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Introduction

As one of the most common malignant tumors, breast 
cancer ranks first as a cause of death for women aged 20 to 
59 years (1). According to the 2021 statistics from the World 

Health Organization, the incidence of breast cancer has 

reached 11.7%, accounting for 6.9% of total global deaths (2). 

Currently, the prognosis of breast cancer still remains poor 

despite advances in surgical techniques, chemotherapy, and 
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radiotherapy (3). Therefore, it is of increasing urgency to 
identify novel molecules for tumor intervention and further 
improve the prognosis and treatment for those with breast 
cancer.

With more than 200 nucleotides, long non-coding RNAs 
(lncRNAs) constitute a group of important regulatory 
RNAs of low or no protein-coding capacity (4). They act as 
regulators in many intracellular biological processes (BPs), 
including tumor cell metastasis, proliferation, apoptosis, and 
immune response (5-8). In addition, lncRNA’s interactions 
with messenger RNAs (mRNAs) or microRNAs (miRNAs) 
also have an important effect on tumorigenesis and tumor 
biological features (9-12). The mechanism of competing 
endogenous RNAs (ceRNA), proposed by Salmena et al., 
asserts that when competing for shared miRNAs, transcripts 
may cross-regulate each other (13). This hypothesis has been 
proven by experiments on many malignancies, including 
liver, colon, lung, pancreas, and breast cancers (14-18).

Weighted gene coexpression network analysis (WGCNA) 
has gained popularity as a systematic biological method 
due to its ability to locate the highly correlated gene 
modules through the construction of a free-scale gene 
coexpression network (19) and the correlation of selected 
module of significant genes with clinical traits, which is 
useful for identifying potential biomarkers. Thus far, many 
researches have applied this method in both neoplastic 
and nonneoplastic diseases, such as cancer and system 
diseases of the heart and nerves (20-22). Xu et al. revealed 
the commonness between bladder cancer and breast cancer 
through comprehensive analysis of mRNA, miRNA, 
and lncRNA maps (23). Li et al. analyzed the multi-level 
expression profile of bladder urothelial carcinoma (BUC) 
using the TCGA database, constructed a ceRNA regulatory 
network by integrating information on tumor progression 

and prognosis, and determined a lncRNA-miRNA-
mRNA regulated ceRNA network, including 2 lncRNAs, 
1 miRNA, and 14 mRNA (24). Previous studies have 
demonstrated that WGCNA can be used to identify genes 
associated with the progression and prognosis of BRCA. 
For example, Yao et al. downloaded the LncRNA, mRNA 
and miRNA expression profiles of breast cancer from the 
TCGA database, and used weighted gene co-expression 
network analysis to generate 23 and 5 modules, respectively. 
According to the green module and the blue module, five 
lncRNAs related to BRCA progress were identified, which 
were identified as important prognostic factors for cancer 
patients (25).

In this study, breast cancer expression profiles of 
lncRNAs, miRNAs, and mRNAs and their corresponding 
clinical data were extracted from The Cancer Genome Atlas 
(TCGA) (26) and Genotype-Tissue Expression (GTEx) 
databases (27). Following this, the cancer-associated 
modules were recognized through WGCNA. Together with 
the differential expression results, univariate Cox analysis 
was used to select the common RNAs related to the overall 
survival (OS) of patients, and these RNA were then used 
to construct a breast cancer-associated ceRNA network. 
Finally, we constructed a multivariable Cox regression 
model and identified the HOX antisense intergenic RNA 
(HOTAIR)-miR-130a-3p-high mobility group-box 3 
(HMGB3) axis as a potential biomarker for OS, which may 
provide management and surveillance information for breast 
cancer. We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-313/rc).

Methods

Data acquisition and preprocessing

The RNA-sequencing (RNA-seq; via an Illumina HiSeq 
RNA-Seq platform) and miRNA expression profiles (via an 
Illumina HiSeq miRNA-Seq platform) of breast cancer were 
acquired from TCGA database (https://portal.gdc.cancer.
gov/). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). To solve the 
problem of limited normal samples in TCGA, the RNA-
seq data sets were combined with GTEx, which comprises 
normal breast tissues from deceased noncancerous 
individuals. To improve the compatibility of data from 
different sources, the University of California, Santa Cruz 
(UCSC), Xena project (https://xena.ucsc.edu/), which 
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recomputed and normalized all expression raw data based 
on a standard pipeline, was used to download the RNA-seq 
data with expectation maximization (RSEM) and transcripts 
per million (TPM) expression values (28,29). Subsequently, 
the RNA-seq data were transformed into mRNAs (protein 
coding) and lncRNAs (antisense; long intergenic non-
coding RNAs (ncRNAs); macro lncRNAs; noncoding, 3’ 
overlapping ncRNAs; sense intronic, sense overlapping, 
bidirectional promoter lncRNAs; and processed transcripts) 
with a human gene annotation file from GENCODE 
(https://www.gencodegenes.org/human/) (30). The RNA-
seq cohort was composed of 1,098 breast cancer and 291 
normal tissues. Meanwhile, the miRNA dataset of raw 
count values including 103 pairs of breast tumor tissues 
and their paracarcinoma tissues was downloaded through 
the gdc-client tool (TCGA; https://portal.gdc.cancer.gov/). 
All clinical data from the corresponding patients were also 
collected via gdc-client.

