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ABSTRACT Transmission-blocking vaccines have the potential to accelerate malaria
parasite elimination by inducing antibodies that block parasite transmission from hu-
mans to mosquitoes. Pfs230, a gametocyte surface protein involved in gamete func-
tion, has long been a promising candidate. Due to the large size (3,135 amino acids),
complex domains, and repeating 6-cysteine (6-Cys) motifs with a multitude of disul-
fide bonds, the feasibility of expression of a full-length protein has been difficult. A
priority focus, therefore, has been on the generation of single domains, including
N-terminal fragments. Here we utilized a heterologous expression system, baculovi-
rus, to produce an N-terminal domain of Pfs230 (Pfs230C1). Pfs230C1 (amino acids
443 to 731) with a polyhistidine affinity tag was expressed in Super Sf9 cells. Since
the native host lacks glycosylation machinery, a single N585Q mutation was made to
eliminate potential N-linked glycosylation. The expressed protein, purified by nickel
affinity, ion exchange, and size exclusion chromatography to �90% purity, was pres-
ent in monomeric form with an observed mass of 33,510 Da (matching oxidized
form). Peptide mapping and disulfide analysis confirmed the proper formation of
predicted disulfide bonds. Antibodies, generated against Pfs230C1 in mice, bound to
the gametocyte in an immunofluorescence assay (IFA) and demonstrated functional
activity in both the standard membrane feeding assay (SMFA) and the exflagellation
assay (EXA). The biochemical, biophysical, and immunological results reported herein
support the continued advancement of an N-terminal Pfs230 antigen (Pfs230C1) as a
component of a transmission-blocking vaccine. Our results also support the contin-
ued use of the scalable baculovirus expression system for the generation of complex
Plasmodium proteins.
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Malaria caused by Plasmodium falciparum is responsible for nearly a half million
deaths annually, on the basis of estimates from WHO (1), with most of those

deaths occurring among young African children. The parasite has a complex life cycle,
is highly adaptable, and has coevolved in humans for millennia. While the tools that
save lives today, such as bed nets, insecticides, and drugs, have had a positive impact
on the disease over the last decade, it is widely recognized that a vaccine capable of
inducing immune responses that block the cycle of parasite transmission will accelerate
elimination and eventual eradication efforts (2, 3).

The profile of vaccines needed to contribute to control, elimination, and even-
tual eradication efforts are outlined in the Malaria Vaccine Technology Roadmap (4).
Transmission-blocking vaccines (TBVs) are designed to induce in human hosts
antibodies against sexual-stage malaria antigens or mosquito antigens, thereby
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disrupting parasite development after an Anopheles mosquito takes a blood meal
from a malaria parasite-infected individual. The small number of parasites present at
this stage of the parasite life cycle (typically one to five) and the extended time needed
prior to mosquito midgut traversal (�24 h) present a major interventional opportunity.
Successful targeting of this stage of the parasite life cycle via vaccine-induced antibod-
ies would have a major impact on the probability that infectious sporozoites will be
produced in the mosquito and, thus, transmitted to humans.

Pfs25, a protein expressed on the surface of zygotes and ookinetes, is the most
advanced target for TBV candidates. Despite promising preclinical results, including
in nonhuman primates, clinical studies have resulted in the poor induction of
transmission-blocking antibodies (5, 6; see also the study registered at Clinical-
Trials.gov under registration no. NCT02013687). Among other potential TBV targets,
one of the most promising antigens is the Pfs230 protein, which is expressed on the
surface of gametocytes and serves an essential role in gamete biology. Unlike Pf25,
antibodies targeting Pfs230 and other antigens present on gametocytes, such as
Pfs48/45, may be boosted by natural infection (7). A correlation between naturally
acquired antibody responses against Pfs230 and Pfs48/45 and transmission-
reducing activity in sera from patients in areas of endemicity was recently reviewed
(8). Therefore, it may be advantageous to target both Pfs230 and Pfs48/45 in a TBV
approach.

The Pfs230 protein has presented a formidable challenge for recombinant expres-
sion due to its large size (3,135 amino acids [aa]) and the large number of disulfide
bonds present (9, 10). Carter et al. (11) predicted that Pfs230 has seven paired domains
and that the transmission-blocking (TB) target epitopes are located within these
motif-defined domains. Recombinant expression of full-length Pfs230 has not been
reported, presumably due to its complexity. However, smaller fragments and those
specifically in the N-terminal region have been produced and tested, indicating that
Pfs230 induces transmission-blocking antibodies (12). Tachibana et al. (13) produced a
recombinant Pfs230 domain from aa 443 to 1132 and three truncated forms of this
Pfs230 N-terminal domain from aa 443 to 588, aa 443 to 715, and aa 443 to 915 in the
wheat germ cell-free expression system (13). Furthermore, rabbit antibodies raised
against these recombinant proteins displayed significant TB activity in the standard
membrane feeding assay (SMFA) (13), indicating that fragments of Pfs230 may have
vaccine potential. Recently, recombinant expression of N-terminal constructs of Pfs230
in other expression systems, including in plants (14), expressing aa 444 to 730, and in
Pichia (15), expressing aa 542 to 736, has been reported.

