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Background/Aims: Lung function is an objective indicator of diagnosis and prog-
nosis of respiratory diseases. Many common genetic variants have been associated
with lung function in multiple ethnic populations. We looked for coding variants
associated with forced expiratory volume in 1 second (FEV,) and FEV, /forced vital
capacity (FVC) in the Korean general population.

Methods: We carried out exome array analysis and lung function measurements
of the FEV, and FEV,/FVC in 7,524 individuals of the Korean population. We
evaluated single variants with minor allele frequency greater than 0.5%. We per-
formed look-ups for candidate coding variants associations in the UK Biobank,
SpiroMeta, and CHARGE consortia.

Results: We identified coding variants in the SMIMz2g (C6orf1) (p = 1.2 x 107°) and
HMGA1 locus on chromosome 6p21, the GIT2 (p = 6.5 x 107°) locus on chromosome
12924, and the ARHGEF4o0 (p = 9.9 x 107°) locus on chromosome 14q11 as having a
significant association with lung function (FEV,). We also confirmed a previously
reported association with lung function and chronic obstructive pulmonary dis-
ease in the FAM13A (p = 4.54 x 10~%) locus on chromosome 4q22, in TNXB (p = 130
x107%) and in AGER (p = 1.09 x 10~%) locus on chromosome 6p21.

Conclusions: Our exome array analysis identified that several protein coding
variants were associated with lung function in the Korean population. Common
coding variants in SMIMz2g9 (CGorf1), HMGA1, GIT2, FAM13A, TNXB, AGER and
low-frequency variant in ARHGEF4o potentially affect lung function, which war-
rant further study.
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INTRODUCTION

function, the heritability of lung function has been re-
ported to be around 40% [3,4]. Genome wide association

Lung function is an important trait of the respiratory
system. Lung function measurements of the forced ex-
piratory volume in one second (FEV)) and the ratio of
FEV, to forced vital capacity (FEV,/FVC) are used as cri-
teria for chronic obstructive pulmonary disease (COPD)
diagnosis and severity evaluation for pulmonary disease
[1,2]. Although environmental factors such as smok-
ing, air pollution and particulate matter influence lung

Copyright © 2021 The Korean Association of Internal Medicine
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

studies (GWASs) for lung function have been reported in
data on large populations [5,6]. As expected, genetic loci
associated with lung function were shown to play roles
in susceptibility to respiratory disease including COPD
[7]. However, most identified variants through GWASs
are common variants (minor allele frequency [MAF] >
5%) of the population. As in many other complex traits,
despite the extensive discovery of associated loci from
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GWAS, there are some limitations in understanding
diseases risk or trait variability only through association
of common variants [8]. This problem, so called missing
heritability, might be explained by low-frequency and
rare variants, and structural variation [8,9].

The exome array contains mostly variant that alter
nonsynonymous, splice or stop codons that are likely
to affect protein structure and function. The majority
of variants are low-frequency (1% < MAF = 5%) and rare
(MAF < 1%) [8,9], which could explain additional dis-
ease risk and trait variability. Genotyping using an ex-
ome array can be a cost-effective and efficient strategy
compared to whole exome sequencing [8]. GWAS results
using exome arrays have been reported in COPD [9,10]
and as meta-analysis for lung functions in persons with
European ancestry [11]. However, these studies included
only a small fraction of the Asian population samples.
There was a study for exome chip quality control for
variant analysis and several more loci were identified
using exome array in Korean samples [12]. To gain fur-
ther insight into genetic influence on lung function and
to discover variants in coding regions associated with
lung function in the Korean population, we carried out
a GWAS using exome-based genotyping array.

METHODS

Study populations

We investigated an exome array for coding variants asso-
ciated with lung function measurement in 7,524 individ-
uals from the Korean Genome and Epidemiology Study
(KoGES), which consists of six prospective cohort stud-
ies [13]. Among them, the Korea Association Resource
cohort was a population-based cohort from the Ansung
rural area and Ansan city in South Korea (KoGES Ansan
and Ansung study) that was initiated in 2001. More than
2060 traits were examined by means of epidemiological
surveys, physical examinations and laboratory tests in-
cluding a pulmonary function test [14]. Spirometry was
carried out in accordance with American Thoracic So-
ciety/European Respiratory Society guidelines [15]. The
baseline examinations have been previously described
[14]. Written informed consents were provided by all
participants in this study. The study was conducted
with bioresources from National Biobank of Korea, the
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Centers for Disease Control and Prevention, Republic of
Korea (KBN 2017-003) and approved by the Institutional
Review Board of Asan Medical Center (2015-1341).