Construction of a weighted gene coexpression network

The TPM expression values of mRNAs and lncRNAs were 
first transformed with log2(TPM +0.001). Then, unqualified 
RNAs were removed with the “goodSamplesGenes” 
function (https://www.rproject.org). Based on squared 
Euclidean distance, a sample network was then constructed, 
and Z.k <−2.5 was used as the threshold to filter out 
unqualified samples for subsequent studies. Furthermore, 
mRNAs and lncRNAs with over 60% variance across the 
remaining samples were put through WGCNA. Next, 
based on a scale-free topology criterion of R2>0.85, a 
proper soft-threshold power (β) was chosen with the 
“pickSoftThreshold” function (https://www.rproject.
org), and the weighted adjacency matrix was established. 
After this, the topological overlap matrix (TOM) was 
reconstructed. The dynamic tree cut method was adopted 
to generate the modules of coexpressed RNAs with 3 
major parameters in WGCNA: a minModuleSize of 30, a 
mergeCutHeight of 0.25, and a maxBlockSize of 12,000. 
Finally, these mRNAs and lncRNAs with high correlations 
were separately grouped into coexpression modules.

Differential expression analysis of RNAs

To increase the accuracy of this study, the three popular 
R packages (The R Foundation of Statistical Computing, 
USA), “limma” (version 3.42.0), “edgeR” (version 3.28.0), 
and “DESeq2” (version 1.26.0), were selected to discern 

the differentially expressed (DE)RNAs (31-33). The RSEM 
expected counts for mRNAs and lncRNAs and the raw 
counts for miRNAs were passed to the three R packages 
with the criteria of false discovery rate (FDR) <0.05 and 
|log2fold change (FC)| >1. After the RNAs with low 
expression values were filtered out, the DE RNAs were 
displayed in Venn plots, and the overlapping RNAs of the 
three packages were considered suitable for further analysis.

Function and pathway enrichment analysis

To perform the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis, the R package “clusterProfiler” (version 3.14.0) 
was used for determining the mRNA overlap according to 
WGCNA and the differential expression analysis (34). The 
three GO aspects included BP, molecular function (MF), 
and cellular component (CC). A pathway with an adjusted  
P value <0.05 was considered reasonable.

Univariate Cox analysis of RNAs

To maintain the reliability of the study, 26 samples without 
full clinical survival information were removed from all 
1,098 TCGA patients with breast cancer. After intersecting 
the results of WGCNA and DERNAs, we used univariate 
Cox regression analysis to determine the correlation 
between the RNAs and the OS of 1,072 patients. The OS 
was considered to be the period between first-visit diagnosis 
and the most recent follow-up or death of any cause. The 
R package “survival” (version 3.2.3) was used to identify the 
prognosis-associated RNAs at a P value <0.05.

Construction of lncRNA-miRNA-mRNA ceRNA network 

Based on the results of univariate Cox analysis, a 3-stage 
ceRNA network was constructed with prognosis-related 
mRNAs, lncRNAs and miRNAs. (I) In order to interact 
mRNAs and miRNAs in a reliable way, the R package 
“multiMiR” (version 1.10.0) was employed, which compiled 
nearly 50 million records and contains 14 validated and 
forecasted databases, including miRTarBase, TargetScan, 
and miRDB (35-38). (II) To obtain the miRNA-targeted 
lncRNAs, the miRNATarget data from starBase (version 
2.0) was downloaded (https://starbase.sysu.edu.cn/) (39). 
(III) To construct the ceRNA network, the mRNA-miRNA 
and miRNA-lncRNA pairs were visualized with Cytoscape 
software (version 3.8.0) (40).

https://www.rproject.org
https://www.rproject.org
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Construction and assessment of the prognostic risk model

