
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports

A quantum circuit simulator and its
applications on Sunway TaihuLight
supercomputer
Zhimin Wang1, Zhaoyun Chen2,3, Shengbin Wang1, Wendong Li1, Yongjian Gu1*,
Guoping Guo2,3* & Zhiqiang Wei1,4*

Classical simulation of quantum computation is vital for verifying quantum devices and assessing
quantum algorithms. We present a new quantum circuit simulator developed on the Sunway
TaihuLight supercomputer. Compared with other simulators, the present one is distinguished in two
aspects. First, our simulator is more versatile. The simulator consists of three mutually independent
parts to compute the full, partial and single amplitudes of a quantum state with different methods.
It has the function of emulating the effect of noise and support more kinds of quantum operations.
Second, our simulator is of high efficiency. The simulator is designed in a two-level parallel structure to
be implemented efficiently on the distributed many-core Sunway TaihuLight supercomputer. Random
quantum circuits can be simulated with 40, 75 and 200 qubits on the full, partial and single amplitude,
respectively. As illustrative applications of the simulator, we present a quantum fast Poisson solver
and an algorithm for quantum arithmetic of evaluating transcendental functions. Our simulator is
expected to have broader applications in developing quantum algorithms in various fields.

In recent years, tremendous technological progress has been made in the construction of quantum computers,
especially with superconducting qubits1,2. As these nascent quantum computers become competitive against
classical computers in simulating general quantum circuits, an interesting race come to the climax. The quantum
beings are eager to accomplish the first demonstration of quantum supremacy1,3, while classical beings try to
push back the classical simulation barrier as far as possible4–7.

During the race, many novel methods and programs are developed to simulate quantum circuits efficiently
on conventional computers8–11, including parallel platforms12–16, FPGA-based hardware17,18, etc. In fact, classical
simulation of quantum computation is vital both for the verification of quantum computers and for the assess-
ment of the correctness and performance of new quantum algorithms. The fundamental task of such simulation
is to calculate all or a certain number of amplitudes of quantum states produced by a quantum circuit.

However, it is extremely expensive to simulate quantum computation classically because of the curse of
dimensionality, i.e., the memory and time requirements grow exponentially with the number of qubits. For
instance, to accurately simulate a quantum system with 50 qubits, one needs a classical computer with slightly
more than 16 Petabytes of memory (with double precision). Moreover, increasing the number of qubits by one
requires a doubling of the amount of memory space. Performing such a large-scale computation requires one to
take advantage of the state-of-the-art high-performance distributed computation.

In the present work, we develop a new quantum circuit simulator on the Sunway TaihuLight supercomputer.
Albeit other simulators have been developed on supercomputers including Sunway TaihuLight12,14,16, our simula-
tor is designed to be a powerful tool for quantum algorithm research. The simulator consists of three mutually
independent sub-programs to calculate the full, partial and single amplitudes of a quantum state with three
completely different methods. Therefore, a wide range of number of qubits and circuit depths can be covered. This
could provide choices when people execute quantum algorithms of different fields. In addition, it can emulate
the effect of noise and support more quantum operations, such as the controlled and inverse operations on a
group of gates, which are very useful in practical applications. On the other hand, the efficiency of the simulator
is high. The algorithms of the simulator has a two-level parallel structure to fully take advantage of the Sunway
system architecture. We can simulate random quantum circuits with 40, 75 and 200 qubits on the full, partial

OPEN

1College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China. 2CAS Key
Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China. 3Origin
Quantum Computing Company Limited, Hefei 230026, China. 4High Performance Computing Center, Pilot
National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China. *email: yjgu@
ouc.edu.cn; gpguo@ustc.edu.cn; weizhiqiang@ouc.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79777-y&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

and single amplitude, respectively. With this simulator, we further develop quantum algorithms for solving the
Poisson equations and for quantum arithmetic of evaluating transcendental functions.