A prudent consideration in the development of TBV antigens is identification of a
suitable heterologous expression system able to produce soluble, properly folded
recombinant proteins in sufficient quantity for development, optimization, and current
GMP production. Previously, we demonstrated that properly folded Pfs25 can be
expressed in the baculovirus expression system at reasonably high yields, with a high
purity, and, most importantly, with demonstrated TB activity (16). In view of this
success, we continued to explore the production of other leading TBV antigens in this
system. Here, we report on the expression and the biochemical, biophysical, and
immunological characterization of an N-terminal recombinant Pfs230 domain produced
from the baculovirus system. We expressed a Pfs230 domain from aa 443 to 731,
designated Pfs230C1, which is similar to the construct from aa 443 to 715 of Tachibana
et al. (13) and the construct from aa 444 to 730 of Farrance et al. (14). Further, Pfs230C1
was shown to induce in mice antibodies that exhibited functional activity, as deter-
mined by an exflagellation assay (EXA) and SMFA.

The data presented here support further assessment of baculovirus-produced
Pfs230C1 to support the development of an effective transmission-blocking vaccine.
Our results also support the continued use of the scalable baculovirus expression
system for the generation of complex malaria proteins.
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RESULTS
Baculovirus produces Pfs230C1. We previously utilized the baculovirus expression

system to produce TBV candidate antigens, including a high-quality, disulfide-rich Pfs25
(16). Taking into consideration a similar challenge from the multiple disulfides present
in the Pfs230 antigen, we decided to extend the use of the scalable baculovirus system
to the production of a soluble monomeric N-terminal domain of Pfs230 (Pfs230C1). The
Pfs230C1 construct (aa 443 to 731) contained a signal peptide to facilitate expression
of the protein through the endoplasmic reticulum secretion pathway, an N585Q
mutation to remove a potential N-glycosylation site, and a 6-histidine C-terminal tag.
We used a three-step purification approach to capture and polish Pfs230C1: Ni-
nitrilotriacetic acid (NTA) affinity, DEAE ion exchange, and size exclusion (SE) chroma-
tography. The initial process, as presented here, yielded 2 mg of purified Pfs230C1 per
liter of culture supernatant. Further, the resulting purified protein was present at the
expected molecular mass of �33.5 kDa and had greater than 90% purity by SDS-PAGE
and densitometry (Fig. 1A). Reactivity to the anti-His antibody confirmed the presence
of the histidine tag on the C terminus (Fig. 1B).

Analytical size exclusion chromatography was performed to assess the solution state
of the purified recombinant protein. Pfs230C1 eluted between the 158- and 44-kDa
standards, which was larger than the expected size of the Pfs230C1 monomer, which
is �33.5 kDa (Fig. 2A). Given that Pfs230C1 eluted at a mass greater than the 44-kDa
standard and possibly existed in a higher oligomer state, we utilized multiangle light
scattering (MALS) to confirm the molar mass in solution (Fig. 2B). The average molar
mass of Pfs230C1 from MALS analysis was 35.2 � 0.5 kDa, consistent with the molecular
mass of a monomer (�33.5 kDa, confirmed by intact mass analysis). This indicated that
the short retention time was most likely attributed to an expanded hydrodynamic
radius relative to that of the size exclusion chromatography protein standards.

FIG 1 SDS-PAGE and Western blotting of Pfs230C1. The results of SDS-PAGE of Pfs230C1 under
nonreducing conditions (lanes NR) and reducing conditions (lanes R) and staining with SimplyBlue
SafeStain stain (A) and Western blotting with anti-His antibody (B) are shown. Lanes M, molecular mass
markers.
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Formation of disulfide bonds. Pfs230C1 contains a predicted cysteine-rich domain,
with four cysteines forming two disulfide bonds (10). The cysteine-rich domains are well
characterized and present in protein families, such as Pfs230 and Pfs48/45, both of
which play an important role in the fertility of gametes (17–19) in sexual stages. Proper
disulfide bond formation is important to maintain native epitopes and ensure induction
of functional antibodies. To determine if the cysteines were free or formed disulfide
bonds within the protein, the number of thiol groups exposed on the protein surface
was measured. The analysis showed that Pfs230C1 contained little (�1%) or no free
thiol under both native and denatured conditions (3 M guanidine-HCl [GuHCl]), sug-
gesting that all four cysteines were fully oxidized and likely paired by disulfide bonds.

Glycosylation of Pfs230C1 was limited. Proteins on parasite surfaces are, in
general, not glycosylated. To determine whether the baculovirus-expressed recombi-
nant Pfs230C1 protein was subject to glycosylation or other posttranslational modifi-
cations, we performed intact mass and peptide mapping analyses. The results indicated
that the observed mass of the Pfs230C1 was �115 Da higher (at 33,510 Da) than its
theoretical value of 33,395 Da (Fig. 3). Since the protein was expressed via the secretion
pathway in the insect cells, the mass difference was likely due to the inclusion of an
N-terminal Asp residue of the signal peptide; this finding is supported by a similar result
reported previously (16). Using liquid chromatography (LC)-mass spectrometry (MS)
and peptide mapping, the N-terminal amino acid was confirmed to be aspartic acid.
After correction for the Asp addition at the N terminus, the predominant intact mass of

FIG 2 SE-HPLC (A) and multiangle light scattering showing the molar mass of Pfs230C1 (B). (A) The major
peak of Pfs230C1 eluted between the 158-kDa and 44-kDa protein standards (indicated by black circles
on the chromatogram) by SE-HPLC and was further assessed by multiangle light scattering. (B) The molar
mass (red squares) determined by MALS plotted against the SE-HPLC elution peak (red line) indicated an
average molar mass of 35.2 � 0.5 kDa, consistent with the molecular mass of a Pfs230C1 monomer.
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33,510.4 Da matched the predicted mass for the oxidized form of the Pfs230 fragment
(Fig. 3), confirming the formation of disulfide bonds.

