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On the morphology of electrostatic 
solitary waves in the Earth’s aurora
Steffy Sara Varghese1,2*, Kuldeep Singh2 & Ioannis Kourakis1,2

Electrostatic solitary waves (ESWs) have been detected in abundance in Space plasma observations, 
both by satellites in near-Earth plasma environments as well as by planetary missions, e.g. Cassini 
in Saturn or MAVEN in Mars. In their usual form, these are manifested as a bipolar electric field 
corresponding to a bell-shaped pulse in the electrostatic potential. Recent studies have suggested the 
existence of alternative forms of ESWs, including flat-top solitary waves (FTSWs) and supersolitary 
waves (SSWs), both of which are often encountered in Space observations such as in polar cap 
boundary layer, the auroral acceleration region and elsewhere. This article focuses on the existence 
and characterization of different types of electrostatic solitary waves in multicomponent Space 
plasmas. Relying on a multi-fluid plasma model, comprising two types of ions and two different 
electron populations, we have identified the conditions for existence of flat-top solitary waves and 
supersolitons, in contrast to “standard" solitary waves. Both ion species are models as cold fluids, 
for simplicity. Our analysis reveals that the coexistence of the two electron populations is pivotal for 
the formation of such non-standard electrostatic structures, and that their characteristic parameters 
(temperature, density ratio) plays a decisive role in their generation and structural characteristics. 
Nonetheless, while supersolitary waves may exist in a wide range of parameter values (as confirmed 
by earlier theoretical studies), it appears that flat-top solitary waves will occur in a narrow window in 
the parameter region, which may explain their scarce (but non-negligible) frequency of observation. 
Our theoretical findings confirm and validate the existence of alternative (non-conventional) ESW 
waveforms in auroral plasma (in addition to the ubiquitous bipolar electric field form), where such an 
electron coexistence is typically observed.

Electrostatic Solitary Waves (ESWs) are an ubiquitous occurrence in the Earth’s magnetosphere, and ana-
lytical methodology adapted from coherent nonlinear localized structures have proven invaluable in their 
 interpretation1–4. These are often interpreted as solitons, i.e. exact solutions of integrable nonlinear partial dif-
ferential equations (PDEs) that are characterized by remarkable stability properties, in that they sustain their 
profile against mutual interactions and external  perturbations5. Since an exact mathematical description of 
such localized waveforms cannot be developed, given the complexity of physical mechanisms in play, these are 
usually referred to as solitary waves. (The two terms may be interchangeably used in this paper, even though we 
refer to structures whose integrability properties have not been established, and are therefore not necessarily 
solitons, in the strict sense). ESWs are associated with localized coherent structures in the electric (E-) field data 
recorded by the satellites in the Earth’s magnetosphere. Once integrated, these E-field excitations are shown to 
be related to localized waveforms (typically, pulses) in the electrostatic (ES) potential, in turn associated with 
(co-propagating) localized density disturbances.

Although weak amplitude excitations are adequately modeled by nonlinear  PDEs6, and those prediction have 
been corroborated by experimental  studies7, the obtained solutions have their physical limitations; in particular, 
those theories predict only structures propagating slightly above the plasma sound speed, thus failing to account 
for larger amplitude super-acoustic solitary waves. The latter are modeled by the (so called Sagdeev-type) pseudo-
potential  technique8, which not only succeeds in predicting the stationary profile of the plasma variables (local-
ized disturbances), but also enables a study of the existence conditions for such structures, from first  principles9,10.

Less than a decade ago, the pseudopotential technique for large-amplitude electrostatic solitary waves received 
new impetus, thanks to the prediction of non-conventional waveforms (e.g. super-solitary waves, also known 
as "supersolitons") that has reignited interest in the subject. The supersoliton concept was proposed by Dubinov 
and  Kolotkov11, while studying solitary waves in multicomponent plasma configurations. They found that, under 
certain conditions, the “Sagdeev" pseudopotential form can support three consecutive local extrema, causing 
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wiggles or knee-like structures (bumps) superposed on the (usually smooth, monotonic on each side) potential 
profiles of the corresponding solutions (obtained numerically). This results in the creation of additional extrema 
in the bipolar electric field forms. Shortly after the first prediction of supersolitons in a five species plasma, 
Verheest et al.12 showed that such forms also occur in plasmas with as few as three species. In the years that 
followed, various theoretical and numerical studies were carried out to understand the fundamental proper-
ties of super-solitary waves in different plasma  systems12–30 and, interestingly, these were eventually detected in 
numerical  experiments31.