Simulation techniques
The present quantum circuit simulator consists of three mutually independent sub-programs, referred to as
three working modes of the simulator, i.e. full amplitude, partial amplitude and single amplitude mode. The
fundamental methodologies for the three modes are completely different. They are, respectively, direct evolution
of quantum state, circuit partition by decomposing controlled-Z gate10, and the complex undirected graphical
model9. In addition, noisy one- and two-qubit gates are defined to emulate the effect of noise. A description of
the instruction set of our simulator and an illustrative example of the input and output are given in the sup-
plementary material.

Sunway TaihuLight supercomputer.  Before proceeding to the details of the simulation techniques, we
first give a brief introduction of the classical hardware. Our simulator is developed based on the Sunway Taihu-
Light at the National Supercomputer Center in Wuxi, China. The Sunway TaihuLight is so far the most powerful
supercomputer in China. It can reach a peak performance of 125 PFlops, and had ranked the first in the TOP500
list for four times in the years of 2016 and 2017.

The supercomputer consists of 40,960 homegrown processors called SW26010. Each SW26010 processor
contains four core-groups. Each core-group contains one management processing element (hereafter called as
master core) with a memory space of 8 GB, and 64 computing processing elements (hereafter called as slave core)
in an 8 × 8 array19. Within a core-group, the 64 slave cores can communicate with each other in a few cycles. In
the present work, one core-group is set as a unique MPI process. When mentioning a computational node, it
refers to one core-group, namely 1 master core plus 64 slave cores. The simulator is written by C++ language.

To take full advantage of the system architecture of Sunway TaihuLight, we implement algorithms of the
three working modes in a two-level parallel way. More specifically, the entire simulation are first divided equally
to the available nodes, which is the first level of parallel. In each node corresponding to a unique MPI process,
the computing task is further assigned to the 64 slave cores equally, while the master core is responsible for the
process control and I/O operation. This is the second level of parallel. The specific designs of algorithms are
discussed in the subsequent sections.

Full amplitude mode.  The full amplitude mode of the simulator is an instance of the so-called Schrodinger
simulation. It is based on the direct evolution of quantum state through the product of unitary operations, con-
trasting to the linear combinations of unitary operations20. All the information of the quantum state is precisely
maintained and updated step-by-step throughout the simulation. The Schrodinger approach is straightforward,
and it could provide a great speed in simulating low-width circuits. However, when processing many-qubits
circuits, it requires a significant amount of RAM to store all amplitudes. In the present work, we use at most
16,384 computational nodes, roughly 10% of the computing resource of Sunway TaihuLight, and can simulate a
quantum circuit with up to 40 qubits on this mode.

Now we use the single-qubit and controlled two-qubit operations as examples to illustrate the distributed
implementation of Schrodinger simulation. It is well known that an n-qubit quantum state can be represented
by Dirac notations and column vectors as follows,

where the decimal and binary index are related by i = in−1 × 2n−1 + · · · + ik × 2k + · · · + i0 × 20. . In practice,
we store all the amplitudes αi in the memory during the simulation and update them according to the action of
unitary operations.

Let Uk represents a single-qubit gate acting on the kth qubit, namely ik in Eq. (1). It can be easily verified that
the amplitudes can be updated in the following way,

Note that the amplitudes indexed by ik = 1 are calculated when traversing the index of i + 2k. As can be seen
from the equation, for one action of Uk, all the 2n amplitudes are changed. Thus, the one single-qubit operation
corresponds to a computation scale of 2n additions and multiplications. The controlled two-qubit operation can
be implemented similarly. Let CUq,k represents a controlled two-qubit gate, where the qubit q (k) is the control
(target) bit. That is to say, when iq is zero, the gate CUq,k will do nothing; when iq is 1, the gate performs the same
transformation as Eq. (2). This can be formalized as

(1)
|ϕ� =

2n−1
∑

i=0

αi|i� =
∑

in−1···i0={0,1}n
αi|in−1 · · · ik · · · i0� (Dirac).

