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Abstract

Background: Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma
(ECQO). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine
learning to preoperatively predict differentiation degree (DD) and lymph node metastasis (LNM) of ECC.

Methods: A group of 100 patients diagnosed with ECC was included. The ECC status of all patients was confirmed
by pathology. A total of 1200 radiomics features were extracted from axial T1 weighted imaging (T1WI), T2-
weighted imaging (T2WI), diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) images. A
systematical framework considering combinations of five feature selection methods and ten machine learning
classification algorithms (classifiers) was developed and investigated. The predictive capabilities for DD and LNM
were evaluated in terms of area under precision recall curve (AUPRC), area under the receiver operating
characteristic (ROC) curve (AUQ), negative predictive value (NPV), accuracy (ACC), sensitivity, and specificity. The
prediction performance among models was statistically compared using Del.ong test.

Results: For DD prediction, the feature selection method joint mutual information (JMI) and Bagging Classifier
achieved the best performance (AUPRC = 0.65, AUC=0.90 (95% CI 0.75-1.00), ACC =0.85 (95% Cl 0.69-1.00),
sensitivity = 0.75 (95% Cl 0.30-0.95), and specificity = 0.88 (95% Cl 0.64-0.97)), and the radiomics signature was
composed of 5 selected features. For LNM prediction, the feature selection method minimum redundancy
maximum relevance and classifier eXtreme Gradient Boosting achieved the best performance (AUPRC =0.95, AUC =
0.98 (95% Cl 0.94-1.00), ACC=0.90 (95% ClI 0.77-1.00), sensitivity = 0.75 (95% Cl 0.30-0.95), and specificity = 0.94
(95% ClI 0.72-0.99)), and the radiomics signature was composed of 30 selected features. However, these two chosen
models were not significantly different to other models of higher AUC values in DelLong test, though they were
significantly different to most of all models.
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Conclusion: MRI radiomics analysis based on machine learning demonstrated good predictive accuracies for DD
and LNM of ECC. This shed new light on the noninvasive diagnosis of ECC.

Keywords: Extrahepatic cholangiocarcinoma, Cell differentiation, Lymphatic metastasis, Machine learning, Radiomics

Background

Cholangiocarcinoma (CCA), categorized as intrahepatic
(ICC) and extrahepatic (ECC) forms, is a malignant neo-
plasm arising from the biliary epithelium, representing
an estimated 3% of all gastrointestinal system malignan-
cies [1]. ECC, originating from the bile ducts outside the
liver parenchyma, accounts for approximately 80% of all
CCA. ECC is divided into two types of perihilar and dis-
tal cholangiocarcinoma [1, 2]. It was reported that the
incidence and mortality rates of ECC have been increas-
ing gradually worldwide over the last decades, although
it's not as established as ICC [3]. The prognosis of ECC
and ICC still remains poor. The only effective way to
cure ECC is complete surgical resection. However, it is
only appropriate for patients with well-localized lesions
[4]. The curative rate of ECC has been low for patients
in advanced stages. Even with complete resection of the
tumors, most patients may encounter a poor prognosis
(e.g., local recurrence, distant metastasis, or death),
which is associated with the differentiation degree (DD)
and lymph node metastasis (LNM) [5, 6]. Therefore, it is
crucial to accurately evaluate ECC, especially DD and
LNM of the tumor, in order to select optimal treatment
strategies and determine prognosis.

Several imaging techniques could diagnose ECC, in-
cluding ultrasonography (US) [7], computerized tom-
ography (CT) [8], positron emission computerized
tomography (PET-CT) [9], magnetic resonance im-
aging (MRI) [10, 11], and cholangioscopy [12], etc. At
present, MRI has become the imaging modality of
choice for diagnosis and staging of CCA, with high
soft-tissue contrast to help better detect and identify
the infiltrating tumors [10]. It has been reported that
MRI techniques are helpful in displaying the stricture
morphology of bile ducts clearly, such as irregularity
and wall thickness [11], regional lymph node, distant
metastases, and survival outcomes of CCA [13]. This
imaging method could provide an accurate preopera-
tive evaluation of CCA, result in better treatment se-
lection and improved prognosis [13]. However,
conventional techniques still have some disadvantages.
They rely on subjective visual evaluations of the radi-
ologists to a large extent and are not quantitative
methods for predicting DD and LNM of ECC [14]. It
is hard to analyze the large number of digital features
embedded in the images involving cells, physiology,
and genetic variation of patients, which cannot be
recognized by human eyes [14].