First, the 1,072 patients with full clinical data were 
randomly divided in a 1:1 ratio into two groups (the training 
set =536; validation set =536). Next, for model construction, 
the expression level of the survival-related RNAs in the 
training set were used to establish a prognostic risk formula 
by means of multivariable Cox regression analysis. The risk 
signal of each patient was calculated using the regression 
coefficient-weighted expression, and a risk score formula 

was devised as follows: ( )1

n
i ii

risk score Exp Coe
=

= ×∑  (41). In 
this formula, n is the number of selected RNAs, Expi is the 
expression value of each RNA, and Coei is the multivariate 
Cox regression coefficient. The effectiveness of this model 
was roughly estimated by calculating the concordance index 
(C-index). Finally, for detailed model assessment, all patients 
of both the training set and validation set were divided into 
high- and low-risk groups according to the median risk 
score. The OS curves were generated by Kaplan-Meier 
analysis according to the low-risk and high-risk groups as 
mentioned above. A P value less than 0.05 was considered 
to be statistically significant. The expression profiles of key 
RNAs in the high-risk and low-risk groups were plotted 
using a risk heatmap. To estimate the diagnostic accuracy on 
the basis of the risk score for 3- and 5-year OS probability, 
a time-dependent receiver operating characteristic (ROC) 
curve was adopted.

Investigation of the RNA expression and DNA methylation 
level in the prognostic risk model

To verify the RNA expression in breast cancer, RNA-seq 
and miRNA-seq expression data were downloaded from the 
National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) (https://gtexportal.org/
home/). The GSE65216 data set includes the mRNA and 
lncRNA expression data from 11 normal and 167 breast 
cancer samples, and the GSE26659 data set includes the 
miRNA expression data from 11 normal and 77 breast 
cancer samples. To explore the expression changes between 
tumor and normal samples in other cancer types, UCSC 
Xena and gdc-client were used for RNA-seq and miRNA-
seq respectively to retrieve pan-cancer count data from 
TCGA, which were further normalized with log2(count 
+1). Additionally, using gdc-client, we acquired TCGA 
somatic mutation and DNA methylation data to clarify 
the mechanism of the RNA expression changes. The R 
package “maftools” was used to detect mRNA mutation in 

the patients with breast cancer (42). For DNA methylation 
analysis, we conducted a t-test to check if the methylation 
beta values of mRNA and lncRNA were lower in tumors 
and to calculate the Pearson correlation coefficient between 
RNA expression and the DNA methylation level.

Statistical analysis

All statistical analyses were performed under R version 
3.5.3. Classification variables are expressed in numbers 
and percentages. The differences between groups were 
compared using chi-square test. Continuous variables 
are expressed as median or mean standard deviation. The 
survival time distribution was evaluated using the Kaplan 
Meier method, and the logarithmic rank test was used for 
comparison. The Cox proportional risk model was used 
for univariate and multivariate analysis to determine the 
contribution of these variables. Predicted mRNA and 
lncRNA were tested using hypergeometric and Pearson 
correlation tests. The difference of P<0.05 was statistically 
significant.

Results

Clinical patient characteristics

The workflow for our study is illustrated in Figure 1, while 
Table 1 summarizes the detailed clinical and pathological 
features of the study population. All 1,098 patients were 
pathologically diagnosed with breast cancer, the median age 
was 58.0 (interquartile range, 49–67) years, and 69.1% of 
the patients were White. An absolute female predominance 
was observed (98.9% female).

Identif﻿﻿ication of key modules with WGCNA

After removal of the unqualified samples and outlying 
genes, WGCNA was performed on the top 60% of the 
variances of mRNAs (11,772 mRNAs) and lncRNAs (8,814 
lncRNAs). When the scale-free topology fit index was 
over 0.85, the soft-power thresholding was set to 5 and 
3 for mRNAs and lncRNAs respectively (Figure 2A,2B). 
Ultimately, in the mRNA and lncRNA coexpression 
network, there were a total of 16 and 12 modules generated, 
respectively (Figure 2C,2D). Additionally, it is worth noting 
that we calculated and plotted the relation of each module 
with its corresponding clinical traits, which is shown in 
Figure 2E,2F. It is clear that the most specific mRNA 

https://gtexportal.org/home/
https://gtexportal.org/home/
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Figure 1 The main flow diagram of the ceRNA network construction in breast cancer. TCGA, The Cancer Genome Atlas; BRCA, breast 
carcinoma; GTEx, Genotype-Tissue Expression; RNA-seq, RNA-sequencing; miRNA-seq, miRNA-sequencing; miRNA, microRNA; 
WGCNA, weighted gene coexpression network analysis; mRNA, messenger RNA; DEmRNA, differentially expressed mRNA; lncRNA, 
long non-coding RNA; DElncRNA, differentially expressed lncRNA; ROC, receiver operating characteristic; ceRNA, competing 
endogenous RNA; GEO, Gene Expression Omnibus.

network is the blue module, with a correlation coefficient 

of 0.8 (P=5×10−309); the magenta and brown modules in 

the lncRNAs network had a correlation coefficient of 0.73 

(P=2×10−225) and 0.67 (P=2×10−175), respectively.