Although the concept of FTSW is by now established in the field of non-linear optics and  photonics32,33, it 
has been less explored in plasma physics. Interestingly, FTSW have been obtained as a special solution of the 
extended Korteweg–de Vries (eKdV) (or Gardner)  equation34. Various kinds of extra-nonlinear localized forms 
were discussed by Steffy and  Ghosh35, who emphasized how their morphology differs from conventional solitary 
wave and double layer structures. One such non-conventional nonlinear structure, the flat-top solitary wave 
(FTSW), is characterized by a square (table-top like) shaped potential profile. Interestingly, this possibility had 
been discussed in passing in an earlier series of papers by Hellberg et al and by Verheest et al, where the bound-
ary separating supersolitons from regular solitary waves was shown to be associated with a triple root of the 
pseudopotential; see e.g. Ref.21 (Figures 2 and 3 therein),18 (see Figure 7 therein)  or12 (see Fig. 4 therein). More 
recently, Verheest et al.36, investigated the possibility for the existence of FTSW in a multi-component plasma 
model consisting of hot electrons, nonthermal (Cairns-distributed) positive ions, and cold, negatively charged 
dust grains. In their analysis they have reported FTSW structures as dependent on parameter values in a very 
sensitive way, casting some doubt on whether they may be observed at all (given the subtle dependence on the 
plasma background properties).

In the Earth’s auroral zone, apart from the admixing of hot magnetospheric electrons with a cold component 
originating from the ionosphere, plasma has been found to have a significant contribution of oxygen (O+ ) ions 
along with its usual proton (H+ ) population. There have been various satellite observations of electrostatic solitary 
waves in this  region37–40. It is interesting to consider how these solitary wave pulses function in contributing to 
energy transfer and exchange between particles, as well as how they promote anomalous resistivity. Apart from 
conventional bipolar pulses, satellite observations have detected the presence of stretched and asymmetric bipolar 
pulses within this  region4. For a stretched bipolar pulse, the distance between the successive peaks is relatively 
large compared to the characteristic width of each peak. Because of their "stretched" look, such bipolar pulses 
are often termed as "stretched bipolar" or "dispersed bipolar", or "offset bipolar pulses" (ofbp) in the literature. 
Inspired by these observations, we have developed a two-fluid model to investigate the occurrence of flat-top 
solitons and supersolitary waves in auroral plasma, from first principles. Inspired by the coexistence of ions that 
has been observed e.g. in the auroral acceleration  region37, we have adopted a two-fluid model. For simplicity 
in the analysis, both ions will be modeled as cold fluids (an assumption to be relaxed in future work). A coexist-
ence of two electron populations at thermal equilibrium (say, ‘cold’ and ‘hot’ electrons) is incorporated in the 
model. We are interested at this stage in exploring the very basic mechanism(s) contributing to the formation 
of such “exotic" solitary wave structures. An investigation of the conditions for the existence of such structures 
will reveal that the coexistence of the two electron populations is a crucial requirement for the formation of these 
structures, while their characteristics (relative temperature and concentration ratios) play a deterministic role 
in the generation of flat-top solitary waves (FTSWs).

The model
We have considered an infinite, homogeneous, collisionless, unmagnetized plasma comprising of two types of 
(positively charged) ions, in addition to two electron populations at thermal equilibrium (but with different 
temperature). Both of the electron components obey a Maxwell-Boltzmann distribution, while the ions are 
modeled as cold fluids. The ion fluid equations read 

 where the subscript ′i′ ) is for ‘ions’, i.e. ′ij′ denotes either the lighter ions (j = 1) or the heavier ion component 
(j = 2). (Certainly, this mass distinction is arbitrary, and will play no role, really, as expected. Let us just keep in 
mind that ions 1 are e.g. hydrogen ions, while ions 2 may be either helium or oxygen ions, for instance.) Accord-
ingly, nij denotes the number density of the corresponding (j-th) ion species, uij the corresponding fluid speed, zij 
the charge multiplicity (state) of ion species 1 or 2, e the elementary (electron) charge, and φ is the electrostatic 
potential. In the above equation, the prime ( ′  ) represents the physical state variables, to be distinguished from 
their normalized counterparts (where primes will be dropped) later, upon rescaling by suitable physical quanti-
ties (scales) The electron density for the two electron populations, distinguished by the subscripts ‘c’ (for cold) 
and ‘h’ (for hot) are: 
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 where nec0 and neh0 denote the corresponding equilibrium densities, and Tec and Teh are their corresponding 
temperature(s) ( KB obviously denotes Boltzmann’s constant). The system of equations is closed by Poisson’s 
equation

For the sake of analytical convenience, we shall now normalize Eqs. (1)–(3) by scaling over appropriate plasma 
quantities. The ion number densities n′ij are scaled by the corresponding equilibrium densities ( nij0 , respectively, 
for j = 1, 2 ). The electron densities n′ec and n′eh are scaled by the (total) equilibrium electron density 
(ne0) = nec0 + neh0 . The ion fluid speed(s) u′i,j will be scaled by the characteristic speed (scale) ci1 =

√

zi1KBT∗
mi1

 . 