Genotyping and quality of control

In this study, genomic DNAs isolated from peripheral
blood were genotyped on the Infinium Human Exome
BeadChip v1 (llumina, San Diego, CA, USA). Genotyp-
ing process and quality control of the genotype dataset
were previously reported [12]. After quality control, a
total of 48,187 single nucleotide polymorphisms (SNPs)
were used in the exome array analysis.

Single variant analysis for association with lung
function

Single variant association tests for FEV, and FEV,[FVC
were carried out using the linear mixed model. We used
the likelihood ratio test implemented in the Genome
wide Efficient Mixed Model Association (GEMMA) soft-
ware package [16]. The fixed effects of each variant was
tested after adjusting for age, sex, ever-smoking, pack-
years, and height. A p < 107 was the criterion for single
variant association analysis. Variants analysis and anno-
tation of genes was done with the GRCh37/hg19 database.

Gene-based testing for association with lung function
We carried out gene-based analysis using Sequence
Kernel Association tests (SKAT) [17] to assess the joint
effect of multiple low-frequency and rare genetic vari-
ants within genes on lung function traits. SKAT analyses
identified the top 10 candidate genes associated (p < 2.5 x
107) with FEV, and FEV, [FVC.

Replication study

We carried out look-up replication of the selected top
nine variants for FEV, and FEV, [FVC in 410,289 subjects
in the UK Biobank study (http://biobankengine.stan-
ford.edu), SpiroMeta and Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) (www.
chargeconsortium.com) consortia [6,11,18-20]. A p <1074
was the criterion for look-ups.

Characterization of findings

We assessed whether the identified loci contained vari-
ants associated with gene expression in various tissues
by querying the expression quantitative trait loci (eQTL)
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Table 1. Demographic characteristics of study populations

Characteristic Value
Total sample 7,524
Sex

Male 3,582 (47.6)

Female 3,942 (52.4)
Age, yr 52.1+8.8
Current smoker 1,853 (24.6)
Former smoker 1,198 (15.9)
Never smoker 4,473 (59.5)
Pack-years 9.0 £15.9
Height, cm 160.1 + 8.6
FEV,, L 2.6+1.9
FEV,/FVC 78.0 £ 15.0

Values are presented as number (%) or mean + SD.
FEV,, forced expiratory volume in 1 second; FVC, forced vital
capacity.

database of the Genotype-tissue expression (GTEx proj-
ect) (https://gtexportal.org/home/) [21]. Potentially del-
eterious coding variants were identified by Sorting In-
tolerant From Tolerant (SIFT) and PolyPhen-2 [22]. We
searched for evidence of protein expression in the re-
spiratory system by querying the Human Protein Atlas
(www.proteinatlas.org) [23].

RESULTS

Cohort characteristics

Our analysis included 7,524 individuals (3,942 females;
52.4%) from KoGES with non-missing covariate and
lung function phenotypes. The characteristics of the
7,524 individuals who were assessed for an exome array
are shown in Table 1. The mean age was 52.1 years. A
40.5% (n =3,051/7,524) had ever smoked with mean pack-
years of 9.0.

Single variant analysis for association with lung
function

We analyzed the association between SNPs from the
KoGES exome array data and lung function measures,
FEV, and FEV [FVC. For primary discovery analysis, we
used genotyping data for the 7,524 subjects in the KoG-
ES. First, we checked for sample quality. We detected 19
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pairs of samples with genetic relatedness greater than
0.25, and removed one sample from each related pair.
There was no sample failed for the genotype miss-
ingness test (missing rate < 5%). Next, we checked for
marker quality. We removed 1 SNP which failed to pass
95% genotyping rate threshold, 74 SNPs which failed at
Hardy-Weinberg Equilibrium (HWE) test in controls
(b < 0.0001), and 3 SNPs which were detected as princi-
pal component analysis outliers. After quality controls,
77,397 SNPs remained. Plink version 1.07 was used for
quality controls procedures and Genome-wide Complex
Trait Analysis (GCTA) version 1.26 was used for calculat-
ing genetic relationship matrix. In the GEMMA analy-
sis, only 31,571 SNPs were used which passed the internal
filters of GEMMA in the default setting.