Radiomics, a recently introduced methodology, de-
scribes quantitative computerized algorithm-based fea-
ture extraction from traditional imaging data, including
CT, MR, or PET images [15-17]. This technique, op-
posing to the subjective visual interpretation of the radi-
ologists, quantifies the heterogeneity of lesions
objectively. Previous studies have suggested improve-
ments in the preoperative prediction of LNM by using
radiomics-based approaches to lung adenocarcinoma,
gastric cancer, colorectal cancer, bladder cancer, and
breast cancer [18-22]. In addition, radiomics has been
applied to predict the histopathological grades of tumors
such as soft tissue sarcomas and gliomas [23, 24].

Recently, it has been reported to use radiomics to
diagnose and evaluate CCA. Some protein expressions
of CCA and early recurrence of ICC could be predicted
based on radiomics methods [25-27]. To our know-
ledge, radiomics models have been used in predicting
LNM of biliary tract cancers or ICC and determining its
prognostic value [28-30]. Therefore, the aim of this
study is to develop machine learning-based radiomics
models to predict DD and LNM of ECC.

Methods

The flowchart of this study was illustrated in Fig. 1. We
first retrospectively collected patient records and ob-
tained the MRI scanning. The texture features of tumors
were extracted from the MRI images. For the independ-
ent predictions of DD and LNM, the machine learning-
based radiomics were developed in two steps, including
feature selection and classification, before final evalua-
tions. The predictions of DD and LNM were conducted
separately. Namely, the two steps were repeated for DD
and LNM, respectively.

Patients characteristics

Ethical approval for this retrospective study was ob-
tained from the Ethical Committee of the Affiliated Hos-
pital of Southwest Medical University (KY2019063). The
procedures of this study strictly followed the standard
rules and regulations of the hospital. The patient in-
formed consent was waived, and all patient identification
information was removed. The inclusion criteria were
(1) all patients who experienced MRI examinations no
more than two weeks before surgical resection, and (2)
all patients who underwent surgical excisions and patho-
logical examinations. The exclusion criteria were (1) pa-
tients whose lesions were not identified, (2) patients
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Fig. 1 Radiomics development flowchart of this study
.

whose MRI examinations sequences were incomplete,
and (3) patients whose MRI images in which the lesions
were too small to be identified. Initially, we collected
144 patients based on clinical data. However, 39 patients

were excluded because of obscure MRI images or in-
complete sequences, and five patients were excluded be-
cause of existing inconspicuous lesions without being
identified. As a result, a group of ECC patients (n = 100)
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diagnosed and treated in the hospital between January
2011 to December 2018 were included in our study. Due
to the low incidence rate of ECC, the sample size in the
present study was limited. More samples could be in-
cluded in future studies.

Clinical data (e.g., gender, age, primary tumor site, and
lesion size) and the baseline appearance of MRI were ob-
tained from medical records. The ECC status ascertain-
ment (pathological grades and lymphatic status) was
confirmed by pathology reports and reviewed by an ab-
dominal pathological expert with ten years of
experience.

MRI acquisition

All patients underwent preoperational MRI scans using
a 3.0 T MRI scanner (Achieva 3.0 T, Philips, Amsterdam,
Netherlands) with a 16-channel abdominal coil. The
scanning range extended from the top of the diaphragm
to the lower edge of the liver. For each patient, the fol-
lowing MRI sequences were obtained: an axial T1 high-
resolution isotropic volume excitation (THRIVE) se-
quence (T1 weighted imaging, TIWI) (TR = 3.1 ms, TE =
144 ms, flip angle = 10°, matrix = 244 x 186, a field of
view (FOV) =280 mm x 305 mm, number of excitations
(NEX) =1, section thickness =3 mm, gap = - 1.5 mm), an
axial fat-suppressed turbo spin echo (TSE) T2-weighted
imaging sequence (T2WI) (TR=1610ms, TE=70ms,
flip angle=90°, matrix =176 x 201, FOV =280 mm x
305mm, NEX=2, section thickness=7mm, gap=1
mm), an axial diffusion weighted imaging (DWI) (TR =
934 ms, TE =52 ms, flip angle =90°, matrix = 100 x 124,
FOV =280 mm x 305 mm, NEX =4, section thickness =
7 mm, gap =1 mm, b values = 0,600 and 800s/mm?), a
coronal TSE T2WI sequence, an axial dual-echo T1WI
breath-hold gradient-echo sequence for the acquisition
of in-phase and out-of-phase images, MR cholangiopan-
creatography (MRCP), and a T1-weighted dynamic
contrast-enhanced MRI. ADC images were obtained by
reconstructing DWTI images in the post-processing work-
station (Philips Extended MR Workspace 2.6.3.4). Fi-
nally, the TIWI, T2W1I, DWI (b = 800 s/mm?), and ADC
images were used in this study.