= (α0,α1, · · · ,α2n−1)
T (column vector)

(2)

(

α′
i

α′
i+2k

)

= Uk

(

αi
αi+2k

)

=
(

a b
c d

)(

αi
αi+2k

)

=
(

aαi + bαi+2k

cαi + dαi+2k

)

.

for all (i)10 = (in−1 · · · ik · · · i0)2 with ik = 0.

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

Here we remark that although the above single-qubit and controlled two-qubit operations are enough as
they form a universal set for quantum computation21, our simulator could support more quantum gates and
operations. They are very useful in the practical design of quantum circuits. Particularly, the simulator supports
arbitrary single-quit rotation gates, controlled operation on a group of gates, and inverse operation on a group
of gates, etc. (see supplementary material for details).

The above two equations are of great importance because they lend the process of updating amplitudes to
parallelization and distribution. That is, they update amplitudes via 2n computations of aαi + bαj as shown in
Eq. (3), not by multiplying a full 2n × 2n matrix on the column vector. Such equations can be implemented in a way
of two-level parallel. Specially, all the amplitudes are divided equally to the nodes and stored in the correspond-
ing master cores. Then the master core in each node calls the slave cores to update the amplitudes in parallel.

In summary, the program of this mode proceeds in the following three steps:

1st: Configure the computation nodes. Then every node parses the script to obtain a linked list recording
instructions of the quantum circuit.
2nd: Assign all the amplitudes equally to the nodes. The amplitudes are initialized as zero in the master core
of each node.
3rd: The master core traverses every node of the linked list in turn, and prepares the computing parameters,
including the matrix coefficients of the gate, the number of amplitudes of each node, starting address of the
target amplitude, etc. Then the master core assign the task of updating the amplitudes equally to the 64 slave
cores. The slave cores get the requited data using the address information according to Eqs. (2) or (3), and
compute the new amplitude values, and then sent them back to the same position in the master core.

Partial amplitude mode.  The partial amplitude mode use a hybrid algorithm to simulate a quantum circuit
with more than 50 qubits but of limited depth. Generally, in this mode the original quantum circuit are divided
into several sub-circuits with less qubits, which are then simulated independently using the same method as the
full amplitude mode. With 16,384 computational nodes, we can simulate a quantum circuit with up to 75 qubits
under this mode. Below is a brief introduction of the partition scheme of the circuit. More information can be
found in our previous paper10.

The controlled-Z gates can be decomposed into the projection and single-qubit Z gates as follows,

The superscripts represent that qubit i is the control qubit and qubit j the target qubit. On the left hand side
of the equation, qubits i and j are entangled, while on the right hand side they are independent. Therefore, after
decomposing the CZ gate, the quantum states of qubits i and j can evolve independently, and then be recombined
to get the final state. This turns out to be a very useful method of reducing the memory requirements when
simulating a quantum circuit with many qubits.

Now we take a quantum circuit with 8 qubits and 8 layers of depth as an example to illustrate the partition
scheme. The circuit is shown in Fig. 1. The circuit is made up of two blocks, that is, the upper block with qubits
from 0 to 3, and the lower one with the other qubits. The two blocks are entangled by the CZ gates in 7th and
8th layer. The entanglement between the two blocks can be dismissed by decomposing the two CZ gates in turn,
as shown in Fig. 1. After the decomposition, the original circuit results in four circuits, whose upper and lower
blocks are untangled. Then each of the four circuits can be divided into two sub-circuits with a half number of
qubits, which can be simulated independently. Therefore, the task of simulating the original circuit with 8 qubits
is converted to the simulation of 8 independent sub-circuits with 4 qubits. The number of amplitudes stored in
the memory is reduced from 28 to 27. Since the sub-circuits are simulated in a parallel way, the time span of the
simulation is also reduced.

There are also restrictions on the partition scheme. The gates crossing the dividing line should be the con-
trolled two-qubit gate, such as the CNOT and CZ gates, not the gate like SWAP. Furthermore, the number of
sub-circuits grows exponentially with the number of decomposed CZ gates. For example, if there is one more
CZ gate crossing the dividing line between qubits 3 and 4 in Fig. 1, the partition is not efficient. Therefore, this
method is suitable for quantum circuits with low depth and large sampling number (the large sampling number
is originate from the fact that all the sub-circuits are simulated on the full amplitude mode).