Time (t′) will be scaled by the (light ion) plasma frequency ωpi1 =

√

ni10(zi1e)2

ε0mi1
 . Length (x’) will be scaled by the 

characteristic length �∗ =

√

ε0KBT∗
ni10zi1e2

 . Finally, the ES potential (φ′) will be scaled by KBT∗
e  . It is obvious that we 

have chosen the first type of ions (the “light" ions) as point of reference, i.e. choosing to scale time by the (ion-1) 
plasma period (inverse plasma frequency), length by what would be the Debye screening length (in the absence 
of ions-2) and, finally, the fluid speed variables by what would be (but is not, in our case) the sound speed, in the 
absence of the second (“heavy") ion population. In other words, upon switching off the second ion fluid (i.e. 
setting ni20 = 0 ), one readily recovers a classical textbook electron-ion plasma and its well known properties.

Imposing the above normalizations, we obtain a set of dimensionless fluid equations for the ion species in 
the form 

 where we have defined the charge and mass ratios:

Similarly the normalized electron densities are written in a dimensionless form as 

 where

Finally, the (normalized) form of Poisson’s equation reads

Linear dispersion relation
Let us recover dimensions for a moment. By linearizing the original fluid equations Eqs. (1)–(3) and assuming 
harmonic excitations ∼ exp[i(kx − ωt)] for all state variables, we obtain a linear dispersion relation in the form
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where ω2
peff = ω2

pi1 + ω2
pi2 and K−1

Deff = �Deff =

(

e2

ε0

(

nec0
KBTec

+
neh0
KBTeh

))−1/2

 is the effective (Debye) screening 
length in our plasma model. From Eq. (7), the acoustic speed in our multicomponent plasma model ( Cs ) can be 
obtained as

In Eq. (8), if one sets δ = 0 (single ion limit), then

which corresponds to the acoustic speed of a two electron temperature-single ion plasma  system41,42. If, further-
more, one sets ζ = 0 (thus eliminating the cold electron component), then Eq. (8) becomes

thus recovering the known expression for the acoustic (sound) speed in electron-ion plasma.

Nonlinear analysis
Anticipating stationary profile solutions, the fluid equations will be expressed in a reference frame by applying 
the transformation from {x, t} to η = x − Vt , where V is the velocity of the solitary wave (i.e. the pulse speed 
vpulse , scaled by ci1 =

√

zi,1KBT∗
mi,1

 , as shown above). Note, for the sake of rigor, that the variable V is not the “Mach" 
number, as often (erroneously) stated in various works. Actually, the true Mach number in our case would be 
M = vpulse/Cs = V

(

1+δQ2/µ
1+Qδ

)−1/2
.

By adopting vanishing boundary conditions for the density and fluid speed disturbance, viz. uij → 0 , nij → 1 
and � → 0 as |x| → ∞ , one finds the perturbed densities for the two ion species ( j = 1, 2 ) as 

 and the corresponding fluid speed(s) as, 

Substituting with the definition of the characteristic temperature T∗ in Eq. (5), the number densities of the 
cold and hot electron populations can be rewritten as 

 where  β = Tec/Teh is the cold-to-hot electron temperature ratio.
Substituting into Poisson’s equation now leads to

which, upon integration, leads to the pseudo-energy balance relation

The pseudopotential function S(�,V) , obtained upon integrating Poisson’s equation (14), reads
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Note that the pseudopotential S(�,V) is a function of the (dimensionless) electrostatic potential � and of 
the pulse speed V, for a given plasma configuration (i.e. for fixed values of all other parameters). It is straightfor-
ward to distinguish the contribution from the cold and the hot electrons (first and second term/s, within square 
brackets), followed by the first (light) and the second (heavy) ion component.

Conditions for existence of localized modes
In order to obtain the existence of a solitary wave solution, to be obtained upon numerical integration of either 
the pseudo-equation of motion (Eq. 14), or the energy balance Eq. (15), the potential form S(�)  (Eq. 16) must 
satisfy the following requirements:

ensuring that a local maximum exists at the origin ( � = S(�,V) = 0 ), that represents equilibrium. Furthermore, 
a (non-zero) root is assumed to exist, i.e. (S(�0,V) = 0) for some value � = �0 , where the curve crosses the 
horizontal axis. Since all variables are real, Eq. (15) implies that S(�) < 0 for 0 < � < �0 , hence the root �0 
represents the amplitude of the solitary wave. In other words, the dynamics will "visit" (only) the region between 
the origin and the first root �0.