Radiomics features extraction

All MRI images were extracted from the same machine
using the same scanning parameters in this study.
Therefore, no data preprocess was executed. All images
were examined by an expert radiologist with eight years
of experience in abdominal radiological diagnosis. Using
MaZda software (version 4.6),! the regions of interest
(ROI) of the lesion on the maximum section of the

lavailable at http://www.eletel.p.lodz.pl/programy/mazda/
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tumor were delineated manually, avoiding adjacent ves-
sels and bile duct, as shown in Fig. 2.

Four MRI sequence features were extracted from MRI
images, including T1WI, T2WI, DWI (b = 800 s/mm?),
and ADC images. Six common feature groups, including
histogram, absolute gradient, gray-level co-occurrence
matrix, run-length matrix, autoregressive model, wavelet
transform, were extracted using MaZda. Each sequence
had 300 features. As a result, a total of 1200 features
were extracted from the four MRI sequences for each
patient.

Feature selection

First, we applied feature selection methods to reduce
feature dimensions before conducting classification pre-
dictions. In this study, five feature selection methods, in-
cluding joint mutual information (JMI) [31], minimum
redundancy maximum relevance (MRMR) [32], select K
best-using analysis of variance (SKB), select percentile
(SP) [33], and Wilcoxon (WLCX) [34], were applied to
the 1200 features to select the most significant features
for DD and LNM, respectively. These filter-based
methods were frequently applied in studies [35]. The
features were ranked using the above feature selection
methods based on joint mutual information (JMI) [35—
37], redundancy and relevance (MRMR) [37-39],
ANOVA F-value (SKB, SP) [37, 38], p-value (WLCX)
[35, 37, 39], respectively. For each feature selection
method, different number of selected features (n =5, 10,
15, .., 100) were selected for further classifications. In
other words, each feature selection method generated 20
groups of selected features in different numbers ranged
from n =5 to n =100 with an increment of five. This ap-
proach allowed sufficient searches of significant features.
As a result, we obtained 100 groups (n=20x5) of se-
lected features (20 for each of the five feature selection
methods) for DD and LNM, respectively. These selected
feature groups would be later used to conduct independ-
ent classifications using different machine learning
classifiers.

Classification prediction

After feature selection, we applied machine learning
classifiers to the selected features. In this study, the pre-
dictions of DD (high, medium-low) and LNM (positive,
negative) were two separated binary classifications and
conducted independently. For all of the 100 groups of
selected features obtained by the five feature selection
methods, ten machine learning classifiers (Table 1) were
applied to evaluate the final classification performance
of the different combinations of feature selection
methods and classifiers. Thus, we conducted systemati-
cal evaluations of 1000 cases (# =5 x 20 x 10). To evalu-
ate the performance of classifiers, the metrics including
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Fig. 2 ROl was placed on the maximum section of the tumor, avoiding adjacent vessels and bile duct on ADC (a), DWI (b), TIWI (c), and T2WI
(d), respectively

area under the receiver operating characteristic (ROC)
curve (AUC) [40], accuracy (ACC), sensitivity, and speci-
ficity were calculated using the test set for DD and
LNM, respectively. Using AUC as the major metric, we
organized these results into 20 groups according to the
number of selected features (n=5, 10, 15, .., 100).