In summary, the program for the partial amplitude mode proceeds in the following four steps:

1st: Configure the computation nodes. Then every node parses the script to extract the gates. Judge whether
the gates crossing the dividing line is the controlled two-qubit gates, and decompose it by doubling the circuit.
The dividing line is always set to be in the middle of qubits.
2nd: Cut each of the final circuits into two sub-circuits along the dividing line. There should be 2c+1 sub-
circuits generated, where c is the number of decomposed gates. Establish a linked list of quantum gates for
each sub-circuit.

(3)







α′
i = αi , with iq = 0 ;

�

α′
i

α′
i+2k

�

=
�

aαi + bαi+2k

cαi + dαi+2k

�

, with iq = 1, ik = 0

for all (i)10 = (in−1 · · · iq · · · ik · · · i0)2 or (in−1 · · · ik · · · iq · · · i0)2

(4)CZi,j = Pi0 ⊗ Ij + Pi1 ⊗ Zj =
(

1 0
0 0

)i

⊗ Ij +
(

0 0
0 1

)i

⊗ Zj .

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

3rd: Assign the task of simulating the sub-circuits equally to the nodes. The result of assignment would be
that one node simulates one sub-circuit, one node simulates several sub-circuits, or several nodes simulate
one sub-circuit. The simulations are implemented in the same way as the full amplitude mode.
4th: Combine the state of each sub-circuit to get the final states.

Single amplitude mode.  The single amplitude mode makes use of undirected graphical model to be capa-
ble of simulating quantum circuit with much more qubits. Broadly, the original quantum circuit is first mapped
to an undirected graphical model, then the undirected graph is split into several ones by fixing the value of
variables, and then the resulting graphs are processed in parallel by the vertical variable elimination algorithm.

The undirected graph model is a way of interpreting the relation between the change of bit values of qubit
state and the quantum gates. Naturally, the bit of state will change with actions of a sequence of quantum gates.
We define a sequence of Boolean variables to describe the change. For example, being acted upon by the Pauli-X
and H gate in sequence, the state |0� will be first changed to |1� , then to 1

/√
2(|0� − |1�) . Then the corresponding

Boolean variables are a0 = 0, a1 = 1, and a2 = {0, 1}, respectively. The undirected graph is constructed based on the
Boolean variables and quantum gates. Specially, each Boolean variable in the circuit corresponds exactly to one
vertex in the graph, and one or multiple gates in the circuit result in one edge in the graph.

The rule of mapping a quantum circuit to an undirected graph is simple and easy to follow9. It is summarized
to four cases as shown in Fig. 2. For the diagonal one- or two-qubit gate, it does not change the Boolean variable,
so the vertices corresponding to the same variable merge into one. For example, the CZ gate will transform the
state |11� to −|11� without flipping of the bit, so the input and output vertices are merged as shown in Fig. 2c. The
cross lines in the graph should be considered as one line, which corresponds to one gate, as shown in Fig. 2d.
Figure 3 presents an example to further illustrate the mapping of a circuit to undirected graph.

After getting the undirected graph, tensor techniques are used to process it. One edge in the graph corre-
sponds to a particular tensor, and the number of vertices connecting to the edge is the rank of the tensor. For

Figure 1.   The partition scheme for a quantum circuit with 8 qubits and 8 depths10. The first line shows the
original circuit. In the second line, the CZ gate in 7th depth is decomposed to projection and single-qubit
Z gate, then the original circuit converts to two circuits. In the third line, the CZ gate in 8th depth is further
decomposed, and the number of circuit is again double. In each of the final 4 circuits, the upper and lower parts
is untangled, and they can be simulated independently.