Note, for comparison, that in the case of a double layer (DL), i.e. a “kink-soliton", representing a localized 
transition between two different asymptotic values, there is no returning to the equilibrium state. The latter 
requirement is then modified as follows:

where �DL is the DL amplitude and �nDL is the charge separation at the double root �DL (where S(�DL,V) = 0).
In the case of a flat-top solitary wave (FTSW), the root is a triple root, and the latter requirement becomes

where ε and ϑ are small positive (real)  numbers35. In practice, the first and second derivatives of the pseudo-
potential function S(φ,V) must vanish (or have a negligible value) at the root (of S), identifying this point as a 
triple root  structure24.

Supersolitons (or supersolitary waves, SSW) are associated with Sagdeev pseudopotential function forms 
that possess three consecutive local extrema. Hence, for a SSW to occur, the Sagdeev pseudopotential S(φ) must 
have a suitable analytical form, such that ∂S

∂�
 and ∂

2S
∂�2 possess 4 and 3 roots, respectively, between the origin and 

its main root where it crosses the φ axis (note that one of these requirements entails the other, since S(φ) and its 
derivatives are continuous differentiable functions)12,13,20,43.

Results and discussion
Nonlinear coherent structures, such as solitary waves and Double Layers (DLs), have been analyzed in various 
studies in the past. For a review of the generic form of the pseudopotential curve and the associated dynamics, 
the reader is referred  to9. On the other hand, non-conventional structures such as e,g, FTSWs have not been 
paid the attention they deserve. In an earlier study, Steffy and  Ghosh35 suggested a link between FTSWs and 
supersolitary waves (SSWs) in a multi-species plasma consisting of warm ions and electrons. Verheest et al.36 
followed by investigating FTSW solutions in a dusty plasma system contains three species hot electrons, Cairns 
non-thermal positive ions, and cold, negatively charged dust grains. Contrary to those earlier works, where ions 
were modeled as warm fluids, we want to focus our attention here on establishing the basic plasma requirements 
for the existence of FTSW. In simple words, we wish to check whether ion temperature in an significant parameter 
in the occurrence of FTSW in a multi-species plasma.

In the parametric analysis that follows, we are modelling the signatures of bipolar and stretched bipolar par-
allel electric field pulses observed in the auroral acceleration region a plasma comprising hydrogen ( H+ ) and 
(singly ionized) oxygen ( O+ ) ions. In the auroral acceleration region the plasma has been found to contain a 
significant contribution of O+ ions along with its usual proton ( H+ ) population. Moreover, there is an admixing 
of hot energetic electrons originating from the plasma sheet, cold electrons which are assumed to be produced 
by the ionospheric back scattering or turbulent scattering of plasma sheet  electrons44. In this region the Lang-
muir probe measurements of the S3-3 satellite  confirmed45 that the ambient density in this region is of the order 
of n0 = 5–50cm−3 . For our analysis we have chosen an electron density n0 = 10 cm3 , and assumed a very low 
concentration of cold electron (viz., 0.001% of n0 ), leading to ζ = 0.0001 in our parametrization. In this region, 
protons are considered to be the dominant species, while the concentration of O+ will be variable depending on 
the geomagnetic  activity37. Hence, in the analysis, we have assumed a small presence of O+ ions ( 0.01% of n0 ) 
and a dominant concentration of H+ of 99.99% , leading to δ = 0.01 , in our notation. Since both ions are singly 
charged we shall therefore take the ion charge state(s) to be zi,1 = zi,2 = 1 and the mass ratio equal to µ = 16.
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Topology of the pseudopotential curve. In this section, we shall focus on selected combinations of val-
ues for the plasma configuration parameters, to illustrate the point(s) we want to make, regarding the existence 
of pulses of various types and the possible transition between one type and another.