Differential RNA expression analysis

We used three popular methods to compare breast cancer 
with normal tissues so as to identify the DEmRNAs, 
DElncRNAs, and DEmiRNAs. To improve the reliability 
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of the study, we chose the overlapping results with the R 
packages “DESeq2”, “edgeR”, and “limma”. As shown in 
Figure 3A-3C, we obtained 4,352 overlapping DEmRNAs 
(2,287 upregulated and 2,065 downregulated), 1,883 
overlapping DElncRNAs (778 upregulated and 1,105 
downregulated), and 237 overlapping DEmiRNAs (136 
upregulated and 101 downregulated).

Functional annotation of mRNAs overlapping between the 
WGCNA and differential expression analysis

In total, 678 mRNAs were intersected between the 
WGCNA and differential expression analysis. To further 
explore the potential biological functions of mRNAs in 
breast cancer, we performed GO and KEGG pathway 
analysis using the R package “clusterProfiler”. Based on 
the GO analysis, we identified that mRNAs were mostly 
enriched in nuclear division and chromosome segregation 
of BP; the chromosome region the most enriched term of 
CC; adenosine triphosphatases (ATPases) activity was the 

most enriched term of MF (Figure 3D). Moreover, in the 
KEGG analysis, cell cycle, cellular senescence, and p53 
signaling were enriched as the important pathways for 
common mRNAs (Figure 3E).

Construction and analysis of the ceRNA network

We built a lncRNA-miRNA-mRNA (ceRNA) network 
to understand how lncRNA regulates mRNA through 
combination with miRNA in human breast cancer. First, 
we performed univariate Cox regression analysis and a log-
rank test to estimate the prognostic relationship between 
the RNA expression profiles and OS of 1,072 patients. 
Second, we selected 180 lncRNAs, 120 miRNAs, and 421 
mRNAs with a P value <0.05, among which we found 
that 418 mRNAs interacted with 109 miRNAs in the 
ceRNA network according to the R package “multiMiR”. 
Meanwhile, a total of 14 miRNA-targeted lncRNAs 
based on the 32 miRNAs was predicted through starBase. 
Consequently, we performed hypergeometric and Pearson 

Table 1 The detailed clinical and pathological features of study population

Characteristics Alive (n=944) Deceased (n=154) Overall (n=1,098)

Gender, n (%)

Female 933 (98.8) 153 (99.4) 1,086 (98.9)

Male 11 (1.2) 1 (0.6) 12 (1.1)

Age (years)

Mean (SD) 58.0 (12.8) 60.8 (15.2) 58.4 (13.2)

Median [min, max] 58.0 [26.0, 90.0] 62.0 [26.0, 90.0] 58.0 [26.0, 90.0]

Missing, n (%) 1 (0.1) 0 (0.0) 1 (0.1)

Race, n (%)

White 645 (68.3) 114 (74.0) 759 (69.1)

Black 153 (16.2) 30 (19.5) 183 (16.7)

Other 146 (15.5) 10 (6.5) 156 (14.2)

Stage, n (%)

0 7 (0.7) 4 (2.6) 11 (1.0)

I 166 (17.6) 16 (10.4) 182 (16.6)

II 554 (58.7) 68 (44.2) 622 (56.6)

III 206 (21.8) 44 (28.6) 250 (22.8)

IV 5 (0.5) 15 (9.7) 20 (1.8)

X 6 (0.6) 7 (4.5) 13 (1.2)

SD, standard deviation.