Finally, we isolate the 31,571 SNPs for FEV, and 16,616
SNPs for FEV [FVC. Among them, 10,513 0f 31,571 (33.2%)
SNPs for FEV, were rare and low-frequency variants
and the rest 21,058 (66.7%) were common variants. Also,
5,294 0f 16,616 (31.8%) SNPs for FEV [FVC were rare and
low-frequency variants and the rest 11,322 (68.2%) SNPs
were common variants. The top SNPs for FEV, and
FEV /FVC ratio identified in the KoGES general popula-
tion are listed in Table 2. Only one genotyped SNP met
the exome-wide significance criteria (p < 5 x 1078) in our
exome array analyses. The strongest signal (p =1.2 x 107)
for FEV, was a variant rs1150781 in small integral mem-
brane protein 29 (SMIMzg [C6orfi]) on chromosome 6
(Figs. 1 and 2). Two SNPs (rs7742369, rs2780226) also on
chromosome 6 (6p21) were located in or near SMIM29
(CGorfi) and high-mobility group AT-hook 1 (HMGA1).
One of the top nine SNPs, variant rs114591848 was a
low-frequency variant in rho guanine nucleotide ex-
change factor 40 (ARHGEF40) on chromosome 14 (MAF
=1.4%) and the others were common variants (Table 2).

The strongest signal (p = 1.0 x 10°%) for FEV [FVC was
ars2070600 in advanced glycosylation end-product spe-
cific receptor (AGER) on chromosome 6, which previous-
ly reported as a locus associated with lung function and
COPD [18,19]. The second strongest signal (p = 1.3 x 10)
was 152239688 in tenascin XB (TNXB) on chromosome
6. TNXB encoded extracellular matrix glycoproteins,
which are associated with organizing and maintaining
the structure of tissues that support the body’s muscles,
joints, organs, and skin. This gene was previously re-
ported to be associated with IPF [24] and COPD, lung
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Figure 1. Manhattan plots of association results for forced expiratory volume in 1 second (FEV,) and FEV, /forced vital capacity
(FVC). The manhattan plots for (A) FEV, and (B) FEV,/FVC are ordered by chromosome position. Single nucleotide polymor-

phisms for which -log,, p > 5 are indicated in blue line.

function [25]. To gain further insight into the associat-
ed variants, we assessed whether the candidate variants,
or their proxies were associated with gene expression
in various tissues by using GTEx and eQTL analyses
(Supplementary Table 1). Among them, sentinel vari-
ants or their close proxies of rs114591848, rs7671167, and
152070600 variants were eQTL in lung for ARHGEFjo,
family with sequence similarity 13 member A (FAM13A),
and AGER. The protein and mRNA expression profiles
of all implicated genes from the single variant associa-
tion analyses are shown in Supplementary Table 2.

We also carried out a look-up in the publicly available
UK Biobank results as adjusted for sex and ancestral
principle components, SpiroMeta, and CHARGE con-
sortia data in order to confirm the novelty of our results
and presence or absence of difference of genetic varia-
tion in lung function among different ethnicities. SNPs
associated with lung function within + 1.5 Mb regions
from selected variants were presented. This look-up
showed evidence of replication for variant rsi150781 in
or near SMIMz2g (C6orfi) and HMGA1 on chromosome 6,
proxies of variants rs114591848 in ARHGEF 40 on chro-
mosome 14 for FEV , and variant rsy671167 in FAM 13A
and variant rs2070600 in AGER on chromosome 6 for
FEV [FVC (Table 2).

Gene-based analysis for gene association with lung

function
For gene-based analysis, we carried out the SKAT meth-
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Table 3. Association results for all genes identified in SKAT
analyses (KoGES)

Chr Gene pvalue Trait

1 DFFA 8.01E-08 FEV,

10 CHSTas 2.25E-05 FEV,

1 DFFA 5.81E-18 FEV,/FVC
8 DEFB135 1.58E-10 FEV,/FVC
11 MOGAT2 7.96E-10 FEV,/FVC
11 BSX 1.09E-07 FEV,/FVC
1 SPTY2D1 1.38E-07 FEV,/FVC
14 DEFB118 2.86E-07 FEV,/FVC
20 PIGDR 2.15E-06 FEV,/FVC
20 MYBL2 3.25E-06 FEV,/FVC

Results are given as chromosome, trait and p values (p < 2.5 x
107).

SKAT, Sequence Kernel Association Test; KoGES, Korean
Genome and Epidemiology Study; Chr, chromosome; DFFA,
DNA fragmentation factor subunit alpha; FEV,, forced expira-
tory volume in 1 second; CHST15, carbohydrate sulfotransfer-
ase 15; EVC, forced vital capacity; DEFB13s5, defensin beta 135;
MOGAT2, monoacylglycerol O-acyltransferase 2; BSX, brain
specific homeobox; SPTY2D1, SPT2 chromatin protein do-
main containing 1; DEFB118, defensin beta 118; PTGDR, pros-
taglandin D2 receptor; MYBL2, MYB proto-oncogene like 2.