Minor species with increases in mass from the predominant intact mass (33,510
Da) in 203-Da increments were observed, and these were potentially due to the
presence of mono- or oligosaccharides (Fig. 3). High-resolution peptide mapping by
MS/MS located one of the glycosylation sites, Ser110, in peptide (101)-SVLQSGALP
SVGVDELDK-(118), which was most likely attributed to N-acetylglucosamine or
N-acetylgalactosamine, an O-linked glycosylation. We interpret these results to indicate
that the overall glycosylation modification on Pfs230C1 is minor, with the dominant
purified species being unmodified.

Disulfide mapping. Given the importance of proper disulfide bond formation for
the native configuration of Plasmodium proteins, we asked whether the cysteines of
recombinant Pfs230C1 were correctly paired. The expressed protein contained one
predicted cysteine-rich motif with an expected pattern for the formation of the
disulfide bonds. Peptide mapping was performed on a nonreduced sample of Pfs230C1,
with the resulting sequence coverage of the trypsin- and chymotrypsin-digested forms
(Table 1) being 86% and 88%, respectively. The combined sequence coverage was 96%,
with many peptides overlapping. The LC-MS characteristics of each identified disulfide-
linked peptide are reported in Table 1. The relative percentages of the disulfide bonds
were calculated using the ion intensity (Table 1) of each disulfide-linked peptide

FIG 3 Intact mass spectrometry of Pfs230C1 under nonreducing conditions. Arrows, predominant mass
of 33,510 and adducts with masses greater than the predominant mass in 203-Da increments most likely
resulting from O-linked glycosylation.

TABLE 1 Characteristics of LC-MS analysis of disulfide-linked peptides from nonreduced Pfs230C1

Protease
Retention
time (min)

Monoisotopic
m/z MS area Charge

Observed
monoisotopic
mass (Da)

Theoretical
monoisotopic
mass (Da)

Mass
differencea

Disulfide-linked
peptides

Trypsin 28.8 963.2 3.3E�04 3 2,886.6 2,886.4 0.2 V167-K173/E149-K166
Trypsin 29.7 887.4 1.0E�05 3 2,659.2 2,659.2 0 K169-K173/E149-K166
Trypsin 30.8 1,266.6 9.4E�04 2 2,531.2 2,531.2 0 C170-K173/E149-K166
Trypsin 30.8 844.8 1.7E�05 3 2,531.4 2,531.2 0.2 C170-K173/E149-K166
Trypsin 26.4 581.3 8.4E�03 2 1,160.6 1,160.7 �0.1 C170-K173/I183-K188
Trypsin 46.8 1,046.1 2.1E�05 2 2,090.2 2,090.1 0.1 I183-K188/A258-K269
Trypsin 39.8 914.2 3.3E�04 3 2,739.6 2,739.4 0.2 I183-K188/E149-K166
Trypsin 46.8 697.8 2.0E�05 3 2,090.4 2,090.1 0.3 I183-K188/A258-K269
Chymotrypsin 35.0 1,049.9 2.3E�04 3 3,146.7 3,146.6 0.1 V151-F154/T155-L178
Chymotrypsin 35.2 1,049.9 1.8E�04 3 3,146.7 3,146.6 0.1 V151-F154/T155-L178
Chymotrypsin 36.2 1,049.9 1.5E�05 3 3,146.7 3,146.6 0.1 V151-L158/K159-L178
Chymotrypsin 35.2 1,049.9 7.3E�04 3 3,146.7 3,146.6 0.1 V151-L158/K159-L178
aThe mass difference was calculated as the observed mass minus the theoretical mass.
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containing each Cys residue. The results indicated that four Cys residues (Cys152, Cys170,
Cys185, and Cys265) in Pfs230C1 formed two disulfide bonds, between Cys152 and Cys170

and between Cys185 and Cys265 (Fig. 4; Table 1). The pairing of the Pfs230C1 cysteines
confirmed the prediction of the disulfide bond pattern of the cysteine-rich motif (10).
Less than 5% mispaired disulfides were observed (Fig. 4). We further interpreted these
data to indicate that the expressed Pfs230C1 protein adopts a single, dominant
configuration and that the disulfide bonding pattern most likely mimics that of the
native full-length equivalent.

Baculovirus-expressed Pfs230C1 elicits functional antibodies. To further confirm
that the expressed protein indeed represented the native conformation, a mouse
immunogenicity study was conducted to determine whether the antibodies elicited by
Pfs230C1 bound native protein on the parasite and exhibited functional activity against
parasite development. Individual serum samples from mice immunized with 16.5 �g
Pfs230C1 adjuvanted with Montanide ISA720 or Montanide ISA720 alone (negative
control) were analyzed by enzyme-linked immunosorbent assay (ELISA) for total IgG
(Fig. 5A) and further for the IgG subclass (Fig. 5B). Mice immunized with Pfs230C1 had
a mean total IgG titer of greater than 100,000 ELISA units, and the antibodies were
predominantly of the IgG1 subclass, followed by the IgG2b subclass (Fig. 5). Serum
samples were then pooled for each group, and total IgGs were purified for analysis by

FIG 4 Disulfide analysis of Pfs230C1. Pfs230C1 containing four cysteine residues is expected to form two
disulfide bonds. Using peptides from nonreduced trypsin and chymotrypsin digestion, �95% of the
disulfide bonds were properly formed. Boxes indicate Cys 1-Cys 2 and Cys 3-Cys 4 disulfide bond
formations with approximately 1 to 2% misformed Cys 2-Cys3 bonds and 3 to 4% misformed Cys 1-Cys
3 bonds.