Translational Cancer Research, Vol 12, No 4 April 2023 955

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2023;12(4):949-964 | https://dx.doi.org/10.21037/tcr-23-313

2 4 6 8 10
Soft threshold (power)

2 4 6 8 10
Soft threshold (power)

Gene dendrogram and module colors Gene dendrogram and module colors

H
ei

gh
t

H
ei

gh
t

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.9

0.8

0.7

0.6

Module 
colors

Module 
colors

Module-trait relationships Module-trait relationships

MEbue

MEpurple

MEgreen 

MEred

MEblack

MEpink

MEcyan

MEbrown

MEtan

MEsalmon 

MEyellow

MEgreenyellow 

MEmagenta

MEmidnightblue 

MEturquoise 

MEgrey

MEsalmon 

MEtan

MEturquoise 

MEblue 

MEyellow 

MEblack 

MEpink 

MEgreen

MEpurple

MEgreenyellow 

MEmagenta 

MEbrown 

MEred 

MEgrey

Normal Tumor Normal Tumor

–0.8 (5e–309)

–0.51 (9e–91)

0.19 (2e–12)

–0.45 (2e–67)

–0.3 (1e–30)

–0.57 (3e–117)

–0.31 (7e–32)

–0.24 (2e–19)

0.42 (4e–60)

–0.11 (2e–05)

0.41 (1e–56)

0.54 (1e–104)

0.5 (3e–85)

0.27 (3e–23)

0.77 (9.9e–262)

0.14 (5e–07)

0.034 (0.2)

–0.073 (0.007)

0.84 (0)

0.46 (1e–72)

0.47 (2e–76)

–0.2 (5e–14)

–0.081 (0.003)

0.49 (3e–84)

–0.2 (4e–14)

–0.23 (2e–17)

–0.73 (2e–225)

–0.67 (2e–175)

–0.28 (2e–26)

0.24 (9e–19)

0.8 (5e–309)

0.51 (9e–91)

–0.19 (2e–12)

0.45 (2e–67)

0.3 (1e–30)

0.57 (3e–117)

0.31 (7e–32)

0.24 (2e–19)

–0.42 (4e–60)

0.11 (2e–05)

–0.41 (1e–56)

–0.54 (1e–104)

–0.5 (3e–85)

–0.27 (3e–23)

–0.77 (9.9e–262)

–0.14 (5e–07)

–0.034 (0.2)

0.073 (0.007)

–0.84 (0)

–0.46 (1e–72)

0.47 (2e–76)

0.2 (5e–14)

0.081 (0.003)

–0.49 (3e–84)

0.2 (4e–14)

0.23 (2e–17)

0.73 (2e–225)

0.67 (2e–175)

0.28 (2e–26)

–0.24 (9e–19)

1.0

0.5

0.0

−0.5

−1.0

1.0

0.5

0.0

−0.5

−1.0

1 1

2

2
3 3

4
45 56

6
7

78
89 910 10

Scale independence Scale independence

0.8

0.6

0.4

0.2

0.95

0.90

0.85

0.80

0.75

0.70

0.65

S
ca

le
 fr

ee
 to

po
lo

gy
 m

od
el

 fi
t, 

si
gn

ed
 R

2

S
ca

le
 fr

ee
 to

po
lo

gy
 m

od
el

 fi
t, 

si
gn

ed
 R

2B

D

F

A

C

E

Figure 2 WGCNA identification of cancer-related RNA modules. Graphs of soft-threshold power versus scale-free topology model fit 
index and mean connectivity. Five and three were chosen as the appropriate soft-power for (A) mRNAs and (B) lncRNAs, respectively. 
Cluster dendrogram of the coexpression network modules created according to the dissimilarity of the topological overlap in the selected (C) 
mRNAs and (D) lncRNAs. Analysis of the relationships of the (E) mRNA and (F) lncRNA modules and traits between the breast cancer and 
normal tissues. For mRNAs, the blue module was the most tumor-specific module. For lncRNAs, the magenta and brown modules were the 
most tumor-specific modules. ME, module-trait relationships; WGCNA, weighted gene coexpression network analysis; mRNA, messenger 
RNA; lncRNA, long non-coding RNA.
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Figure 3 Identification of DERNAs and functional enrichment analysis for common mRNAs in breast cancer. The Venn plot of the 
overlapped (A) mRNAs, (B) lncRNAs, and (C) miRNAs according to the “DESeq2”, “edgeR”, and “limma” packages in R. The orange areas 
were derived from the “edgeR” result, the green areas were derived from the “DESeq2” result, and the blue areas were derived from the 
“limma” result. (D) The distribution of significantly enriched GO terms. (E) KEGG pathways enriched from common mRNAs. mRNA, 
messenger RNA; lncRNA, long non-coding RNA; miRNA, microRNA; ATPase, adenosine triphosphatases; BP, biological process; CC, 
cellular component; MF, molecular function; DERNAs, differentially expressed RNAs; GO, Gene Ontology.

correlation tests on the predicted mRNAs and lncRNAs. 
Finally, 9 lncRNA nodes, 110 mRNA nodes, 26 miRNA 
nodes, and 416 edges were preserved in our network (Figure 4).