U
1d

a
0 a

0 U
1n

a
0

a
1a

0
a
0 a

1

a
0

b
0

U
2db

0

a
0

a
0

b
0

U
2nb

0

a
0

b
1

a
1

(a) (b)
(c) (d) a

0

b
0

a
1

b
1

Figure 2.   The quantum circuit representations of qubits and gates, and the corresponding undirected graphical
model. (a) The diagonal one-qubit gate, (b) the non-diagonal one-qubit gate, (c) the diagonal two-qubit gate,
(d) the non-diagonal two-qubit gate. The Boolean variables of a0, a1, b0 and b1 represent the bit value of the
state, which is 0 or 1. The vertices in the graph corresponds to the Boolean variables in the circuit, and the edges
corresponds to the gates.

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

example, the edge in Fig. 2d corresponds to a tensor T of rank 4, with 24 elements indexed by Ta0b0a1b1 . The
elements of tensor T are filled using U2n in the lexicographical order of the index, such as that T00,00 = (U2n)0,0,
T00,10 = (U2n)0,2, T01,00 = (U2n)1,0, T10,00 = (U2n)2,0 and so on.

There are two kinds of processes performed on the undirected graph, which are edge merging and vertex
elimination. Edge merging means that two edges connecting to the same vertex are merged to one. This is actu-
ally to merge two tensors with the same subscript into one. For instance, suppose that the edge between vertexes
b0 and b1 in Fig. 3b corresponds to a tensor Ab0b1 , and the edge between vertex b1 and d1 corresponds to Bb1d1 ,
then the two edges merges into one to get a higher-rank tensor as Cb0b1d1 = Ab0b1Bb1d1.

Vertex elimination reduces the number of vertexes connecting to a particular edge. This is actually a variant
of tensor contraction. We do this using two different methods, of which one is a differential way and the other
an integral way. In the differential method, the variable corresponding to a vertex is fixed to be 0 and 122. For
example, the vertex b1 in Fig. 3b is fixed to 0, then the tensor Bb1d1 is converted to B0d1 . Thus, the tensor rank is
reduced from 2 to 1, and the number of elements from 22 to 2. The expense of this method is that it doubles the
graph. That is, the graph needs to be computed twice with the target variable being 0 and 1, respectively. In the
integral method, all the elements of a tensor corresponding to a specific subscript are summed over to eliminate
that index. For instance, the subscript b1 in tensor Cb0b1d1 is eliminated by C′

b0d1
= Cb00d1 + Cb01d1 , so the vertex

b1 is eliminated from the edge corresponding to tensor Cb0b1d1.
In summary, the program for the single amplitude mode proceeds in the following four steps:

1st: Configure the computation nodes. Then every node parses the script to obtain a linked list recording
instructions of the quantum circuit. Map the quantum circuit to the undirected graphical model using the
linked list.
2nd: Eliminate the vertices in the first and last depth of the graph according to the specified initial and meas-
urement states using the differential vertex elimination method. Since the initial and measurement states are
certain, this step does not double the number of graphs.
3rd: Find the top N vertices with the largest number of connecting edges. Then perform the differential vertex
elimination on the N vertices, and this result into 2N graphs. Assign the task of simulating the 2N graphs equally
to the nodes. (Note that eliminating the top N high-degree vertices would be not the best way of simplifying
the graph. The treewidth of the graph really matters, but it is NP-complete to determine9,22. For simplicity,
we choose the top N high-degree vertices to remove at this step.)
4th: For each graph, eliminate all the vertices. Specifically, for each vertex, first merge all the connecting edges
into one in the order of rank, and then eliminate this vertex using the integral method. Multiply the elements
of the tensors corresponding to the left edges, and obtain the amplitude of each graph. Sum over the amplitude
of each graph to get the final amplitude of the state to measure.

Simulation of the effect of noise.  In practical quantum devices, qubits are performed imperfectly. Vari-
ous kinds of noise would randomly induce errors on the states of qubits. Particularly, in the coming NISQ era,
quantum computers have noisy gates unprotected by quantum error correction23. Thus, it is important to char-
acterize the effect of noise by classical simulations.