To begin with, in Fig. 1 we have plotted a set of solutions supported by the plasma configuration under con-
sideration, for a cold-to-hot electron temperature ratio β = 0.06439 . For the entire set of curves shown in that 
plot (varying the pulse speed V), we have kept the remaining plasma parameters constant: cold electron density 
ζ = 0.0001 and (2nd to 1st) ion species density ratio δ = 0.01 . Recall that the amplitude of the solitary structure 
(pulse) is given by the root of the pseudopotential S(φ) , which actually increases as V increases (so that stronger 
excitations will be faster too). In Fig. 1, the leftmost curve (I) ( V = 1.15 ) corresponds to a regular solitary wave 
(RSW), whereas the middle curve (II) ( V = 1.17077242 ) represents a flat-top solitary wave (FTSW) and curve 
III ( V = 1.172 ) represents a supersolitary wave (SSW). Comparing the respective profiles obtained in the differ-
ent plots, we note that a FTSW (curve II) is associated with a pseudopotential curve that crosses the horizontal 
axis almost at “grazing incidence" (i.e. the derivative at the root is almost zero). In the case of a SSW—curve 
(III)—the Sagdeev pseudopotential posseses two additional extrema (a local maximum and a local minimum) 
in addition to the expected two extrema featured by all curves. As shown in Fig. 1, even a marginal increment 
in the pulse speed value beyond V ≃ 1.171 (where the flat-top curve shape occurs) leads to a significant change 
in the topology of the pseudopotential S(�) curve.

In Fig. 2 we have plotted the phase portrait profiles corresponding to the three curves depicted in the first 
figure. The same notation (curve labels) and color code have been used, for quick reference. We notice the 
structural difference between the leftmost “conventional" solitary wave profile (curve (I)) and the characteristic 
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Figure 1.  Sagdeev pseudopotential profiles for different V values; the depicted curves represent (I) RSW (in 
green color) for V = 1.15 , (II) FTSW (in red color) for V = 1.17077242 , and (III) SSW (in blue color) for 
V = 1.172 . The remaining parameter values are: β = 0.06439 , ζ = 0.0001 , δ = 0.01 , µ = 16 , and Q = 1.
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for V = 1.15 , (II) FTSW (in red color), for V = 1.17077242 , and (III) SSW (in blue color), for V = 1.172 . The 
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wiggly structure associated with supersolitons (SSW, curve (III)). As for the middle curve (II), notice the char-
acteristic way it approaches the horizontal axis, which may be considered as the signature of flat-top solitary 
waves. It appears that the FTSW condition separates the regions where regular SW occur from the region where 
SSW may exist.

In order to gain some insight in the underlying physics and how the curves depicted in Fig. 1 are associated 
with various observable waveforms, we have plotted in Fig. 3 the electrostatic (ES) potential (pulse) obtained 
numerically from each curve. Fig. 3a represents the potential profile corresponds to regular solitary wave (RSW) 
(curve I), while Fig. 3b,d corresponds to FTSW, and SSW, respectively. In Fig. 3c we have plotted the ES potential 
profile which corresponds to the solitary wave solution obtained for a value of the velocity V ( V = 1.1707725 ) 
only slightly above the value of curve (II) ( = 1.17077242 ). Figure. 3a shows the usual bell-shaped potential profile 
of an electrostatic solitary wave, while Fig. 3d shows an supersolitary wave (SSW), possessing a characteristic 
distorted bell-shape form. Figure 3b,c show a flat top profile corresponding to flat-top solitary waves (FTSW). 
Although both potential profiles look similar, they differ in the width of the bell curve: one sees that the width 
of profile (b) passes from a half width of 85.97 down to 20.53 (in dimensionless space units) only, even though 
the velocity increment does not exceed 10−7 , i.e., 0.00001%. The flat-top soliton topology is very sensitive to 
variations in the pulse speed, so that the slightest increment in V results in a large variation in the width of the 
potential profile and subsequent loss of the FTSW character, as the speed V increases further. This fact suggests 
that FTSW will solely exist in a well prescribed narrow range in parameters space. Inversely, in terms of diagnos-
tics, when these are observed, one may be able to deduce the plasma characteristics within some level of accuracy.

To complement Fig. 3a–d, we have plotted the corresponding electric ( E−)field profiles in Fig. 4a–d, respec-
tively, which derive from a RSW (Fig. 4a), FTSW (Fig. 4b,c) and SSW (Figs. 4d) configuration, respectively. (Note 
again that the same color code has been retained as in the previous figure, for quick reference). Note the difference 
between the bipolar form obtained from a RSW (top left panel) and the wiggly structure that is characteristic of 
a supersolitary wave (SSW) (bottom right panel)12. In the case of the FTSWs depicted in Fig. 4b,c, the distances 
between the two peaks are relatively large, compared to the characteristic width of the each peak—and also in 
relation with the standard bipolar forms that dominate space and laboratory observations. However, there is a 
significant difference between the two, in that the monopolar pulses are farther apart for smaller V. This reflects 
the topology of the Sagdeev pseudopotential in the vicinity of the root.