FIG 5 ELISA titers in mice immunized with Pfs230C1. ELISA data for individual mice (circles) and medians
(bar) are shown. Total anti-Pfs230C1 antibody levels are presented on a log scale of ELISA units (A), and
IgG subclass results are given as the optical density at 405 nm (OD405) (B). Dotted lines indicate the
background signals.
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immunofluorescence assay (IFA) (Fig. 6A). The IFA results indicated that the purified IgG
from Pfs230C1 antiserum recognized the surface of stage V gametocytes, where Pfs230
is localized (Fig. 6A). Antisera from mice immunized with Pfs230C1 reacted with a fixed
mature gametocyte extract via Western blot analysis under both reducing and nonre-
ducing conditions, including positive reactivity at approximately 363 kDa, the expected
molecular mass of full-length Pfs230 (Fig. 6B). Next the functional activities of the
anti-Pfs230C1 antibody were evaluated by SMFA and EXA (Fig. 7). Purified IgG from
Pfs230C1 antiserum, tested at 750 �g/ml in the SMFA (with complement), was associ-
ated with a 99.5% reduction (95% confidence interval [CI], 98.3% to 100%; P � 0.0001)
in oocyst density. To determine the dose dependency of inhibition, purified IgG was
tested at 3-fold dilutions in two (without complement) and three (with complement)
independent assays (Fig. 7A). A dose-dependent reduction in oocyst intensity was
observed; however, the levels of inhibition were weaker in the absence of complement.
The data suggest that complement plays an important role, but is not required, for the
transmission-reducing activity of Pfs230C1-induced antibodies. These data, generated
from studies with mice, are generally consistent with those from previous reports for a
similar Pfs230 fragment tested in rabbits (13). Lastly, in EXA, the antibody showed a
dose-dependent reduction in the numbers of exflagellation centers (Fig. 7B). In contrast

FIG 6 Immunofluorescence assay (IFA) and Western blotting (WB). (A) An immunofluorescence assay was utilized to confirm
the expression and localization of Pfs230 (or Pfs230C1) in fixed mature gametocytes. Primary antibodies of anti-Pfs230C1 (top)
or antiadjuvant negative-control (bottom) purified IgGs were incubated with fixed parasites. The results of differential
interference contrast (DIC) microscopy, DNA staining with DAPI (4=,6-diamidino-2-phenylindole), and antibody (Ab) reactivity
to the parasite with fluorescence-labeled anti-mouse IgG secondary antibody and a merged image of gametocytes are shown.
(B) Western blot using anti-Pfs230C1 (left) or control (right) antisera. Lanes R, reducing conditions; lanes NR, nonreducing
conditions. The Pfs230 band (expected molecular mass, 363 kDa) is indicated by the arrow.

FIG 7 Functional activity of anti-Pfs230C1 antibody. (A) The anti-Pfs230C1 antibody was tested by SMFA
at 83, 250, and 750 �g/ml in the presence (three independent assays; blue) or absence (two independent
assays; red) of complement. The best estimate and 95% confidence intervals of the percent TRA from the
multiple feeding experiments are shown. The asterisks indicate whether the levels of inhibition were
significantly different from no inhibition (i.e., 0% inhibition). *, P � 0.05; ***, P � 0.0001. (B) The same
antibody was tested by EXA at 0.4, 1.1, and 3.2 mg/ml in the presence of complement. The inhibition
index was calculated determination of inhibition against that for the antiadjuvant antibody tested in the
same assay.
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to the Pfs230 knockout parasites published by Eksi et al. (20), we observed a reduction
of exflagellation and not the blocking of red blood cell (RBC) clustering in the EXA with
anti-Pfs230 antibody.

In summary, the IFA, SMFA, and EXA results indicate that immunization with
Pfs230C1, expressed in the baculovirus system, elicits antibodies that effectively target
the parasite and inhibit its development and that are therefore expected to interrupt
parasite transmission.

DISCUSSION

The results reported herein confirm and extend the findings of previous work
exploring the potential of Pfs230 protein fragments to support the rational design of a
malaria transmission-blocking vaccine. Similar to others, we focused on an N-terminal
fragment of Pfs230 to overcome the production challenges associated with a 350-aa
disulfide-rich protein. The fragment that we selected and the expression system that we
used are different from those reported by MacDonald et al. (15). They reported on the
characterization of a Pfs230 construct (encoding aa 444 to 736) expressed by Pichia
pastoris and observed consistent cleavage at position 542. To circumvent the cleavage
issue, they restricted their construct to aa 542 to 736. In the study reported here, we did
not observe proteolytic processing at aa 542 when expressing Pfs230C1 (aa 443 to 731)
in baculovirus. This could be due to less protease activity in the baculovirus system than
in the Pichia system.

Our work also confirms domain predictions regarding the multiple cysteine-rich
(6-cysteine) domains within Pfs230. Carter et al. (11) first proposed that Pfs230 is
composed of multiple 6-Cys domains with a predicted and conserved set of disulfide
bonds in the following pairing pattern: Cys 1 and 2, Cys 3 and 6, and Cys 4 and 5. These
6-Cys domains form a beta-sandwich with a mixture of parallel and antiparallel strands
(17, 21). More specifically, the Cys 1-Cys 2 and Cys 3-Cys 6 pairs pin together the two
beta-sheets of the sandwich, whereas the Cys 4-Cys 5 pair links an ancillary loop to the
core domain and is not always required or conserved (10, 17). Several 6-Cys proteins
also contain one or more such 4-cysteine folds (22), similar to the Pfs230C1 studied
here. However, the term “6-Cys domain” has been utilized by others while still referring
to 4-cysteine folds (15). To avoid confusion and maintain convention, we chose to apply
the 6-Cys nomenclature to Pfs230C1 throughout this article, even though only four
cysteines are present.