Prognostic risk model construction

Based on the training set, we first used multivariable Cox 
regression analysis on all 770 interactions among the 
lncRNAs, miRNAs, and mRNAs in the ceRNA network 
and obtained three RNAs (HMGB3, HOTAIR, and miR-
130a-3p) as potential prognostic biomarkers for patients 

with breast cancer. Afterward, we selected the three RNAs 
to construct a risk factor prediction model, with the risk 
scores of the individual samples being calculated with the 
following formula: risk score = (0.297 × expression value of 
HMGB3) + (0.076 × expression value of HOTAIR) + (−0.135 
× expression value of miR-130a-3p). Next, the boxplot 
and Kaplan-Meier plot for the three RNAs showed that 
HMGB3 and HOTAIR were upregulated and associated 
with poor prognosis (Figure 5A,5B), while miR-130a-3p 
was downregulated and associated with good prognosis  
(Figure 5C). The hazard ratios (HRs) for the integrated 
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Figure 4 Construction of a ceRNA network including 9 lncRNAs, 110 mRNAs, and 26 miRNAs. The blue spots represent the lncRNAs. 
The yellow spots represent the miRNAs. The pink spots represent the mRNAs. ceRNA, competing endogenous RNA; lncRNA, long non-
coding RNA; mRNA, messenger RNA; miRNA, microRNA.

3-RNA model are shown in Figure 5D. The HR results 
showed that HMGB3 (HR =1.3462) and HOTAIR (HR 
=1.0786) were hazardous factors, while miR-130a-3p (HR 
=0.8736) was a protective one. The value of the C-index 
was 0.722 [95% confidence interval (CI): 0.632–0.812], 
indicating that the HOTAIR-miR-130a-3p-HMGB3 model 
may be effective biomarker in the prognosis of breast 
cancer.

Assessment of the prognostic risk model in the training and 
validation sets

In order to prove the robustness of the prognosis model for 
patients with breast cancer, we created Kaplan-Meier curves 
of OS in the training set. It was found that the median 
cutoff risk score could best differentiate between the low-
risk and high-risk groups, and the two groups were thus 
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Figure 5 Construction of a prognostic risk model by means of multivariable Cox regression. (A) The expression level and Kaplan-Meier 
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categorized. Kaplan-Meier analysis showed that the high-
risk (n=268) patients differed significantly from low-risk 
patients (n=268), in that the high-risk group tended to have 
a lower OS rate (log-rank test, P value =0.0065; Figure 6A). 
The risk score panel demonstrated the risk stratification, 
survival information, and expression values of the three 
RNAs in the training set. It was observed that patients in 
the high-risk group had the overexpression of HMGB3 
and HOTAIR and the under expression of miR-130a-3p  
(Figure 6B). The prognostic ability of the 3-RNA prediction 
model was assessed by calculating the area under the 
ROC curve (AUC); a higher AUC indicated the better 
performance of the model. The 3- and 5-year survival 
AUCs of the three RNA biomarkers in the training set were 
0.686 and 0.653, respectively, indicating a good sensitivity 
and specificity of the prediction model (Figure 6C). The 

validation set also showed distinctive differences between 
the high-risk group and low-risk group, including survival 
curves (Figure 6D), the risk score panel (Figure 6E), and the 
time-ROC curve (Figure 6F). As expected, the results in 
the validation set were consistent with those in the training 
set, indicating the robustness of the 3-RNA prognostic risk 
model.

Investigation of RNA expression and DNA methylation 
level for the HOTAIR-miR-130a-3p-HMGB3 axis

To verify the expression of the HOTAIR-miR-130a-3p-
HMGB3 axis in breast cancer, we downloaded two GEO 
data sets and found both HOTAIR and HMGB3 were 
upregulated while miR-130a-3p was downregulated, 
indicating consistency with our previous result (43). 
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Next, for the 3 RNAs, we drew boxplots of the global 
expression in 22 other TCGA cancer types. This revealed 
that the expression pattern of the HOTAIR-miR-130a-3p-
HMGB3 axis in invasive breast carcinoma (BRCA) also 
occurred in kidney renal papillary cell carcinoma (KIRP)  
(Figure S1). According to the mutation analysis result, only 
3 in 1,098 patients had the HMGB3 somatic mutation, so 
we excluded the assumption that a somatic mutation directly 
leads to the expression changes of RNA. In addition, we 
investigated the DNA methylation level of HMGB3 and 
HOTAIR, which contained 16 and 37 valid CpG sites 
according to the Illumina Human DNA Methylation 450K 
microarray, respectively. The DNA methylation result 
demonstrated that 11 cytosine-phosphate-guanine (CpG) 
sites for HMGB3 and 4 CpG sites for HOTAIR were 
significantly hypomethylated (Figure S2A), and they were 
negatively correlated with RNA expression (Figure S2B), 
indicating that the upregulation of HMGB3 and HOTAIR 
expression in our prognostic risk model may be attributable 
to hypomethylation.