In order to understand how the state variables vary in the case of the flat-top (FTSW) solution, in Fig. 5a–h 
we have plotted the variation of ni1 , ni2 , nec , neh , ni (total), ne (total), ui1 , and ui2 , respectively, for the value of 
V = 1.17077242 corresponding to curve (II) in Fig. 1. All of the curves present a similar flat-top profile that can 
be henceforth thought of as characteristic of this particular type of electrostatic excitation.

Significance of the electron parameters. As shown by Ghosh and  Iyengar25, the coexistence of two 
electron populations (say, ‘cold’ and ‘hot’ electrons) and the associated electron parameters, such as the relative 
concentration ζ and temperature (ratio) β , play a decisive role in the existence of supersolitary waves. We have 
adopted a similar rationale and have investigated the dependence of the occurrence and characteristics of FTSW 
on the cold electron density and temperature.

To illustrate the significance of (the value of) ζ on various types of nonlinear structures, we have plotted in 
Fig. 6 the Sagdeev pseudopotential profile obtained for ζ = 0 (no ‘cold’ electrons) and for ζ = 0.0001 (i.e., just 
0.01 % cold electrons added to the mixture), for direct comparison. Upon comparing the two panels in Fig. 6, 

-50 0 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-20 -10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V=1.15 V=1.17077242

V=1.1707725 V=1.172

(a) (b)

(c) (d)
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we see that the simple fact of adding a minute concentration of cold electrons—and keeping all plasma param-
eters constant—leads to significant modification of the morphology of the entire solitary wave solution, even 
for the same value of the pulse speed (V). It is obvious for the indicative values of V considered in Fig. 6 that the 
plasma only sustains ordinary solitary waves for ζ = 0 , whereas for ζ = 0.0001 one obtains FTSW, and SSW for 
V ≈ 1.1708 and V = 1.172 , respectively.

We have considered different values of the electron temperature ratio ( β ), in an attempt to find out if the above 
trend (i.e., transition RSW–FTSW–SSW upon increasing V) is general or, say, if it happened coincidentally. In 
Fig. 7, we have plotted the Sagdeev pseudopotential curves obtained for β = 0.0644 , for different values of V 
(keeping all other plasma parameters constant, as in Fig. 1). In Fig. 7, the three curves (I, II and III) correspond 
to V = 1.169 , 1.170836 and 1.171, respectively. We notice that this succession of V values leads to regular pulses 
(RSW), flat-top pulses (FTSW) and supersolitons (SSW), respectively.
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Figure 5.  The space profile of the plasma state variables (density of all plasma components, fluid speed for the 
ion species at the bottom row) are depicted, corresponding to the FTSW profile shown in Fig. 1 (see Curve II), 
for V = 1.17077242 . The remaining parameter values are: β = 0.06439 , ζ = 0.0001 , δ = 0.01 , µ = 16 , and 
Q = 1.
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To acquire a better understanding of these structures, the corresponding electrostatic potential profile has 
been plotted in Fig. 8, for the same parameter values (and keeping the same color code) as in the curves appearing 
in the previous figure. The top left panel—Fig. 8a—represents a regular bell-shaped pulse (RSW), while Fig. 8b,c 
show a flat-top structure (FTSW). Unlike in Fig. 2 earlier, no major difference is witnessed in the pulse’s geo-
metrical features (e.g. half-width or height), comparing these two values, although the basic trend is still valid, 
as above: the faster pulse in Fig. 8c is still slightly narrower and taller though, as expected). Finally, the bottom 
right panel, i.e., Fig. 8d shows a slightly distorted pulse, characteristic of a supersolitary wave (SSW).

To complement Fig. 8, we have plotted the corresponding E-field profiles in Fig. 9 (for the four panels, 
respectively). Comparing panels Fig. 9b,c, we note that the flat-top profiles present a finite slope between the 
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two lobes of the electric field. This case is distinct from a pair of monopoles with opposite polarities, that was 
the case in Fig. 4b.

Comparing the ES potential and electric field profiles for β = 0.06439 and β = 0.0644 , we draw the conclu-
sion that a variation in β even as small as of the order of 10−4 , the variation in the dynamics of corresponding 
solitary solutions are quite significant.

