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Abstract
Motivation: Although a great deal of progress is being made in the development of fast and reliable experimental techniques 
to extract genome-wide networks of protein-protein and protein-DNA interactions, the sequencing of new genomes proceeds 
at an even faster rate. That is why there is a considerable need for reliable methods of in-silico prediction of protein interac-
tion based solely on sequence similarity information and known interactions from well-studied organisms. This problem 
can be solved if a dependency exists between sequence similarity and the conservation of the proteins’ functions.

Results: In this paper, we introduce a novel probabilistic method for prediction of protein-protein interactions using a new 
empirical probabilistic formula describing the loss of interactions between homologous proteins during the course of evolu-
tion. This formula describes an evolutional process quite similar to the process of the Earth’s population growth. In addition, 
our method favors predictions confi rmed by several interacting pairs over predictions coming from a single interacting pair. 
Our approach is useful in working with “noisy” data such as those coming from high-throughput experiments.  We have 
generated predictions for fi ve “model” organisms: H. sapiens, D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae 
and evaluated the quality of these predictions.

Keywords: Protein interactions, prediction, functional evolution, sequence similarity 

Introduction
In-silico methods are widely used to transfer knowledge about protein-protein interaction networks 
within the organism or between different model organisms, and several general approaches to this task 
exist. For well-studied model organisms, it is common to use different sources of information which, 
in addition to sequence homology, include Gene Ontology annotations, localization databases, and other 
sources to predict and validate protein-protein interactions (Tan et al. 2004; Huang et al. 2004; Ben-Hur 
and Nobel, 2005; Kemmer et al. 2005; von Mering C et al. 2005). However, not all these data are reli-
able or easily available for some genomes. That is why it is important to optimize methods of 
interaction prediction based solely on the most common and reliable information - protein sequence 
similarity.

A number of existing methods already allow the prediction of protein-protein interactions using 
sequence similarity. They include domain-based methods (Sprinzak and Margalit, 2001), Bayesian 
network models (Deng et al. 2002), pairwise sequence kernels (Ben-Hur and Noble, 2005), and co-
evolution of interacting proteins (Ramani and Marcotte, 2003). In general, each pair of proteins A′ and 
B′ that are predicted to interact with each other is given a score S(A′, B′), which needs to be optimized 
for maximal reliability. This optimization could be subdivided into three separate problems:
1. The fi rst problem is fi nding an optimal mathematical expression for individual prediction scores 

si(Ai, Bi – >A′, B′), which is the probabilistic measure of predicted interaction A’ – B’ to be true, based 
on the knowledge that a known interacting protein pair Ai – Bi exists in the training set, where A’ is 
homologous to Ai and B’ is homologous to Bi.

2. The second problem is the defi nition of the combined score S(A′, B′), which is a rule for construction  
of a fi nal score based on several individual scores si(Ai, Bi – >A′, B′). Until now, most of the considered 



198

Kotelnikova et al

Evolutionary Bioinformatics 2007: 3 

prediction scores defi ned the combined score 
as equal to the maximum of individual scores 
(e.g. Yu et al. 2004).

3. The third problem is the defi nition of “character-
istic protein family size,” which defi nes a number 
of “individual scores” that should be taken into 
account when one calculates the fi nal score for 
the predicted A’ – B’ pair. This problem exists in 
cases of certain combined scores where it is 
necessary to avoid good fi nal scores that have 
resulted from many bad individual predictions.
Our method is based on novel approaches to all 

of the problems previously mentioned: 1) our 
individual score si(Ai, Bi – >A′, B′) is based on an 
empirically derived probabilistic formula instead 
of ad hoc assumptions, and 2) the combined score 
is taken as the combination of individual scores. 
Therefore, in general, we score the predictions 
confi rmed independently by several known interac-
tions higher than the predictions based on a single 
known interaction. The cumulative effect for 
predicting protein-protein interactions was inde-
pendently used in Jonsson et al. 2006.  Finally, in 
3) we carefully determine the “characteristic 
protein family size” in order not to miss some 
important prediction events. We show that these 
approaches provide signifi cant improvement for 
sequence-based prediction methods, especially for 
noisy interaction datasets, such as those coming 
from high-throughput experiments.