od to assess the joint effects of variants within genes on
lung function traits. The top 10 most significant genes
and p values of lung function are shown in Table 3. Our
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Figure 2. Quantile-Quantile (QQ) plots show —log,, (p) of observed genome wide association results against expected associa-
tion results for (A) forced expiratory volume in 1 second (FEV,) and (B) FEV, /forced vital capacity (FVC). Genomic control infla-
tion factors (\GC) before genomic control was o.9o for FEV, and 0.84 for FEV,/FVC.

top association was in the gene DNA fragmentation fac-
tor subunit alpha (DFFA) (p = 8 x 107 for FEV,, p = 5.8
x 1078 for FEV [FVC). However, we confirmed that the
SKAT analysis and the candidate SNPs in or near target
genes did not match.

DISCUSSION

In this study, we identified three loci (chromosome 4, 6,
and 14) associated with lung function. A look-up study
revealed that our novel SNPs in 6p21 and 14qu1 loci
replicated the association with FEV, from the UK Bio-
bank. Some of the candidate SNPs (rs7742369, 152780226,
181150781, 152239688, and rs2070600) were located on
6p21. We previously reported that this locus on 6p21
influences lung function in the Korean population [14].
The variant rs1150781 (MAF =18%, p = 1.2 x 1075, Gly150A-
la, PolyPhen prediction: benign) (Supplementary Table
3) is a missense variant in SMIMzg (C6orfi), which en-
codes an integral membrane and is expressed in brain,
skin, thyroid, spleen, and lungs. This protein consists
of 102 amino acids with molecular weight is of 11.5 kDa
and is detected in human fetal lung cell lysate and re-
spiratory epithelial cells. The expression of this protein
was reported to increase in some non-small cell lung
cancer patients, especially for adenocarcinoma and
squamous cell lung cancer [23]. However, gain and loss

https://doi.org/10.3904/kjim.2019.204

of functional studies of this gene are lacking. For this
reason, although our exome array analysis identified the
missense variant rs1150781 and nonsynonymous substi-
tution (Gly150Ala) of the SMIM29 (C6orfi) protein, to de-
termine whether variant rs1150781 affects protein func-
tion, further validation of the association and functional
studies of SMIMz29 (C6orfi) will be required. Variant
rs1150781 and their proxy (rs2780226, LD, r* = 0.99) were
located in or near SMIM29 (C6orfi) and HMGA1. SMIMz29
(CG6orfi) was located downstream of HMGA1, and these
two genes are related to genetic linkage. HMGA1 en-
codes a protein related to epigenetic modification and
functions as a dynamic regulator of chromatin structure
and transcription, which is localized in the cell nucleus.
The HMGA1 protein is expressed in human lung mac-
rophages and respiratory epithelial cells [23]. Recently,
Zhang et al. [26] reported that the protein and mRNA of’
HMGA1 were highly expressed in intact human airway
epithelia and their basal cells. In a loss of function study
with HMGA1 siRNA, they demonstrated that HMGA1
down regulation in human airway basal cells led to in-
crease expression of airway remodeling related genes.
The NHGRI-EBI catalog of published GWASs shows
that variants in or near HMGA1 are associated with body
height, BMI and smoking behavior (Supplementary Ta-
ble 4) [27]. Also, the HMGA1 protein is a key regulator
of the insulin pathway [28] and variants of the HMGA1
gene are associated with type 2 diabetes mellitus [29)].
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Wealsoidentified anonsynonymous variant rs114591848
in the ARHGEF40 locus on chromosome 14. This variant
is a low-frequency (MAF = 1.4%) missense variant and
resulted in an amino acid change (Argi1062Gln, Poly-
Phen prediction: possibly damaging) (Supplementary
Table 3). ARHGEF40 encodes Rho guanine nucleotide
exchange factor is directly responsible for the activation
of Rho-family GTPase, and regulates numerous cellular
responses such as proliferation, differentiation, and cyto-
skeletal organization [30].

Moreover, we detected nominal levels of significance
with two intronic SNPs rs7671167 in the FAMi3A on
chromosome 4q22.1, and rs2239688 in TNXB on chro-
mosome 6p21.3 and one exonic SNP rs2070600 in the
AGER on chromosome 6p21.3. These variants were pre-
viously reported to be loci associated with lung func-
tion and pulmonary diseases [6,10,19,20]. The FAM13A
isoform 1 protein has a Rho GTPase-activating protein
(GAP) domain and participates in the Rho GTPase sig-
naling pathway [31]. Also, ARGEF40 encodes the Rho
guanine nucleotide exchange factor. These results sug-
gest that the Rho GTPase signaling pathway might play
arole in lung function and COPD.