Pf12, a merozoite surface protein, is the only 6-Cys protein for which the high-
resolution structure has been solved (17, 21); therefore, we compared the 6-Cys domain
within Pfs230C1 to that in Pf12 by (i) sequence alignment and (ii) mapping of the
conserved amino acid residue on the Pf12 structure. The 6-Cys fold of Pfs230C1 (aa 583
to 731) lies within the first of seven double domains in Pfs230 (10). In addition to
Plasmodium falciparum 3D7, sequences covering 6-Cys domains from different strains
and a closely related species of Plasmodium were also used to align with the sequence
covering the 6-Cys fold of the Pf12 crystal structure (Protein Date Bank [PDB] accession
number 2YMO, aa 1 to 173). This alignment of cysteine residues (Fig. 8A) suggests that
disulfide bond formation would generate a similar conformation for Pf12 and Pfs230C1.
Our biochemical characterization confirmed these predicted disulfide bonds in
Pfs230C1. Based on this finding, we mapped the Pfs230C1 sequence onto the Pf12
structure, with conserved residues primarily being identified within the characteristic
beta-sheets (Fig. 8B).

Our analysis also helps explain the biochemical properties of the Pfs230C1 protein.
While initial size analysis of Pfs230C1, using SE high-performance liquid chromatogra-
phy (SE-HPLC), indicated that Pfs230C1 eluted between the 158- and 44-kDa protein
standards, multiangle light scattering (MALS) showed that the average molar mass of
Pfs230C1 was 35.2 � 0.5 kDa. These data suggest that purified Pfs230C1 is a monomer
and has a relatively large hydrodynamic radius, likely attributed to the barrel shape
predicted above (Fig. 8B) and the N-terminal nonstructural region of Pfs230C1 (10).

In addition to confirmation of the presence of disulfide bonds, the proper confor-
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mation of Pfs230C1 was suggested by the elicitation of functional antibodies measured
by two orthogonal assays. First, we showed clear evidence of the functional activity of
anti-Pfs230C1 serum in the SMFA. In this well-characterized and frequently used assay,
antibodies are ingested by Anopheline mosquitoes along with parasites in the blood
meal (23). The subsequent ability of antibodies to cause a reduction in the develop-
ment of oocysts can be readily determined by microscopic examination. The Pfs230C1
fragment reported here elicited serum samples that readily reduced the oocyst density
in this assay, and moreover, the sera did not completely depend on complement for
activity, as has been reported for many antibody preparations reactive to Pfs230 (13).

FIG 8 Alignment of the 6-Cys domain sequence within Pfs230C1 with the sequence of Pf12 (A) and ribbon diagram (B).
(A) Pfs230 sequences (aa 583 to 731) from different strains and a closely related species of Plasmodium were used to align
with the A-type 6-Cys fold of the Pf12 crystal structure (PDB accession number 2YMO, aa 1 to 173). These included the
sequences of Plasmodium falciparum strains 3D7 (GenBank accession number P68874, aa 583 to 731), HB3 (GenBank
accession number CH671929.1), FVO (GenBank accession number KI925011), and IGH-GR14 (GG665179) and Plasmodium
reichenowi (GenBank accession number LVLA01000003). Asterisks, conserved cysteines and other residues; colons, strongly
similar residues; periods, weakly similar residues (31). The physicochemical properties of each residue are denoted by color,
where red, blue, magenta, and green indicate hydrophobic, acidic, basic, and hydroxyl/sulfhydryl/amine residues, respec-
tively. (B) Ribbon diagram of the conserved residues among Pfs230 strains and Pf12 modeled using Chimera software (32)
on the basis of the crystal structure of Pf12 (PDB accession number 2YMO). The conserved sequences (red) resided across
the structure but resided more densely on beta-sheets, and the four cysteines (Cys 1, Cys 2, Cys 3, and Cys 6) forming two
disulfide bonds can be visualized.
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Second, we saw clear evidence that anti-Pfs230C1 antibodies exhibited functional
activity, as measured by inhibition in the formation of exflagellation centers. Eksi et al.
(24) disrupted the Pfs230 gene in two different N-terminal locations (aa 452 and aa
950), which resulted in the production of only the N-terminal region of the protein and,
consequently, mislocated and truncated Pfs230 proteins not directly associated with
the gametocyte and the gamete surface. While the Pfs230 disruptants successfully
emerged from RBCs and the male gametes exflagellated, producing microgametes, the
exflagellating Pfs230-negative males were unable to form exflagellation centers (20).
Our result supports these functional assessments of Pfs230, as the purified IgG elicited
by the N-terminal domain protein (Pfs230C1) described here was also able to inhibit the
formation of exflagellation centers.