Materials and Methods

Main terms
• Interparalogs or generalized interparalogs.  If 

interacting proteins A and B have paralogs A′ 
and B′ which also interact, we will call the pairs 
A – B and A′ – B′ interparalogs. There could be 
several interparalog pairs within the organism, 
which can be called generalized interparalogs.

• Interologs. If two interacting proteins A and B 
have orthologs A′ and B′ that also interact, 
according to Walhout et al. 2000, we call the 
pairs A – B and A′ – B′ interologs.

• Generalized interologs. Using the defi nition from 
Yu et al. (2004), if A – B and A′ – B′ are intero-
logs, we consider generalized interologs to be all 
possible interactions between protein families 
{A′} and {B′}, i.e. interactions between all A and 
B homologs in  the target organism.

Main assumptions
To predict interactions on the basis of protein 
sequence similarities, the following assumptions 
have been made:
• We use protein sequence similarity as the mea-

sure of homology between two proteins. The 
similarity between two protein sequences is 
taken from the similarity score calculated by the 
BLAST (Altschul et al. 1990) program using the 
standard BLOSUM62 substitution matrix in the 
manner as described in (Ispolatov et al. 2005).

• We use only the pairs of orthologous proteins 
consisting of reciprocal best matching homologs 
in both organisms, i.e. not more than one ortho-
log of a specifi c protein per each organism.

Training sets
The protein interaction data for all species were 
obtained from the ResNet databases of Biological 
Association Network available from Ariadne 
Genomics (http://www.ariadnegenomics.com/).  The 
databases for Homo sapiens, baker’s yeast Saccha-
romyces cerevisiae, the nematode worm Caenorhab-
ditis elegans, the plant Arabidopsis thaliana, and the 
fruit fl y Drosophila melanogaster were constructed 
by combining the data from published high-
throughput experiments, publicly available interac-
tion databases such as BIND and EntrezGene with 
the literature data extracted using MedScan tech-
nology from organism-specifi c PubMed abstracts 
and full-text articles. For more details about the 
construction of these databases, please refer to the 
PathwayStudio manual: http://www.ariadnege-
nomics.com/products/pathway.html

For evaluation of prediction quality, the 
following “golden sets” were used:
Saccharomyces cerevisiae:
• Golden positives—MIPS data (Mewes et al. 

2000), taken from http://interolog.gersteinlab.
org (Yu et al. 2004) for comparison purposes.

• Golden negatives were taken from the same 
source, http://interolog.gersteinlab.org (Yu 
et al. 2004).

Homo sapiens:
• Golden positives for EntrezGene interactions 

from http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene.

• As a golden negative set, the random combina-
tions of non-interacting proteins were used. We 
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set the size of the negative set to be the same as 
the size of the golden positive set.

Arabidopsis thaliana, Caenorhabditis elegans, 
Drosophila melanogaster:
• Golden positives from ResNet data.  As long as 

a self-prediction of the interactions is not 
allowed, the training dataset could be the same 
as evaluation set.

• Golden negatives were not used due to the lack 
of reliable information about full interaction 
networks.

Evolution and Score Defi nition

Evolution of protein functions 
and defi nition of the individual score
The problem of the individual score defi nition for 
predicted interactions can be formulated as 
follows: given the measure of sequence similarity 
between knowing interacting proteins and their 
homologs, it is necessary to have a measure of 
similarity between the original and the target pairs 
of proteins in such a way that this measure indi-
cates how likely the interaction is for a target pair 
of proteins.