Discussion

As one of the most common malignancies in the world, 
breast cancer has a poorer prognosis and a higher rate of 
distant metastasis compared with other cancer types. Due 
to a lack of effective therapeutic targets and biomarkers, 
the OS rate of breast cancer patients remains low. Thus, 
we endeavored to locate novel markers to help the early 
screening and prognosis of breast cancer.

Recently, a growing number of ceRNA network studies 
exploring the process of diseases, particularly on human 
tumors, have been conducted. The ceRNA hypothesis 
proposes that in order to compete for shared miRNAs, 
lncRNAs can bind with the miRNAs like a “sponge”, and 
thus indirectly regulate the downstream target genes of 
miRNAs (13). The RoR-miR-145-ARF6 axis was found to 
be one of the more important ceRNA networks related to 
triple-negative breast cancer (TNBC) by Eades et al., and 
it contributes to tumor invasion and metastasis through 
disrupting cell-cell adhesion (44). The lncRNA TINCR 
was shown to modulate oncogenic KLF4 expression via 
competing with miR-7 and thus promoting the formation 
and progression of breast cancer (45). An oncogenic 
lncRNA, PTENP1, was found to upregulate p53 and 
PTEN via interacting with miR-19b and to downregulate 
p-AKT (46). Chou et al. found that like a sponge of miR-
1, MALAT1 regulated the expression of its target gene 

CDC42 and reduced the migration and invasion of breast 
cancer cells (47). Peng et al. demonstrated that for patients 
with metastasized breast cancer tumors and poor OS, H19, 
and LIN28 were remarkably overexpressed both in vivo and  
in vitro (48).

DNA methylation modification is a hot research topic 
in epigenetics. It is involved in regulating gene expression, 
gene silencing, DNA damage repair, and cancer, and other 
important BPs, gene methylation is mainly in the areas rich 
in GC base sequence of the CpG, gene under the action 
of the corresponding methylation transferase regulate the 
expression of cancer gene, oncogene and DNA damage 
repair, etc. (49).

In order to explore the potential biomarkers linked with 
breast cancer, WGCNA, the integrated bioinformatics 
method, was used to identify the modules related with 
tumor, including 1 lncRNA/mRNA module (blue) and 2 
miRNA modules (brown and magenta). Following this, 
depending on the lncRNA-miRNA-mRNA interactions, 
we built a ceRNA network and found that, among the 9 
lncRNAs, 110 mRNAs, and 26 miRNAs, the HOTAIR-miR-
130a-3p-HMGB3 axis might be the potential prognostic 
biomarker for patients with breast cancer.

HOTAIR, localized in chromosome 12, interacts with 
polycomb repressive complex 2 (PRC2) to reprogram 
the chromatin state and induce cancer metastasis (50,51). 
Studies have demonstrated that there is a close correlation 
between HOTAIR and EZH2 expression levels in breast 
tumor tissues and that a higher HOTAIR level is associated 
with worse prognosis (52,53). In relevant research of breast 
cancer, Xue et al. found that HOTAIR accumulated in nuclei 
and its expression was increased in tamoxifen-resistant 
breast tumor cells compared to primary, hormone-naive 
tumor cells (54). Additionally, HOTAIR was shown to be 
able to sequester miR-206 at the posttranscription level, 
thus increasing Bcl-2-like protein 2 (Bcl-w) expression and 
ultimately promoting the growth of breast tumor (55).

Previous studies have shown that miR-130a-3p is 
directly involved in the development of chemoresistance 
(56,57), and its abnormal expression was linked to a 
variety of tumors. In patients with esophageal squamous 
cell carcinoma, both up- and downregulation of miR-
130a-3p significantly increased the sensitivity toward  
chemotherapy (58). According to the report by Wang  
et al., miR-130a-3p suppressed cell migration and invasion 
in gastric carcinoma by directly targeting and decreasing 
TBL1XR1 and the subsequent epithelial-mesenchymal 
transition process (59). A relevant study showed that the 

https://cdn.amegroups.cn/static/public/TCR-23-313-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-313-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-313-Supplementary.pdf
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overexpression of miR-130a-3p in breast cancer stem cells 
inhibited cellular proliferation, migration, and invasion, 
while the silencing of miR-130a-3p had the opposite effects. 
Furthermore, miR-130a-3p was associated with lymph node 
metastasis and advanced TNM stage (60).