To gain insight on the influence of β on the morphological transition witnessed e.g. in Fig. 10 (upon increasing 
V), we have evaluated the solitary wave characteristics for various values of β (keeping the value of V fixed). In 
Fig. 10, curves I, II and III correspond to a regular solitary wave (RSW), a flat-top SW (FTSW) and to a super-
solitary waves (SSW), respectively. From the analysis we can infer that, for a given pulse speed (V value), upon 
varying β one may obtain a similar looking morphological transition to that shown in Figs. 1 and 7. In Fig. 10, 
we see that as β increases, the SSW transforms to an RSWs; we also infer that, as β increases, the amplitude of 
the solitary wave (pulse) decreases. (In other words, recalling that β = Te,c/Te,h , we deduce that the larger the 
temperature disparity between the two electron populations, the larger the electrostatic potential pulse ampli-
tude will be.) To improve our understanding regarding the amplitude variation, in Fig. 11 we have plotted the 
amplitude (�0) variation with respect to β , by adopting the same (three) values of V as in Fig. 6. From Fig. 11, 
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we infer that lower values of β result in larger amplitude solitary wave structures, whereas for sufficiently large 
values of β , only ”conventional" solitary waves (bipolar E-fields) occur. Once a particular threshold in the value of 
β is exceeded, the amplitude jumps abruptly to a higher value, triggering the formation of SSWs (supersolitons). 
Either a double layer (DL) or a flat-top structure (FTSW) may lie on the boundary between regular solitary 
waves and SSWs. One draws the conclusion that a higher value of β (i.e. when the "cool" electrons are not "cool 
enough") rules out the occurrence of ”non-standard" solitary wave profiles.

To complete the discussion, in Fig. 12 we have plotted the potential profile corresponding to a slightly larger 
value of β ( = 0.066 ). We see that, as β increases beyond a certain value, the occurrence of FTSW is ruled out. It 
turns out, after a meticulous study of the pseudopotential topology (the relevant plots have been omitted here, 
for brevity), that the transition from a standard solitary wave to a SSW, upon increasing V that is, for large β , 
does not involve a FTSW profile. (In other words, the root remains a single root as a pair of new extrema starts 
developing, resulting in the occurrence of supersolitons.)

As we mentioned earlier, the electron temperature (ratio) plays a significant role in the morphological transi-
tion among different types of solitary structures, which in turn is reflected in the pulse profile width. In order to 
draw some conclusions or to identify a general quantitative trend regarding the pulse width, in Fig. 13 we have 
plotted the variation of width with respect to β for two different values of V. In Fig. 13, the red line corresponds to 
the width-β variation for V = 1.17077242 , whereas the blue line (with lower peak) corresponds to V = 1.172 . We 
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see that, for low β values, the width increases with V. After reaching a certain value, the width starts decreasing 
with β . The peak denotes the position where FTSW occur. The regime on the left hand side of the peak denotes 
the existence of SSWs, whereas the right hand side denotes the existence of SWs.

In a way analogous to Fig. 13, in Fig. 14 we have plotted the variation of width with respect to the pulse speed 
V, for two different values of β . We see that, for low V values the width increases with V; on the contrary, after 
a threshold is exceeded, the width starts decreasing with V. For β = 0.0644 (corresponding to the potential 
profiles depicted in Fig. 8), we notice a sharp peak (delimiting the region where FTSW will occur). No such 
peak occurs for β = 0.066 , hence no SSWs occur for that value; cf. the potential profiles represented in Fig. 12 
for that value of β.

In earlier work by Steffy and  Ghosh35, FTSW structures were obtained by considering the combined role 
of the ion temperature along with the electron temperature. However, from the present analysis, it is clearly 
understood that the electron temperature plays the crucial role in the dynamics of such extra-nonlinear coherent 
structures; on the other hand, the ion temperature may alter the dynamics and topology of these structures, but 
will otherwise not play a decisive role in determining the existence of such structures. A thorough analysis of 
the role of the ion temperature is currently underway and the results will be reported in a forthcoming article.
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Comparison with observational data
The signature of stretched bipolar pulses or ofbp has been observed in various Earth’s magnetospheric regions, 
such as the downward current regions of the auroral  zone46,47, the day side Polar Cap Boundary Layer (PCBL)2 
and the magnetic reconnection diffusion  region48 by different satellite missions, e.g. POLAR, FAST, and GEO-
TAIL. Our theoretical analysis presented above has indeed led to prediction of such "stretched bipolar pulses" 
(Fig. 9). In this regard, in order to validate our results with real space plasma observations, we have compared 
our theoretical estimations with observed data referring to stretched bipolar pulses, as reported by Mc Fadden 
et al.,4 in the auroral region.