The sequence-based score defi nitions have been 
discussed elsewhere (Ben-Hur and Nobel, 2005).  
They include: the geometric mean of individual 
similarities between homologous proteins or 
minimum of these similarities (Yu et al. 2004), use 
of various pairwise sequence kernels (Ben-Hur and 
Nobel, 2005; Martin et al. 2005), or Bayesian 
networks. All of these methods do not use any 
empirical data in order to construct the model. In 
this case, we attempted to incorporate knowledge 
about the evolution of the protein-protein interac-
tion network to construct the individual prediction 
score. We used the modifi ed procedure described 
in (Maslov et al. 2004) to plot the percentage of 
physical interaction partners shared by a pair of 
paralogous proteins as a function of their amino 
acid sequence similarity.

For a pair of paralogs A and A′, the overlap is 
defi ned as the number of their common binding 
partners in the network. This value is normalized 
by the total number of binding partners for two 
paralogs, resulting in the value pAA′, which can be 
treated as a probability for protein A′ to keep the 
same interaction partner as protein A. We refer to 

the value 1– pAA′ as “functional distance” between 
two homologous proteins. This is a probability to 
not observe an interaction between proteins A′ and 
B, given that the protein B interacts with protein 
A averaged over different B’s. 

The dependency between the average “func-
tional distance” F AA′ and sequence similarity 
between paralogous proteins for Homo sapiens 
network is shown in Figure 1. To approximate this 
dependency, several different formulas could be 
applied. In the original paper (Maslov et al. 2004) 
the exponential fi t

 F AA′ = 1 – pAA′ ≈ 1 – e–a* x (A, A′) (1)

was used, which does not take into account the 
s-shape of the curve. The alternative approximation 
is a logistic s-shaped formula: 

 FAA′ = 1 – pAA′  ≈ Fmax/ 
 (1 + (Fmax/F0 – 1)*e–a* x(A, A′)) (2)

However, we found that the best approximation is 
achieved with the function: 

 FAA′ = 1 – pAA′ ≈ ′ ≈ – Q* τ* arctg (–T/τ) 
   + Q* τ* arctg((x(A, A′) – T)/τ) (3)

This formula had been introduced by S.P. Kapitza 
in the context of population studies (S.P. Kapitza 
1996). Here, Q = C* τ 2 is the maximum growth 
rate, τ is the small parameter and T is the time (or 
time analog) when the system changes the rate of 
growth.

Similar data for all fi ve studied organisms are 
shown in Figure 2. While the approximation curves 
vary slightly for different species, the coeffi cients 
found by the least square method  (with 95% 
confidence bounds) lies within the following 
intervals:

Q = 2.1 ÷ 4.5 
T = 0.19 ÷ 0.33 (4)
τ = –0.12 ÷ 0.22 

The main parameter here is T, which corresponds 
to the characteristic sequence similarity (1–T). 
This parameter could be used as a threshold value 
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for the functional conservation of the proteins 
during the evolution. For the proteins within one 
organism, this parameter leads to a similarity 
threshold value of 0.7–0.8 (70–80%), which 
aligns with a common sense approach.

If there is an interaction between proteins Ai 
and Bi, one can defi ne the probability pi (individual 
score) of the interaction between their respective 
paralogs A′ and B′ as a product of the probabilities 
pAiA′ 

and pBiB′. (See the diagram in Figure 3).
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Figure 1. The empirically measured average probability to not observe an interaction between proteins A′ and B (functional distance) in 
Homo sapiens given that protein B interacts with protein A paralogous to protein A′ plotted as a function of sequence dissimilarity, calcu-
lated as 1- sim(A,A′), where sim(A,A′) is amino acid sequence similarity between  A and A’ paralogs. Different lines correspond to different 
fi tting models: exponential fi t (dotted line), logistic fi t (dashed line), and Kapitza fi t (solid line).
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Figure 2. The empirically measured probability to not observe an interaction between proteins A′ and B, given that protein B interacts with 
protein A paralogous to the protein A′ plotted as a function of sequence dissimilarity, calculated as 1– sim(A,A′), where sim(A,A′) is amino 
acid sequence similarity between  A and A’ paralogs. Different symbols correspond to different model organisms: yeast (o), worm (*), fl y 
(triangle), arabidopsis (star), and human (square). Different lines are fi ts corresponding to Kapitza models.
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 pi (A′, B′) = pAi A′
* pBiB′ 

= (1 – FAi A′
) (1 – FBiB′

) 
(5)

This value should be incorporated into the fi nal 
prediction score.