Table 1 Classification machine learning algorithms

Number Abbreviation Algorithm

1 ADAC Ada Boosting Classifier

2 BAGC Bagging Classifier

3 BNB Bernoulli Naive Bayesian

4 DTC Decision Tree Classifier

5 GNBC Gaussian Naive Bayesian Classifier

6 KNNC K Nearest Neighborhood Classifier

7 RFC Random Forest Classifier

8 SGDC Stochastic Gradient Descent Classifier
9 SVMC Support Vector Machine Classifier
10 XGBC eXtreme Gradient Boosting Classifier

Results of all groups were later organized and illustrated
as heatmaps, from which we further identified and re-
ported the highest AUC value and the corresponding
heatmap. It's worth noting that multiple AUC values
achieved by multiple methods should be compared sta-
tistically using DeLong test [41]. If a model has a better
AUC value and at the same time is significant in DeLong
test in comparing with other models, we can acclaim
that this model is optimal and significantly different to
other models. While, though a model has better AUC
value but is not significant in DeLong test in comparing
with other models, we should avoid overstating that this
model is significantly superior compared to other
models, since the model is not significant in DeLong test
in comparing with other models. Therefore, in reporting
and comparing the performance of models, the DeLong
tests should be reported no matter the test results were
significant or not [42-49]. In line with previous radio-
mics studies involving comparing performance of mul-
tiple models [43, 44, 46—48], we conducted DeLong test
[41] to evaluate the statistical differences between
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models. Namely, pairwise DeLong tests were performed
for models in classifications of DD and LNM, respect-
ively. Statistically, for any given two models, a significant
DeLong test result (p-value <0.05) indicates the two
models are significantly different. All methods used in
the feature selection and classification were imple-
mented in Python (version 3.6.3) using the publicly
available Pandas library (version 0.24.2), NumPy library
(version 1.15.1), SciPy library (version 1.0.0), and Scikit-
learn library (version 0.19.1). DeLong test was imple-
mented and performed in Python according to the algo-
rithm of the original paper [41]. We further provided
the source codes we developed in this study for inter-
ested researchers at GitHub (https://github.com/
gracewang723/EC-paper).

Statistical analysis

The age and the lesion size were expressed as mean +
standard deviation (SD) when the distribution of data
was normal or as median when it was outside the
bounds of normality. The variables were compared using
independent t-tests or Wilcoxon Rank Sum tests, when
appropriate. Gender was compared using the chi-
squared test. The above statistical analyses were con-
ducted using SPSS 25. A two-sided p value <0.05 was
considered significant. The classification performance
was assessed using the ROC curve and AUC. The
models were compared with DeLong test [41], and the
difference between models was considered statistically
significant with p-value < 0.05.

Results

Patients

Table 2 provided a summary of the patient characteris-
tics of this study (n=100). There were 54 males (54%)
and 46 females (46%) with an age range of 28-83 and a
median age of 59.5. All tumors were confirmed to be
adenocarcinomas and were divided into high (n=36),
medium (n = 46), and low (n = 18) differentiation groups
based on the World Health Organization classification
of digestive system tumors (4th edition). Given that the

Table 2 Patient characteristics
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sample size is too small in the low differentiation group,
patients were classified into high (n=36) and medium-
low differentiation groups (n = 64) in our study. Among
them, 27 and 73 patients were found to have positive
LNM (27%) and negative LNM (73%), respectively. We
further randomly divided the patients into two cohorts,
namely one training set (z =80, 80%) and one test set
(n =20, 20%) to ensure that no data of a given individual
appear in both sets in order to avoid bias.

Feature selection and Radiomics signature construction
DD prediction

Using the extracted 1200 radiomics features, we applied
each of the five feature selection methods to obtain 20
groups of selected features of different numbers of fea-
tures, namely n =5, 10, .., 100. We further applied ten
classification methods to each of the 20 selected feature
groups to conduct the classifications for DD prediction.
Therefore, for each group, 50 combinations of five fea-
ture selection methods and ten classifiers were systemat-
ically investigated. Thus, we have evaluated the
performance of 1000 = 20*50 possible combinations. The
performance metrics were applied to the independent
test set (1 = 20).

