary, linear regression with cluster-robust stand-
ard errors is a computationally efficient alternative to
multilevel models, yielding similar effect estimates and
overall inference, although performing an EWAS at each
time-point to identify CpGs is also a practical alternative
to fitting multilevel models across the epigenome.

Supplementary Data

Supplementary data are available at IJE online.
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