A similar approach can be applied to the defi -
nition of the individual score for generalized 
interolog (cross-species) predictions. In this case, 
the dependence of functional distance upon 
sequence dissimilarity of two proteins from 
different organisms can be described in a similar 
way with the assumption that all pre-defi ned 
orthologs have identical functions and the limita-
tion that only proteins which have orthologs in 
both organisms are used for the calculation of 
functional distance.  These conditions allow us 
to calculate the functional distance between 
protein Ax from organism X and Ay′ from 
organism Y, where Ay is the only true ortholog of 
Ax and Ay is a paralog of Ay′. Their functional 
distance should be equal to the probability to not 
observe an interaction between proteins Ay′ and 
By in organism Y, given that the protein Bx, which 
is the only true ortholog of By from organism X 
interacts with a protein Ax′ paralogous to the 
protein Ax. The value for functional distance 
averaged over all possible B’s can then be plotted 
as a function of the sequence dissimilarity 
between Ax and Ay′, which is equal to the 
1– sim(Ax, Ay′), where sim(Ax, Ay′) is amino acid 
sequence similarity. After the same normalization 
procedure used for interparalogs, the resulting 

dependency for pairwise comparisons has the 
form shown in Figure 4.

Figure 4 illustrates a slightly modifi ed formula 
(3) that is also a reasonable approximation for the 
prediction of interolog interactions. The fi t appears 
to be especially good when we take into account 
that there is a rather small data portion containing 
protein pairs with the similarity �0.7–0.8 in different 
organisms. One can estimate the probability for A′ 
to keep the same interactions as its ortholog A from 
another organism, using the modifi cation of the 
empirical formula (3):

 FAA′ = 1–pAA′  ≈ – (Q/c)*τ *arctg (–T/τ) 
    + Q* τ* arctg ((x(A, A′)–T)/τ) (6)

where c is an additional adjustment refl ecting the 
fact that even very similar proteins from different 
organisms still can have different functions. 

The exact estimation of all pairwise fitting 
parameters is impossible for some organism pairs 
due to the small amount of data. It can be shown, 
however, that the main coeffi cient T for all well-
studied organism pairs varies from 0.4 to 0.6, as 
compared to the range [0.2, 0.33] found for inter-
paralogs. To better estimate the parameters, we 
created a dataset of averaged over all organism 
pairs and determined all coefficients for this 
dataset, which are:

Q = 0.4031 
T = 0.5259 (7)
τ = 0.1237 
c = 0.07151 

These parameters were used for calculation of the 
individual score using the same formula (5) that 
we used for interparalogs.

Defi nition of the combined score
Individual scores must be added into one “com- 
bined” score for every predicted interaction. The 
“combined” score must take into account the fact 
that there could be several interactions in the 
training sets, which lead to the same prediction in 
the target organism. In previous work, the 
combined scores were typically defi ned as trivial 
functions such as minimum, maximum, sum, or 
average, depending on the nature of the individual 

Figure 3. The illustration of the logic behind our expression for the 
individual similarity score: pi(A,B -->A′,B′)= pAA′*pBB′. Here,  pAA′ 
is the probability of detecting interaction A’—B, given the fact that A 
interacts with B. pBB′ is the probability of detecting interaction A’—B’, 
given the fact that A’ interacts with B. Thus, the probability of detect-
ing A’—B’ , given that A—B is pAA′ pBB′.

A′  B′ 

BB′AA ′

Known interactionA B

Predicted interaction

p p
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score (Yu et al. 2004). However, these approaches 
do not improve the score with the increase in the 
number of individual interactions in the training 
set that predict the scored interaction. Here, we 
present a probabilistic way to calculate the 
combined prediction score as a function of 
individual scores.