Among all of the selected groups, the combination of
feature selection method JMI and classifier BAGC
achieved the highest performance with AUPRC = 0.65,
AUC=0.90 (95% CI 0.75-1.00), ACC=0.85 (95% CI
0.69-1.00), sensitivity =0.75 (95% CI 0.30—0.95), and
specificity = 0.88 (95% CI 0.64—0.97). As listed in Table 3,
the number of selected features in this group was five,
including two ADC features, one DWI feature, one
T1WI feature, and one T2WTI feature. For this group, we
plotted the heatmap of AUC values in Fig. 3a and the
ROC in Fig. 3b, respectively. The corresponding DD
radiomics with the best AUC included five features of
two ADC features, one DWI feature, one T1WTI feature,
and one T2W!I feature. In DeLong test, the combination
of JMI and BAGC was found significantly different to
most of the rest models. However, no statistically differ-
ence was observed to other combinations of high AUC

Characteristics Training cohort Testing cohort

Training cohort Testing cohort

LNM Non-LNM P LNM Non-LNM P High Medium-low P High Medium-low P
Sex 0.823 0.180 0.502 0.655
Male 12 29 2 1 21 22 2 9
Female 11 28 2 5 M 26 2 7
Age (years) 534110 57797 0092 538+120 608+7.7 0159 566+7.7 572+119 0814 628+93 560+78 0.151
Lesion size (cm) 1.9+09 1.3+08 0.008 16+03 1.2+05 0154 14+10 15+£76 0443 1.1+£04 14+£05 0.254

LNM, lymph node metastases

Lesion size was defined as the maximum diameter on transverse images
The values of age and lesion size were expressed as mean + SD

A two-sided P value < 0.05 was considered significant
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values. For example, the highest combination (JMI and

DD BAGC, AUC =0.90) was not significantly different to the
Number Sequence Feature second highest combination (JMI and XGBC, AUC =
1 ADC S@0)Contrast ~ 0.89) (p-value = 0.9004, DeLong test).
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. LNM prediction
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Table 4 The selected features with the best performance for

LNM

Number Sequence Feature

1 ADC Variance

2 ADC S(1,1)Correlat

3 ADC S(2,-2)SumVarnc
4 ADC S(04)Entropy

5 ADC S(5,0)SumAverg
6 ADC Teta3

7 ADC WavEnLH_s-4

8 DwiI Variance

9 DWI S(2,0)DifEntrp
10 DWI S(3,-3)SumOfSgs
11 DWI S(4,0)Contrast
12 DWI S(5,0)Entropy

13 DWI 45dgr_LngREmph
14 DWI WavEnLL_s-4

15 TIWI S(3,0)SumAverg
16 TIWI S(3,3)SumVarnc
17 TIWI S(0,5)SumEntrp
18 TIWI S(5,-5)SumOfSgs
19 TIWI S(5,-5)DifVarnc
20 TIWI Vertl_RLNonUni
21 TIWI WavEnLL_s-1

22 TIWI WavEnHH_s-1
23 T2WI Skewness

24 T2WI S(0,1)DifVarnc
25 T2WI S(2,0)SumAverg
26 T2WI S(2,2)InvDfMom
27 T2WI S(3,00SumOfSags
28 T2WI S(5,-5)DifVarnc
29 T2WI WavEnLH_s-2
30 T2WI WavEnHH_s-4

Axial T1-precontrast weighted imaging, TTWI; axial T2-weighted imaging, T2WI;
axial diffusion weighted imaging, DWI; Apparent diffusion coefficient, ADC

method MRMR and classifier XGBC with AUPRC =
0.95, AUC=0.98 (95% CI 0.94-1.00), ACC =0.90 (95%
CI 0.77-1.00), sensitivity = 0.75 (95% CI 0.30—0.95), and
specificity = 0.94 (95% CI 0.72-0.99). For this LNM pre-
diction, we plotted the heatmap of AUC in Fig. 4a and
ROC in Fig. 4b, respectively. Similar to DD, in DeLong
test, the combination of MRMR and XGBC was found
significantly different to most of the rest models. How-
ever, no statistical difference was observed to other com-
binations of high AUC values. For example, the highest
combination (MRMR and XGBC, AUC =0.98) was not
significantly different to the second highest combination
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(MRMR and ADAC, AUC=0.97) (p-value=0.4795,
DeLong test).