Based on observational data, the plasma parameters in the auroral region may be obtained as follows: the 
electron temperature ranges from 0.5 to 5 eV, while the electron density ranges from 5 to 10 cm−31. In our 
model we have chosen: Tec = 0.5 eV and n0 = 10 cm−3 , in order to compute all relevant plasma scales, viz., the 
characteristic length �∗ = 6.54 m, the light ion acoustic speed Ci1 = 27.1 km/s and the proton plasma frequency 
ωpi1 = 4.14 kHz; the obtained values are in agreement with satellite observations in the auroral  region1. For 
a cold electron concentration ζ = 0.1× 10−3 , and a cold-to-hot electron temperature ratio β = 0.0644 , we 
have obtained ion acoustic flat-top solitary wave solutions whose E-field profile represents an ofbp, moving at 
a normalized speed V = 1.170836 . To compare our results with the observed solitary waveforms in the auroral 
region, we have rescaled them, i.e. we transformed our results to the corresponding non-normalized values by 
using the aforementioned plasma parameters. The analytical computation of the estimation wave parameters 
are: peak to peak E-field amplitude ( Epp) ≈ 220 mV/m, Velocity (v) = 31.6 km/s, and time duration ( �t) ≈ 9.94 
ms. From the observed data of ofbp reported by Mc Fadden et al.,4, the peak-to-peak amplitude for the E-field 
pulse is Epp ≈ 300mV/m , while the time duration is of the order of a few millisecond (ms). This value closely 
matches our analytical estimation of the amplitude of the ofbp pulse in the auroral region, as presented above. 
We see that, by using a simple plasma model, we have predicted the characteristics—and also the conditions for 
existence—of a FTSW to be compatible with the slowly moving ofbp seen in the Earth’s auroral area.

Conclusions
Relying on a simple multicomponent (two-ion and two-electron-) fluid plasma model, we have investigated the 
significance of plasma parameters on the existence of flat-top solitary waves and supersolitons, in contrast with 
“traditional" pulse-shaped electrostatic solitary waves. FTSW feature a characteristics flat-top (sometimes also 
called “table top") potential profile. Apart from their unique morphology, FTSW appear to arise at the boundary 
between two distinct regimes, relating to regular solitary waves and to supersolitons, respectively. It is established 
by now that a secondary electron component is necessary to sustain an ion acoustic double-layer25,49 and may 
also sustain a super-solitary  wave15. Similarly, for FTSW also, a marginal composition of cold electron appears to 
be necessary (and also sufficient) for their existence (at a given window of velocity values). In the context of the 
pseudopotential framework adopted in our study, the existence domain of different types of nonlinear structures 
that may occur highly depends on the velocity of the pulse (assuming a certain plasma configuration with fixed 
parameter values, that is). We have shown that, if certain conditions are met in a given multicomponent plasma 
configuration, fluctuations in the charge separation (i.e. essentially random fluctuations of the particle density 
of any of the plasma components, affecting the right hand side of Poisson’s equation (Eq. 14), and thus the pseu-
dopotential S(�,V) topology) may result in the generation of flat-top or elongated pulses or (independently) 
supersolitary waves (supersolitons). However, this won’t be true for all values of the relevant plasma parameters. 
Non-standard pulse profiles (amd, in particular, flat-top pulses) therefore exist in a limited region in parameter 
space, which may explain their rare their appearance in observations.
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It may be added, for rigor, that the methodology adopted here provides static predictions of stationary-profile 
localized traveling modes (solitary waves) but is unable to yield conclusions on the pulse’s dynamical stability. 
Investigating the pulse stability would require numerical or alternative advanced analytical methods. This is 
beyond the scope of the present work, and is left for a forthcoming study.

Apart from the concentration of cold electrons, the electron temperature ratio also plays a vital role in 
determining the topology of FTSW. The existence domain of FTSW is actually very sensitive to the electron 
temperature ratio β (value). Our results are relevant in the interpretation of the signatures of non-conventional 
electrostatic bipolar pulses, such as stretched or asymmetric bipolar pulses observed in auroral  plasma4.

Overall, while supersolitary waves may exist in a wide range of parameter values (as confirmed by earlier 
theoretical studies), it appears that flat-top solitary waves will only occur in a narrow window in the parameter 
region, which may explain their scarce (but non-negligible) frequency of observation.

Our model has been applied to the auroral plasma, where an electron coexistence (with different tempera-
tures) is typically observed, in effect confirming that the conditions for the occurrence of flat-top or super-solitary 
waves are indeed met in that environment. Our work should provide a new way of understanding the non con-
ventional localized pulses recorded during satellite expeditions which are known to be crucial in identifying the 
microphysics across the Earth’s magnetospheric boundary layers.

As discussed above, we were interested in exploring the very basic mechanism(s) contributing to the forma-
tion of such “exotic" solitary wave structures. It appears that the electron concentration (coexistence of different 
populations at different density and temperature) plays a decisive role in the existence of flat-top solitary waves 
or supersolitonic structures, while the ion characteristics will only affect the features of the observed structures. 
Generalization to a more realistic model, including e.g. suprathermal particles or an ion beam, will be reported 
later.
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