By means of our exome array analysis, we have tried
to identify the low-frequency and rare variants poten-
tially associated with lung function in order to uncov-
er the missing heritability of lung function. However,
our discovery analyses did not identify many rare and
low-frequency coding variants that are responsible for
the lung function trait in the Korean population, proba-
bly because of our small sample size and limited statisti-
cal power. Further confirmation of these associations in
a large sample is needed.

We additionally investigated the joint effects of
low-frequency and rare variant within genes, on lung
function traits, by using the SKAT gene-based test. In
these analyses, we identified an exome-wide signifi-
cant signal (p = 8 x 1078 for FEV,, p = 5.8 x 1078 for FEV |
FVC) in DFFA, which is also known to be an inhibitor
of caspase-activated DNase. DFFA protein product is the
substrate for caspase-3 and triggers DNA fragmentation
during apoptosis [32]. However, this gene was not repli-
cated in the UK Biobank data.

Our study has some potential limitations. First, the
sample size is relatively small, and lack of statistical
power may be a limitation. Second, we did not provide
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further evidence for the biological role of the SMIMz29
(C6orft), HMGA1 and ARHGEF4o in lung function. Fi-
nally, our exome array identified only coding variants,
but cannot provide the roles of noncoding variants in
lung function. To date, many studies and meta-anal-
yses including SpiroMeta, CHARGE consortia, and
UK Biobank studies have reported nearly 100 loci and
many variants associated with lung function and COPD
[11,20,33,34). However, these studies have been exclusive-
ly carried out among populations whereas Asian ances-
try populations participate with relatively smaller sam-
ple size. Therefore, there is a need to perform GWAS
information from many people with Asian ancestry in
order to better understand the genetic architecture of
lung function.

In conclusion, we have newly identified a common
coding variant in or near SMIMzg (C6orfi), HMGA?1, and
one missense low-frequency variant in ARHGEF4o, that
are associated with lung function. Although a large sam-
ple size may be required to strengthen our results, we
present additional evidence to support the notion that
the genetic contribution to lung function includes poly-
genic architecture with low-frequency and common ge-
netic variants in the Korean population.

KEY MESSAGE

1. We identified novel single nucleotide poly-
morphisms associated with lung function in
the Korean population. There are: Common
coding variant rs1150781 in or near SMIMz29
(C6orfi), HMGA1 located on 6p21 and low-fre-
quency variant rs114591848 in ARHGEFjo locus
on 14q11, which were associated with FEV,.

2. Common coding variant rs2o70600 in AGER
located on 6p21.3 associated with forced expi-
ratory volume in 1 second/forced vital capacity
with exome-wide significant threshold as pre-
viously reported in loci associated with lung
function and chronic obstructive pulmonary
disease.
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Supplementary Table 2. Protein and mRNA expression profiles of implicated genes from single association analyses

Protein expression RNA profile

Gene Human protein atlas Humiﬁf:mem GTEx

Nasopharynx  Bronchus macl;z;lfages pnell;rlrlllcl)%ytes TPM  Category RPKM Category
SMIMz29(CGorf1) High Not detected Medium Medium 21.2 Medium 14.8  Medium
HMGA1 Medium Low Medium Not detected 25.9  Medium 27.1 Medium
GIT2 High Low High Low 25 Medium 85 Low
TCHP Medium Medium Low Low 11 Medium 5.8 Low
ARHGEFj0 NA NA NA NA 10.2 Medium 15.2  Medium
FAM13A NA Medium Medium Medium 17.8  Medium 3.4 Low
TNXB NA NA NA NA 16.4  Medium 203 Medium
AGER Not detected Not detected High Medium 889.2 Medium  424.4 High

Implicated genes were those located at or close to the position of the candidate top 9 single nucleotide polymorphisms. Protein
expression are qualitative antibody based protein profiles in the human lung from the Human Protein Atlas. RNA expression
is quantitative data estimating the transcript abundance of each protein-coding gene by RNA-seq from the Human Protein
Atlas and GTEx.

GTEZx, genotype-tissue expression; TPM, transcript per million; RPKM, reads per kilobase gene model and million mapped
reads; SMIMzg, small integral membrane protein 29; HMGA1, high mobility group AT-hook 1; GIT2, G protein-coupled recep-
tor kinase interacting ArfGAP 2; TCHP, trichoplein keratin filament binding protein; ARHGEF4o, rho guanine nucleotide ex-
change factor 40; NA, not available; FAM13A, family with sequence similarity 13 member A; TNXB, tenascin XB; AGER, advanced
glycosylation end-product specific receptor.
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