Discussion

ECC is a malignant tumor with an extremely unfavor-
able prognosis despite the rare incidence of the disease.
It's important to comprehensively evaluate ECC, espe-
cially its DD and LNM, to guide clinicians and predict
the prognosis of the tumor.

In this study, we found radiomics model incorporating
ADC, DWI, T1WI, and T2WT had the highest diagnostic
performance in discriminating high and medium-low
DD groups of ECC (AUC=0.90 (95% CI 0.75-1.00)),
and LNM of ECC (AUC = 0.98 (95% CI 0.94-1.00)), sug-
gesting that the clinical use of radiomics is promising in
terms of the preoperative evaluation of ECC. Specifically,
machine learning algorithm combinations of five feature
selection methods and ten classification algorithms were
applied to build radiomics signatures for DD and LNM
of ECC. As a result, the algorithm combination of fea-
ture selection method JMI and machine learning classi-
fier BAGC achieved the best predictive performances for
DD with satisfying accuracy of ACC=0.85 (95% CI
0.69-1.00) and AUC =0.90 (95% CI 0.75-1.00) based on
five selected optimal features. For LNM, the combin-
ation of feature selection method MRMR and classifier
XGBC achieved the highest performance, with ACC =
0.90 (95% CI 0.77-1.00) and AUC =0.98 (95% CI 0.94—
1.00), based on 30 selected optimal features. The results
demonstrated that radiomics analysis was able to accur-
ately predict the DD and LNM for ECC cases. Mean-
while, the predictions achieved in radiomics analysis also
had implications for guiding the clinicians in selecting
the most appropriate treatment strategy and hopefully
improving the prognosis of patients with ECC.

Recently, many studies have indicated that contrast-
enhanced CT, PET-CT, and MRI played an important
role in detecting of LNM of CCA [50-52]. It’s reported
that PET-CT and MRI have been proposed to predict
DD of CCA [53, 54]. However, discrimination of malig-
nant from benign nodes and various DD on cross-
sectional imaging with the traditional practice of visual
interpretation remains challenging. These conventional
imaging modalities based on morphologic criteria or
metabolic activity still have some limits and are unable
to fully meet the clinical requirements. In contrast,
radiomics, which is more reflective of quantitative infor-
mation drawn from images rather than those drawn by
the naked eye, can enable mineable high-dimensional
data to be applied within clinical decision support [55,
56]. The main contribution of this study is developing
machine learning-based radiomics to predict LNM and
DD of ECC using MRI data. For predicting LNM, the
radiomics signature derived from ADC, DWI, T1WI,
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and T2WI sequences in this study achieved an AUC of
0.98, better than that derived from the evaluation of
traditional images like PET-CT [9]. Besides, there is a
lack of literature to identify the DD of ECC by using
radiomics at present. Therefore, we developed a radio-
mics model to predict the DD of the tumor and achieved
a better result with an AUC of 0.90.

At present, some radiomics methods have been used
to evaluate CCA recently [26—30]. Wenjie Liang et al.
constructed a novel nomogram for preoperative predic-
tion of early recurrence (ER) in ICC, discovering the
radiomics signature and clinical stages that could be
used to predict ER of ICC after partial hepatectomy [26].

In another study, a combined model based on
clinicoradiologic-pathological and radiomics features
was developed to predict ER of ICC, with AUC, sensitiv-
ity, and specificity of 0.949, 0.875, and 0.774, respectively
[27]. Besides, it’s reported that two radiomics models
were built based on arterial phase (the highest AUC of
0.89) and portal venous CT scans (the highest AUC of
0.81) respectively to evaluate LNM and clinical outcome
of biliary tract cancer in two previous studies, which
were inferior to ours [28, 30]. Lei Xu and his partners
used a radiomics approach based on MR images through
a support vector machine for preoperative lymph node
status evaluation in ICC, with AUC of 0.788 and 0.787
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in the training and validation cohort, respectively, but
still inferior to ours [29]. More importantly, almost no
relevant studies were reported to evaluate DD and LNM
of ECC simultaneously using radiomics developed by
machine learning. In addition, as mentioned before,
there exist many differences between ECC and ICC, e.g.,
origin, growth pattern, morbidity, imaging characteris-
tics, and prognosis of tumor. Therefore, we separately
built the radiomics models based on MRI of ECC in our
study to predict DD and LNM of the tumor. This work
contributes to the line of literature on MRI radiomics
analysis of DD and LNM of ECC by developing a ma-
chine learning framework combining feature selections
and classifications.