HMGB3, also known as HMG2a, belongs to the family 
of chromatin-binding proteins and is categorized into the 
HMGB subfamily with HMGB1 and HMGB2 (61). It was 
reported that HMGB3 is involved in the progression of 
certain cancers, including gastric cancer, prostate cancer, 
hepatocarcinogenesis, and non-small cell lung cancer 
(62-65). A recent study showed that the high expression 
of HMGB3 was associated with the proliferation and 
mammosphere formation of breast tumor cells, with HMGB3 
acting as an oncogene to regulate drug resistance (66,67).

Although it has been established that these RNAs 
are essential in many BPs, little is known about the 
mechanistic interactions among HOTAIR, miR-130a-3p, 
and HMGB3. Hu et al. found that miR-130a-3p could take 
part in a HOTAIR-addressed mechanism in hepatocellular 
carcinoma (68). He et al. found that HOTAIR promotes 
the proliferation and invasion/metastasis of breast cancer 
cells by targeting the miR-130a-3p/Suv39H1 axis (69). 
According to the PubMed database, records about the 
interaction of HMGB3 and miR-130a-3p in cancer are not 
available. We speculate that LncRNA HOTAIR promotes 
the proliferation and invasion/metastasis of breast cancer 
(BC) cells by targeting the miR-130a-3p-HMGB3 axis. 
The greatest advantage of the prognostic risk model 
in this study is that this is the first study to identify, via 
public databases and modeling, the HOTAIR-miR-130a-
3p-HMGB3 axis as a prognosis-related biomarker. This 
axis may be a potential prognostic biomarker, providing a 
new research direction for the prognosis research of breast 
cancer. At the same time, the model in this study can also 
be used as a reference for screening other tumor prognostic 
biomarkers. Compared with many previous ceRNA studies, 
we conducted further studies in geographic data sets and 
TCGA pan-cancer cohort, and verified the up-regulation 
of HOTAIR and HMGB3 and the down-regulation of miR-
130a-3p. In addition, we hypothesized that hypomethylation 
might up-regulate the expression of HOTAIR and HMGB3.

Unavoidably, some limitations are present in our work. 
The biggest problem is the lack of experimental verification 
in vivo and in vitro. Furthermore, the molecular mechanism 
underlying the upregulated expression of HOTAIR 
and HMGB3 was not fully accessed. In the subsequent 
experiment, we should further explore and verify the 

expression of selected prognostic markers in cancer and 
its predictive role on survival and prognosis of patients by 
combining with immunohistochemistry, Western blot, cell 
function and other tests. To validate the findings of our 
study, we propose to use both in vitro and in vivo models. 
In vitro, we plan to use cell culture systems, including 
both gain-of-function and loss-of-function experiments, to 
investigate the effect of HOTAIR-miR-130a-3p-HMGB3 
axis on cell proliferation, migration, invasion, and apoptosis. 
Specifically, we will use techniques such as transfection of 
siRNA, plasmid DNA, and lentivirus vectors to knockdown 
or overexpress HOTAIR, miR-130a-3p, and HMGB3 in 
cell lines. We will then assess the phenotypic changes by 
performing assays such as cell viability, colony formation, 
wound healing, transwell invasion, and flow cytometry.  
In vivo, we plan to use established human cancer cell lines 
that represent the type of cancer we studied in our research. 
We will knockdown or overexpress the genes of interest in 
these cells and then inject them into immunodeficient mice. 
We will monitor tumor growth over time, measure tumor 
volume, and perform histological and immunohistochemical 
analyses to assess the effects of the HOTAIR-miR-130a-3p-
HMGB3 axis on tumorigenesis. This may provide candidate 
targets for the treatment of breast cancer patients, thereby 
reducing the mortality rate and improving the prognosis of 
patients.

Conclusions

A breast cancer-specific ceRNA regulatory network was 
built using bioinformatics analysis. Our research identified 
a prognostic risk model with the HOTAIR-miR-130a-
3p-HMGB3 axis that may serve as a reliable prognostic 
biomarker for patients with breast cancer. Further 
experimental studies are needed to confirm the underlying 
biological regulatory mechanism in the future.
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