The effect of noise can be described by a series of super operators {K1, K2, …, Ks}, which satisfy the relation
∑

i K
†
i Ki = I . For the single-qubit gate, we consider the following six kinds of noise,

a
0

b
0

c
0

d
0

b
1

d
1

b
2

c
1

a
1

d
2

c
2

c
3

H

H

H

H

0

1

2

3 Z

Z

T

T

T

T

Z

Z

T

X

Y

X

X

a
0

a
1

a
1

a
1

a
1

a
1

)b()a(

Figure 3.   An illustration example of mapping a quantum circuit to the undirected graphical model. (a) A
quantum circuit adapted from the part of Fig. 1, (b) the corresponding undirected graph. The triangle symbols
are used to explain the change of Boolean variables along the worldline of qubit 0. Note that since the cross lines
are considered as one line in the undirected graph, the vertices are rearranged to avoid the false crossover.

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

The value p in the equation is on [0, 1], which is proportional to the noise intensity. Specifically, for the
first three kinds of noise, when p approaches 1, the noise close to zero; for the last three kinds of noise, when p
approaches zero, the noise close to zero.

For the two-qubit gate, the noise operators are defined as the Kronecker products of single-qubit gates. For
example, suppose the noise operators of single-qubit gates are {K1, K2} and {M1, M2}, respectively. Then, the noise
operators of two-qubit gate are {K1 ⊗M1, K1 ⊗M2, K2 ⊗M1, K2 ⊗M2}.

In the program, the procedure of simulating the noise goes as follows:
1st. Determine the class of quantum gates specified to be noisy and the kind of noise. Let every operator of
{K1, K2, …, Ks} act on the present quantum state using the same method as the full amplitude mode. Then
calculate the modulus of the states, namely the probabilities of the states.
2nd. Produce a random number between 0 and 1, and compare it with the above sequence of probabilities,
then determine which sub-operator Ki to be used. Multiply the matrix Ki with the quantum gate to obtain a
new matrix, i.e., the noisy gate.
3rd. Update the state by the new matrix using the same method as the full amplitude mode. Finally, normalize
the quantum state (the noisy gate may not be unitary).
To sum up, we have discussed the basic principles of the full, partial and single amplitude modes, as well as
the way of defining noisy gate to emulate the effect of noise. Subsequently, we introduce numerical results
and applications of the present simulator.

Results and applications
To characterize the performance of the simulator, we first implement the random quantum circuits (RQCs)
generated using the prescription of Google24. Then we demonstrate the quantum circuits for solving the Pois-
son equations and for the quantum arithmetic of evaluating transcendental functions. Here, we remark that the
quantum fast Poisson solver and quantum arithmetic algorithms are implemented mainly on the full amplitude
mode since these circuits have relatively few qubits and high depth. We leave such applications to future work
that the partial and single amplitude modes as well as the function of emulating the effect of noise are exploited.

Implementation of RQCs.  The full amplitude mode is the foundation of the other two modes, because the
resulting sub-circuits in partial and single modes are finally simulated using the same method as the full ampli-
tude mode. The main factor of limiting the computing speed of full amplitude mode is the data communication
between nodes. According to Eqs. (2) and (3), when updating one term of amplitudes αi, one need another term
αi+2

k, which may be stored in another core-group or another SW26010 processors. As shown in Fig. 4, for the
one-qubit gate, the speed of computation on a state stored in one core-group (node) is about ten times faster than
that in different core-groups. On the other hand, amplitudes being stored in one SW26010 processor or two has
almost no influence.

For the partial amplitude mode, we simulate a sequence of RQCs with 4096 nodes. The running time is shown
in Fig. 5. In addition to the numbers of qubit and depth, the structure of the lattice of qubits also has a big impact
on the running time, as shown by the results of 60 qubits (6 × 10 and 5 × 12).

For the single amplitude mode, we simulate RQCs with 49, 110 and 200 qubits using 256 nodes. The running
time is shown in Fig. 6. By taking advantage of the distributed computing system, we accomplished the simula-
tion of circuits with up to 200 qubits and 21 depths.