The ability to elicit functional transmission-blocking antibodies is the most impor-
tant characteristic of any protein preparation to be considered for the generation of a
TBV. Given that P. falciparum apparently lacks glycosylation modifications, it has been
a concern that the preparation of recombinant proteins in eukaryotic systems could
result in proteins that are suboptimal in their capacity to induce highly effective
functional antibody responses. In this study, the limited O-linked glycosylation
detected in recombinant Pfs230C1 did not appear to affect the ability to elicit potent
transmission-blocking antibodies, as tested by SMFA. Lastly, the vaccine formulation
used in this study induced a predominantly IgG1 response, followed by an IgG2b
response. IgG1 is known to have very low or no complement-fixing activity (25).
Therefore, it is possible that the IgG2b-induced activity was affected by the presence (or
absence) of complement, but this was not the case for IgG1-induced activity. Further
study is required to uncover the mechanism.

In summary, our results indicate that Pfs230C1, expressed in the baculovirus system,
harbors many of the critical biochemical and immunological attributes required to
support consideration of its use in a TBV approach. While initial experimentation
provided a final purified protein yield of 2 mg Pfs230C1 per liter culture supernatant,
further optimization of the process improved this yield to over 10 mg/liter with
optimization of upstream processes, including optimization of the cell density, the
culture medium, and the multiplicity of infection (MOI). Given the scalability of the
system (26) and access to sufficient bioreactor volumes, this current yield would
provide sufficient material for further vaccine development and later clinical evaluation.
Further, there are now at least six approved vaccines based on the baculovirus system,
including four for use in humans (27), increasing interest in and regulatory support for
products derived from this expression system.

We intend to continue the process of development of Pfs230C1 and explore the
incorporation of the Pfs230C1 protein into different vaccine delivery platforms and
adjuvant combinations for the generation of malaria TBV candidates.

MATERIALS AND METHODS
Baculovirus expression construct (Pfs230C1). The N-terminal sequence (aa 443 to 731) of the

gametocyte surface protein Pfs230 of the P. falciparum 3D7 strain (GenBank accession number P68874)
containing four cysteines as part of a predicted cysteine-rich domain was cloned and is denoted
Pfs230C1.

Codon optimization for baculovirus expression was performed by DNA2.0. Synthetic DNA of
Pfs230C1 (aa 443 to 731) containing the N585Q mutation to remove a potential N-glycosylation site and
containing an additional N-terminal secretion signal (MKFLVNVALVFMVVYISYIYAD from honeybee melit-
tin) was cloned into the pFastBac donor vector (Invitrogen) with BamHI (5=) and EcoRI (3=) sites. The
sequence of the resulting plasmid, pFastBac-Pfs230C1, was verified. The generation of recombinant
viruses was done by following the instructions of the manufacturer of the Bac-to-Bac system (Invitrogen).
Briefly, pFastBac-Pfs230C1 was transformed into Escherichia coli DH10Bac; colonies were grown at 37°C
for 48 h on LB agar plates containing tetracycline (10 �g/ml), kanamycin (50 �g/ml), gentamicin (7
�g/ml), IPTG (isopropyl-�-D-thiogalactopyranoside; 40 �g/ml), and X-Gal (5-bromo-4-chloro-3-indolyl-�-
D-galactopyranoside; 100 �g/ml). The sequence of the recombinant bacmid was confirmed by PCR and
sequencing. This bacmid was used to transfect Super Sf9 cells (Oxford Expression Technologies) for the
generation of a recombinant baculovirus stock (passage 1 [P1] virus), using the Cellfectin II reagent
(Invitrogen) following the instructions in the Bac-to-Bac manual. P1 virus was harvested at 96 h
posttransfection and stored at 4°C with protection from light. Two milliliters out of the 14 ml of P1 virus
harvested was used to amplify P2 baculovirus after infecting fresh Super Sf9 cells at 27°C for approxi-
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mately 96 h and, similarly, to produce high-titer P3 viruses. A P3 virus volume of 400 ml for further
expression was harvested, and the titer was determined using a BacPAK titer determination kit (Clon-
tech).

Expression and purification of Pfs230C1. Super Sf9 cells were seeded at 1 � 106 cells/ml in ESF 921
medium (Expression Systems). An MOI of 1 was used to infect a 10-liter Super Sf9 cell wave culture. At
48 h postinfection, the culture was harvested and concentrated using a 10-kDa tangential flow filtration
membrane (0.1 m2; Millipore) and diafiltered with 20 mM sodium phosphate, 150 mM NaCl, pH 7.4 (buffer
A). Clarification was carried out by filtration through a 0.22-�m-pore-size filter.

Two liters of clarified supernatant was batch bound to 10 ml Ni-NTA resin (His60; Clontech) overnight.
The wash steps were performed with 5 column volumes (CV) of buffer A with 10 mM imidazole and then
5 CV of buffer A with 20 mM imidazole and 5 CV of buffer A containing 30 mM imidazole. The protein
was eluted with buffer A containing 300 mM imidazole. Pooled eluents from the Ni-NTA column were
diluted 8-fold with 20 mM sodium phosphate buffer, pH 7.2, containing 5% glycerol and loaded onto a
DEAE-Sepharose FF column with 10 ml resin for ion exchange purification. The column was washed with
5 CV of 20 mM sodium phosphate, 20 mM NaCl, 5% glycerol, pH 7.2 (buffer B), and eluted with an NaCl
gradient from 0.02 to 1 M in 10 CV in buffer B. The pool of eluents was concentrated to 15 ml and loaded
onto a Superdex 200 (16/60; GE Healthcare) column for a final step of size exclusion purification and
buffer exchange into 20 mM sodium phosphate, 150 mM NaCl containing 5% glycerol (pH 7.2). The
eluents were collected and analyzed by SDS-PAGE and Western blotting, and a final pool was selected
on the basis of purity.