Of course, radiomics analysis is an analysis that relies on
the quantity and quality of data. Especially for machine
learning-based methods, the data size is one important de-
terminant for the final predictive performance. The more
data we used to train and test the algorithms, the more con-
fidence we have in the obtained models and performance.
Compared with other radiomics analyses, the sample size is
limited in our study. This difficulty is not uncommon in
radiomics studies, and small datasets still demonstrate the
potentials of radiomics approaches [57-60]. Our study ini-
tially indicates that radiomics analysis has potentials in pre-
dicting DD and LNM of ECC with promising performance.
The proposed methods could guide the treatment strategies
and improve the quality of life in patients with ECC. In
other words, radiomics analysis based on big data could help
in cases of rare diseases. Therefore, the standardized data
collection terminological systems and approaches such as
ENT COBRA ONTOLOGY [61] and SKIN-COBRA [62]
must be followed to ensure the high data quality and the
high performance of machine learning algorithms.

Meanwhile, it's worth mentioning that since we sys-
tematically invested 1000 combinations of feature selec-
tion methods and machine learning classifiers in this
study, DeLong test [41] should be applied in pairwise
comparing of two models. Only when p-value <0.05 in
DeLong test, the two given models could be considered
significantly different. Therefore, we conducted DeLong
test to all pairs, though the number of possible pairs was
significantly larger than most previous studies in which
only a few models were considered [42-49]. Similar to
those studies in which the chosen models of optimal
AUC values were not found significantly different to
other models in DeLong test [43-45, 49], we could still
choose and apply the reported model combinations (DD:
JMI and BAGC; LNM: MRMR and XGBC) to achieve
satisfying performance. However, they should not be
treated as the only best models, since they were not sig-
nificantly different to other combinations, especially not
to other combinations of similar AUC values in DeLong
test.
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Our study still had limitations. Firstly, since machine
learning-based approaches are data-driven, the develop-
ment and the performance of machine learning algo-
rithms rely on the quality and quantity of datasets.
However, due to the rareness of ECC, the number of
ECC cases used here was relatively small. Another limi-
tation of the present dataset was that the unbalanced
positive samples versus the negative samples due to the
low incidence of ECC. Therefore, the initial results ob-
tained in the present study should be treated with cau-
tions. In the future, a larger-scale patient population will
be acquired to further improve and validate the pro-
posed machine learning-based radiomics models for DD
and LNM predictions of ECC. A larger and relatively
balanced dataset would not only allow more extra valid-
ation but also lead to more confident performance and
more reliable predictive models. Secondly, our study was
retrospective and from a single institution. Prospective
multi-center studies with considerably large datasets are
needed to further develop our radiomics prediction
models to validate the effectiveness as well as
generalization. Therefore, we suggest conducting multi-
center clinical collaboration in the future to utilize a lar-
ger ECC dataset for further validations. Thirdly, the
number of features was larger than the number of cases
in the present study. Though, we conducted a feature se-
lection process before performing the classifications.
This effort partially alleviated the difficulty. However,
larger datasets were still needed to further reliable vali-
dations. Therefore, more efforts were required to collect
more data to further validate the reproducibility of the
present results and thus improve the performance of the
proposed machine learning framework. Finally, our tex-
ture extraction was based on two-dimensional analysis
instead of three-dimensional delineation, which may
contribute to the loss of texture information in the
tumor. Therefore, a three-dimensional analysis of ECC
could be carried out in future work.

Conclusions

In conclusion, our MRI radiomics models based on opti-
mal combinations of feature selection methods and ma-
chine learning classifiers demonstrate potentials in
predictions for DD and LNM in ECC. Though the data-
set used in this study is limited, future investigations
using a larger dataset could further investigate the
framework proposed in this study for better perform-
ance. This machine learning-based radiomics analysis
provided a potential noninvasive method to evaluate
ECC, which could guide the clinician to select the opti-
mal treatment strategy depending on the individual situ-
ation and evaluate the survival prognosis in patients
with ECC.
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