Quantum fast Poisson solver.  The Poisson equation is a widely used partial differential equation across
many areas of physics and engineering. For instance, when simulating the dynamic process of ocean current,
the Navier–Stokes equations25 can be reduced to the Poisson equation under certain conditions26. Solving the
Poisson equation, thus, constitutes the most computationally intensive part of the ocean current simulation. We
develop a quantum algorithm for solving the multi-dimensional Poisson equation27. It could provide an expo-
nential speedup to some degree over the classical counterparts. Here, we remark that for the one-dimensional
Poisson equation, there may exist more efficient quantum algorithms28. It could be implemented on the near-
term NISQ devices. We leave this point to future work.

The general idea of our quantum fast Poisson solver is straightforward. First, we discretize the Laplacian
operator to a square matrix using the central difference approximation, and then solve the resulting linear system

(5)

Bit flip : K1 =
√
p

[

1 0
0 1

]

, K2 =
√

1− p

[

0 1
1 0

]

;

Phase flip : K1 =
√
p

[

1 0
0 1

]

, K2 =
√

1− p

[

1 0
0 −1

]

;

Bit - Phase flip : K1 =
√
p

[

1 0
0 1

]

, K2 =
√

1− p

[

0 −i
i 0

]

;

Amplitude Damping : K1 =
[

1 0
0
√
1− p

]

, K2 =
[

0
√
p

0 0

]

;

Phase Damping : K1 =
[

1 0
0
√
1− p

]

, K2 =
[

0 0
0
√
p

]

;

Depolarizing : K1 =
√

1− 3p
/

4

[

1 0
0 1

]

, K2 =
√
p
/

2

[

0 1
1 0

]

, K3 =
√
p
/

2

[

0 −i
i 0

]

, K4 =
√
p
/

2

[

1 0
0 −1

]

.

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

of equations using the Harrow-Hassidim-Lloyd (HHL) algorithm29. Schematically, the algorithm is shown in
Fig. 7. It consists of three main stages, i.e., phase estimation, controlled rotation and uncomputation. The com-
plexity of our algorithm is O

(

d log2(ε−α)
)

 in qubits and O
(

κd log3(ε−α)
)

 in quantum operations, where ε is
the error of the solution, d the dimension of Poisson equation, α > 0 a smoothness constant and κ the condition
number of the discretized matrix. On the other hand, any direct or iterative classical algorithms have a cost of
at least ε−αd30. Thus, our quantum Poisson solver could provide an exponential speedup over classical methods
in the terms of dimension.

To demonstrate the correctness of the algorithm, we propose a simplified version of the circuit with four
discretized points27. The circuit consists of 38 qubits and 800 gates. It is simulated using the full amplitude mode,
and the run time is 20 min with 4096 nodes. The input state is 1√

2
|01� + 1

2 |10� +
1
2 |11� . This corresponds to a

Poisson equation with the solution of (0.9053, 1.1036 0.8018), which turns to (0.553 0.674 0.490) after normaliza-
tion. The output state is 0.551|01� + 0.675|10� + 0.491|11� , which is consistent with the real solution with an
error less than 0.5%. The running results verify the correctness of our algorithm.

Quantum arithmetic of transcendental functions.  Quantum arithmetic in the computational basis
constitutes the fundamental component of many circuit-based quantum algorithms. A vast amount of litera-
ture provided quantum circuits for solving the algebraic functions, including the addition31, multiplication32,
reciprocal33, and square root34 operations, etc. However, studies about the higher-level transcendental functions
are scare35,36. We develop a novel quantum algorithm, the qFBE (quantum Function-value Binary Expansion)

Figure 4.   The time span of performing one- and two-qubit gates in different cases on the full amplitude mode.
1Q-1CG means that a one-qubit gate acts on a state stored in one core-group. 1Q-2CG means that a one-qubit
gate acts on a state stored in two different core-groups, but in the same SW26010 processor. 1Q-2Pr means that
a one-qubit gate acts on a state stored in two SW26010 processors. 2Q represents the two-qubit gate.