SDS-PAGE. Samples were diluted with 4� lithium dodecyl sulfate (LDS; Invitrogen) sample buffer,
heated for 10 min, and loaded in a final volume of 20 �l/well onto SDS-polyacrylamide gels (4 to 12%
NuPAGE bis-Tris gels; Invitrogen). The gels were run at 150 to 200 V for 35 to 50 min in 1� MES
(morpholineethanesulfonic acid)-SDS running buffer and stained with SimplyBlue SafeStain stain (Invit-
rogen).

Western blotting with purified Pfs230C1. Following SDS-PAGE, the proteins were transferred onto
a nitrocellulose membrane and blocked in 5% skim milk in PBS at room temperature for 1 h. Primary
antibody (Penta His antibody; Qiagen) at a 1:2,000 dilution in 1% skim milk in phosphate-buffered saline
(PBS) containing 0.05% Tween 20 (PBST) was added, and the mixture was incubated for 2 h at room
temperature. The membranes were washed with PBST (3 times for 5 min each time), secondary antibody
consisting of a 1:5,000 dilution of goat anti-mouse IgG– horseradish peroxidase (Santa Cruz) in 1% skim
milk (PBST) was added, and the mixture was incubated at room temperature for 1 h. The membranes
were then again washed with PBST (3 times for 5 min each time) and developed using 3,3,5,5=-
tetramethylbenzidine (TMB; Sigma-Aldrich) and hydrogen peroxide.

Kinetic endotoxin assay. A SpectraMax Plus spectrophotometer (kinetic endotoxin assay) was used
to quantify the endotoxin content of purified Pfs230C1 with EndoSafe endotoxin (Charles River),
EndoSafe lysate (Charles River), and EndoSafe Limulus amoebocyte lysate reagent water (Charles River).

SE-HPLC. SE-HPLC analysis of purified Pfs230C1 was performed on a BioAssist G3SWxl column (7.8
by 300 mm; Tosoh Biosciences, King of Prussia, PA) at 30°C on a Shimadzu Prominance ultrafast liquid
chromatography HPLC system. The mobile phase consisted of 0.2 M sodium phosphate, pH 6.8, with flow rate
of 0.7 ml/min. A gel filtration standard (Bio-Rad, Hercules, CA) was used to ensure column and HPLC system
integrity. Detection by multiangle light scattering (MALS) was conducted using a Dawn Heleos and Optilab
rEX instrument (Wyatt Technologies) connected directly after the HPLC system. A differential index of
refraction (dn/dc) value of 0.185 ml/g (theoretical value) was used to calculate the protein’s molar mass.

Free thiol determination. The amount of free thiol (the number of free cysteine residues) was
measured using a Measure iT free thiol assay kit (Life Technologies, Carlsbad, CA) following the
manufacturer’s instructions. Pfs230C1 was diluted (in triplicate) in either ultrapure water or 3 M
guanidine-HCl to achieve a final concentration of 30 �M before the assay was conducted. A standard
curve was constructed using known concentrations of reduced glutathione. Fluorescence was measured
using a SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA).

Intact mass spectrometry. Pfs230C1 was denatured with 3 M GuHCl and desalted on a reversed-
phase PRP-1 column (1 cm by 1 mm [inside diameter]; particles [10 �m] were packed by hand; Hamilton)
using a NanoAcquity chromatographic system (Waters Corporation) and solvents A (99.9% H2O, 0.1%
formic acid) and B (99.9% acetonitrile, 0.1% formic acid) over a short gradient from 1 to 70% solvent B
in 4 min at a flow rate of 20 �l/min. The intact mass of the protein (in duplicate experiments) was
measured using a Synapt G2 hybrid quadrupole/ion mobility/time of flight mass spectrometer (Waters
Corporation, Milford, MA) with the assistance of the Mass Spectrometry and Analytical Proteomics
Laboratory at the University of Kansas. The instrument was operated in a sensitivity mode with all lenses
optimized on the MH� ion from the control leucine enkephalin and a sample cone voltage of 40 eV.
Argon was admitted to the trap cell operated at 4 eV for maximum transmission. Spectra were acquired
at a 9,091-Hz pusher frequency covering a mass range of 100 to 3,000 m/z, and data were accumulated for
2 s per cycle. The time to mass calibration was made with NaI cluster ions acquired under the same conditions.
The mass spectra of [Glu1]fibrinopeptide B were acquired in parallel scans, and doubly charged ions at m/z
785.8426 were used as a lock mass reference. MassLynx (version 4.1) software (Waters Corporation) was used
to collect data and deconvolute the protein spectra for molecular mass determination.

LC-MS peptide mapping for disulfide bond analysis. Nonreduced Pfs230C1 was digested over-
night at 37°C with either trypsin or chymotrypsin. The digested peptides were then subjected to LC-MS
using a C18 column (150 by 2.1 mm; particle size, 1.7 �m; Thermo Fisher Scientific, Waltham, MA)
operated at 60°C on an UltiMate 3000 ultra-high-performance liquid chromatography system (Thermo
Fisher Scientific). The mobile phases consisted of A (water plus 0.05% trifluoroacetic acid [TFA]) and B

Pfs230 N-Terminal Domain Expression and Evaluation Clinical and Vaccine Immunology

October 2017 Volume 24 Issue 10 e00140-17 cvi.asm.org 11

http://cvi.asm.org


(acetonitrile plus 0.05% TFA), and the peptides were eluted using a 0 to 70% gradient of mobile phase
B over 60 min and a 0.2-ml/min flow rate. Peptides were identified using an LTQ-XL ion-trap mass
spectrometer (Ther�o Fisher Scientific) in the positive ion mode and a mass range of 300 to 2,000 m/z.
Data files were processed using PepFinder (version 2.0) software (Thermo Fisher Scientific), and the
search database consisted of the primary sequences of Pfs230C1, trypsin, and chymotrypsin. The peptide
assignments of the MS/MS spectra were validated using a confidence score of �95% and some manual
validation. The percentage of disulfide pairs was quantified by calculating the ion abundance of each
disulfide-linked peptide and then calculating the relative abundance of each Cys residue within the
different pairs of peptides.