Because the individual score can be interpreted 
as an independent probability, the fi nal interaction 
probability can be expressed as:

 Mfi n = 1– ∏(1 – pi);  (8)

where (1–pi) is the probability that the target 
proteins do not interact in every prediction method.  
We will refer to the score calculated using this 
formula as the “M-score.”

Defi nition of the protein family size
The M-score depends on the total number of indi-
vidual predictions that are taken into account for 
the formula (8). We found that taking all possible 
prediction events for the M-score was disadvanta-
geous for several large protein families. Proteins 

in these families have small values for sequence 
similarity between them. However, adding 
numerous predictions with weak individual scores 
distorted the statistics. We have resolved this 
problem by restricting the maximum allowed 
protein family size and making all protein families 
no larger than N, which is the characteristic protein 
family size. To define N, we calculated the 
minimum family size that would not signifi cantly 
change the statistical properties of the predicted 
network. We have monitored how the fi tting param-
eters change with the maximum allowed family 
size, thus using them as network properties. The 
results of this investigation are shown in Figure 5. 
One can see that for Ns larger than 40, all param-
eters stop changing signifi cantly. The maximum 
allowed family size of 40 is easy to understand 
intuitively, since there is no known protein family 
with such a large number of members. Therefore, 
we selected this value to limit the number of homo-
logs taken into account for M-score calculation.

Evaluation of Prediction Quality
To evaluate the quality of our prediction method, 
we have chosen one article, which describes tasks 
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Figure 4. The functional distance between Ax protein from organism X and Ay’ protein from organism Y was calculated as the average 
empirically measured probability to not observe an interaction between proteins Ay′ and By in organism Y, given that protein Bx (which is a 
the only true ortholog of By from organism X) interacts with protein Ax′ paralogous to the protein Ax (which is the only true ortholog of Ay).  
The plot shows how the functional distance depends on the sequence dissimilarity calculated as 1– sim(Ax,Ay′), where sim(Ax,Ay′) is the 
amino acid sequence similarity between Ax and Ay’ proteins. Different symbols correspond to different pairs of model organisms: arabidopsis 
-human (circle), fl y-human (*), worm-human (fi ve-sided star), yeast-human (square), averaged data over all pairs (diamond). Other pairwise 
combinations have not been shown for improved readability.
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and methods similar to ours, and has an online 
supplementary data with the predictions (Yu et al. 
2004). We have not compared our results with other 
published prediction methods either because their 
prediction results were not available publicly or 
because they rely on more than just experimental 
interactions and sequence similarities. Our goal, 
however, was to develop a prediction method that 
used exclusively the sequence similarity information 
as an input because it is the only type of information 
available for newly sequenced genomes.

We have looked at the percentage of true positives 
for the top 1,000 predictions. Our values were 
compared with those obtained by the method, described 
in (Yu et al. 2004). The score used in this paper was 
the “maximum of joint similarity” (J-score) value:

 Jfi n (A′, B′) = maxi [√(sim (Ai, A′)* (sim(Bi, B′)]  
 (9)

We have defi ned a percentage of true positives as 
the number of prediction pairs, which were present 
in the “golden positive set” (Table 1).

For the best-studied networks (human and 
yeast), the negative sets are readily available. We 
used the Receiver Operating Characteristics (ROC) 
curve that plots a true positive rate as a function 
of false positive rate and is normally used to 
evaluate the accuracy of a classifi cation score. The 
accuracy of methods is measured by the area under 
the ROC curve (Table 1, auROC values).

One can see that the M-score (8) provides a 
signifi cantly better true positive rate than the joint 
similarity J-score (9) for the prediction of inter-
paralogs. For example, 35% of the top 1,000 yeast 
interparalog predictions scored with the M-score 
can be confi rmed by the “golden positive set”, while 
the same number of top predictions scored with the 
J-score can be confi rmed in only 20% of all cases. 
The same values for the human network are 20% 
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and 10% for M-score and J-score, respectively. 
Table 1 also shows that the M-score has better clas-
sifi cation strength than the J-score as judged by the 
area under the ROC curve (auROC). 

To defi ne the set of the most reliable predictions, 
we have calculated the optimal M-score cutoff 
values using the percentage of verifi ed interactions 
as a function of the score cutoff (data not shown). 
Using these estimated M-score cutoffs (Table 2), 
we have predicted the most reliable for 20,000 
human, 12,000 yeast, 3,500 worm, 2,500 arabi-
dopsis and 2,200 fl y interactions.

A similar procedure can be used to evaluate 
interolog predictions. In this case, it is possible to 
combine M-scores from different organism pairs 
in the same manner as it is done for interparalogs 
from one organism using the formula (8). We found 
that the quality of interologs prediction using 
multiple organism pairs was about the same as the 
joint similarity method (data not shown). Thus, it 
appears that the prediction based on the interactions 
from multiple organisms has no advantages over 
the prediction based on an interacting pair from 
only one organism. We can conclude this because 
the protein function is conserved less between 

different genomes than it is for paralogs. Alterna-
tively, it may mean that the knowledge about 
interolog interactions from several organisms is 
highly redundant and does not increase the statis-
tical power of the prediction. We discuss this 
observation in more detail in the next section.

The proposed scoring system includes three 
different techniques: (a) calculation of individual 
score, (b) combining the individual scores and (c) 
fi nding of protein family size. In order to evaluate 
an extent of contribution for each technique we 
have studied different score schemas for yeast and 
human interparalogs. The following scores were 
compared

• “J-score”—formula (9);
• “modifi ed J-score”, where (sim(Ai, A′)*(sim 

(Bi, B′)) was replaced by the pi (A′, B′) value 
from formula (5);

• “unrestricted M-score”—formula (8), without 
protein family size restrictions;

• “M-score”—formula (8), where the maximum 
allowed protein family size is set to 40;

The performance of J-score and “modifi ed J-score” 
is about the same in every organism, since the 

Table 1. Evaluation of Interparalog Predictions. 

f(x) = –Q*t*atan(–T/t) + Q*t*atan((x–T)/t) Human Yeast Worm Arabidopsis Fly
Q 3.068 3.096 3.672 2.134 4.515
T 0.2234 0.2443  0.2794 0.1747 0.3305
t -0.1248 0.1284  0.1018 0.2293 0.08121
% verifi ed (top 1,000, M-score) 20% 35% 11% 45% 35%
% verifi ed (top 1,000, J-score) 10% 20% 7% 25% 30%
% verifi ed (top 2,000, M-score) 18% 30% 12% 34% 24%
% verifi ed (top 2000, J-score) 9% 17% 8% 25% 22%
% verifi ed (top 5000, M-score) 13% 28% 11% 28% 16%
% verifi ed (top 5000, J-score) 8% 15% 6% 24% 14%
M-score auROC* 0.864 0.815 - - -
J-score auROC* 0.855 0.808 - - -

* Accuracy of methods is measured by the area under the ROC curve—auROC value.

Table 2. Predictions.

 Human Yeast Worm Arabidopsis Fly
Interparalog cutoff 0.8 0.26 0.26 0.8 0.8
# of interparalog predictions with this cutoff ~20000 ~12000 ~3500 ~2500 ~2200
% verifi ed interparalogs (cutoff) 10% 30% 12% 32% 23%
generalized Interolog cut-off 0.01 0.01 0.01 0.01 0.01
# of generalized interolog predictions  ~75000 ~9000 ~55000 ~100000 ~51000
with this cutoff
% verifi ed generalized interologs (cutoff) 4% 57% 5% 9% 3%
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dependence of pAiA′ value (formula (3)) on 
similarity value sim(Ai, A′) is monotonous. Since 
it is necessary to have the probabilistic individual 
score in order to combine them into M-score, the 
performance of techniques a) and b) should be 
considered together. In case of yeast interparalogs 
the performance of “M-score” and “unrestricted 
M-score” are the same, since there are no large 
protein families (>40) in yeast and protein family 
size restriction does not change anything.  Hence, 
for the yeast interparalogs the only difference is 
between “J-score” and “M-score” (Table 1), and 
the main technique, which improves the quality of 
predictions is b) - the combination of individual 
scores.