Mouse immunization. To produce antisera in CD-1 mice for SMFA, 16.5 �g of Pfs230C1 was
formulated with the Montanide ISA720 adjuvant. Groups of 10 mice (treated with Pfs230C1 and the
adjuvant control) received intramuscular injections on day 0 and 21. It was confirmed, prior to immu-
nization, that the purified protein contained less than 2 endotoxin units/mg endotoxin. On day 42, serum
samples were collected, serum samples from individual animals in each group were pooled, and total IgG
was affinity purified using a protein G column.

Ethics statement. The animal study reported here was conducted at the Laboratory of Malaria and
Vector Research (LMVR) of NIAID, NIH, in compliance with Animal Welfare Act regulations and the
guidelines in the Guide for the Care and Use of Laboratory Animals (28) and was reviewed and approved
by NIAID’s Animal Care and Use Committee (approval number LMVR10E).

ELISA. The basic methodology of the regular (total IgG) ELISA has been described elsewhere (29). The
IgG subclass ELISA was performed with small modifications; all serum samples were diluted to 1 total IgG
ELISA unit and then tested with anti-mouse IgG subclass-specific secondary antibodies (Southern Biotech
or Bio-Rad). The results of the IgG subclass ELISA are presented using straight optical density (OD) values
instead of the ELISA units used for the total IgG ELISA.

Western blotting with parasite extract and mouse anti-Pfs230C1 antisera. Two pools of mouse
serum samples (one pool from the group receiving Pfs230C1 and another pool from the control group)
were generated and tested at a 1:4,000 dilution against a parasite extract (5 � 104 parasites per lane) by
Western blotting. The mixture of P. falciparum NF54 gametocyte-, zygote-, and ookinete-stage parasites
was made as described previously (16).

Immunofluorescence assay (IFA). Thin smears with mature gametocytes were made on slide
glasses and air dried. The cells were then fixed and permeabilized with a 1:1 mixture of methanol-
acetone at 4°C for 10 min. The slides were blocked at 37°C for 30 min with 1� PBS with 3% skim milk.
Primary antibodies (either anti-Pfs230C1 or anti-adjuvant purified IgG at 1 �g/ml) were incubated at 37°C
for 1 h. After three washes with 1� PBS, the slide was incubated with secondary antibody (Alexa Fluor
488-conjugated goat anti-mouse immunoglobulin antibody, 1:4,000 dilution) at 37°C for 30 min. The
slide was washed again, DNA was stained with DAPI (4=,6-diamidino-2-phenylindole; ProLong Gold
antifade reagent with DAPI) overnight at room temperature, and then the slide was examined under a
Leica CTR6000 microscope.

Antibody functional analysis (SMFA and EXA). The anti-Pfs230C1 IgG was tested by SMFA at 750,
250, and 83 �g/ml with or without complement in two to four independent assays. In each assay, the
anti-adjuvant IgG was tested at 750 �g/ml as a negative control. The standardized methodology for
performing SMFA has been described previously (23). Briefly, 16- to 18-day-old gametocyte cultures of
the P. falciparum NF54 line were mixed with a control or test sample and fed to �50 female Anopheles
stephensi mosquitoes through a membrane-feeding apparatus. Eight days after the feed, the mosquitoes
(n 	 20) were dissected to enumerate the oocysts in the midgut. Only midguts from mosquitoes with
any eggs at the time of dissection were analyzed.

The percent inhibition of the mean oocyst intensity (percent transmission-reducing activity [TRA])
was calculated as 100 � [1 � (mean number of oocysts in the anti-Pfs230C1 group)/(mean number of
oocysts in the control group)]. Percent inhibition for a test sample was always calculated against that for
a control sample examined in the same feeding experiment. The best estimate and 95% confidence
intervals (CIs) of the percent TRA and the P value (for whether the percent inhibition was significantly
different from no inhibition, i.e., 0% inhibition) from the multiple feeding experiments for each test
condition at each concentration were calculated using a negative binomial model with zero inflation, as
described previously (30).

Using the mature gametocyte cultures, EXA was performed by mixing 7.5 �l of packed red blood cells
(0.5 to 1.0% stage V gametocytemia), 22.5 �l of non-heat-inactivated normal human serum, and 20 �l of
antibody sample in 1� PBS. The mixture was incubated at 19°C for 18 min and then loaded onto a
cellometer to determine the number of exflagellation centers. The inhibition index was calculated by
comparing the number of exflagellation centers obtained with a test antibody with the number obtained
with a control antibody tested in the same assay. An inhibition index of 0 indicates that the test and
control antibodies showed the same number of exflagellations, and an inhibition index of 100 denotes
that the test sample completely inhibited exflagellation. The average from multiple tests was reported
to minimize the assay variation caused by the length of time that the parasites were in culture.

The human serum and red blood cells used for the gametocyte cultures, SMFA, and EXA were
purchased from Interstate Blood Bank.
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