The relative contribution of different techniques 
changes dramatically in case of predictions 
for human proteins. The restriction on protein 
family size improves the quality of predictions 
signifi cantly. A percentage of true positives for top 
1000 “J-score”, “unrestricted M-score” and “M-
score” predictions are 10%; 12% and 20% respec-
tively. The same values for top 2000 are 9%; 10% 
and 18%.  For top 5000 the numbers are 8%; 9% 
and 13% (Table 1).  This suggests that 80% of 
M-score success in human interparalog predictions 
depends on restriction of protein family size 
(technique c), whereas 20% on combining the 
individual scores (technique b) and the formula for 
calculation of individual score (technique a).

Discussion
We have developed a novel scoring system that 
improves the reliability of predictions about protein 
physical interactions using the information about 
known interactions of their homologs. The method 
takes into account not only the sequence similarity 
between homologs but also the number of known 
interactions for different homolog pairs. On 
average, it assigns better scores to interactions 
predicted on the basis of several “hits,” as 
compared to single-hit predictions. We show that 
this approach allows more reliable prediction of 
interactions using paralogous proteins.

Individual scores used in our algorithm are 
based on empirical estimates of the likelihood that 
a pair of homologous proteins with a specifi c 
sequence similarity shares a common interaction 
partner. We show that the correlation between this 
probability and a sequence similarity is approxi-
mated best by the formula developed to describe 

the self-similar growth of a population with a fi nite 
reproduction lifespan. The formula can be used, 
albeit with different parameters for prediction of 
both interologs and interparalogs. We found, 
however, that our method performs better for 
interparalog predictions while, for interolog 
predictions, its performance is comparable with 
the joint similarity score.  The formula was 
developed as a best fit for human population 
growth by S.P. Kapitza. The curve is supposed to 
fi t the explosive growth in the beginning that 
changes to signifi cant slowdown after critical time 
T. In the case of protein functional divergence, this 
phenomenon means that proteins start losing their 
functional similarity more slowly after their 
sequences diverge beyond critical similarity.  One 
can speculate that the far-diverged proteins still 
must share common interactions in order to 
continue being functional.  However, a closer look 
at Figure 1 reveals that the number of common 
partners drops below 20% beyond the critical 
sequence similarity (functional distance >0.8), 
which makes the importance of this observation 
negligible.

The analysis of parameter T, corresponding to 
the critical point in the functional distance, suggests 
the difference between functional divergence of 
interologs and interparalogs. This critical point 
corresponds to the point in time in which popula-
tion growth begins to slow down following the 
explosive phase. While the characteristic value of 
T for interparalogs lies between 0.2 and 0.3 and 
corresponds to the sequence similarity 0.7–0.8, 
these numbers for interologs are 0.4–0.6. This 
observation suggests that two paralogs begin to 
lose functional similarity as measured by the 
number of their common interaction partners when 
their sequence similarity drops below 70–80%. 
The interologs, on the other hand, remain function-
ally similar until their sequence similarity remains 
above 40–60%.  This conclusion is intuitively 
clear: unless a paralog acquires the new function 
relatively quickly during the sequence divergence, 
it will probably be lost from the genome due to the 
loss-of-function mutation. Interologs, however, 
are constantly under evolutionary pressure to 
maintain the function during a rather long time of 
divergence.

We have found that the quality of the interolog 
prediction does not benefi t from combining knowl-
edge about interactions from multiple organisms. 
Because our own data suggest that interologs 
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remain functionally similar during a longer 
divergence period, the most likely explanation is 
that information gathered from multiple organisms 
is redundant; i.e. it is enough to know an ortholo-
gous interaction pair in one organism in order to 
predict an interolog with high confi dence. There-
fore, the prediction of physical interaction could 
be done by selecting only one best predictive 
organism. Our data also confi rm the observation 
made in (Mika and Rost, 2006) that the interolog 
predictions are less reliable than interparalog 
predictions.
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