Figure 5.   The time span of executing RQCs on the partial amplitude mode. The product of two numbers
represents the total number of qubits.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

method, to evaluate the transcendental functions37. The qFBE provides a unified and programmed solution for
the evaluation of logarithmic, exponential, trigonometric and inverse trigonometric functions.

Our qFBE method can be used to evaluate two classes of functions: the Class 1 including log2(x), ln(x),
arccos(x), arcsin(x), arccot(x) and arctan(x), and Class 2 including 2x, ex, cos(x), sin(x), cot(x), tan(x). More
specifically, suppose the functions of Class 1 are define as f: I → [0,1] with I ⊆ R, then the function value can be
expanded in a binary form as follows38,

where D0 and D1 are subintervals of I with D0 ∪ D1 = I, D0 ∩ D1 = Ø; r0 and r1 are functions defined as r0: D0 → I,
r1: D1 → I. On the other hand, the functions of Class 2 can be approximated in the following way37,

(6)

f (x) =
∑

n≥0, an∈D1

1

2n+1
.

with a0 = x, an+1 =
{

r0(an) if an ∈ D0

r1(an) if an ∈ D1
.

(7)

f (x) = an+1

with x = (0.vn−1vn−2 · · · v1v0), vi ∈ {0, 1},

and a0 = const, ai+1 =

{

r−1
0 (ai) if vi = 0

r−1
1 (ai) if vi = 1

.

Figure 6.   The time span of executing random quantum circuits on the single amplitude mode. The circuit with
200 qubits and 21 depths was simulated.

Reg.B

Reg.E

|0
Ancilla

-

Reg.A A
N

G
L

E

|0 m

|0 m

| nb

Controlled Rotation

Phase Estimation

|0 m

|0 m

1
|j jj

j

u||
j

u
jj

|1
()yR

mH †FT

iAte

U
N

C
O

M
P

U
T

E

Figure 7.   The overall quantum circuit of the quantum fast Poisson solver. It has four main registers, i.e. register
B, E, A and Ancilla. Register B is used to encode the coefficients of Poisson equation. It is the input of the circuit.
The approximated eigenvalues are stored in register E. Register A is used to store angles for the controlled
rotation operation. The Ancilla register will transduce the reciprocals of eigenvalues to the amplitudes.

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

Apparently, Eq. (6) outputs the function value digit-by-digit in a recursive way, while Eq. (7) approximates
the function value step-by-step in an iterative way.

The complexity of evaluating transcendental functions by the qFBE method is nO(m) in qubits and nO(m2)
in quantum gates, where n is the number of qubits to encode input or output and m the number of qubits to
store the intermediate values. The cost of our method is comparable with the best known results36 at worst case;
while when the input binary has a small number of bits, our method cost much lower. Furthermore, all digits of
the binary output can be exact, which makes the control of error propagation easy. The qFBE method provides a
unified and programmed solution for most transcendental functions, and the circuits are compact and modular
which are easy to be implemented on the virtual or the future real quantum machine.

The quantum circuits for evaluating functions of Class 1 and 2 are shown in Fig. 8 (a) and (b), respectively.
For functions of Class 1, the circuit consists of (n-1) modules, which actually implement the recursions in Eq. (6).
Each module outputs one bit of the solution. For functions of Class 2, the circuit consists of n modules, which
approximate the function value step-by-step according to Eq. (7). The last module outputs the final solution. We
present the complete quantum circuits for all the functions in Class 1 and 2 and demonstrate the correctness of
these circuits on the simulator, which include arccot(x)/π, cos(πx), arccos(x)/π, cot(πx), 2× and log2(x)37. The
running results verify the correctness of our algorithm.

Conclusions
We have developed an efficient quantum circuit simulator on the Sunway TaihuLight supercomputer. The simu-
lator possesses three working modes, being capable of calculating the full, partial and single amplitudes of a
quantum state. The three modes are built using entirely different methodologies. They are the direct evolution
of quantum states, circuit partition by decomposing controlled-Z gate and the complex undirected graphical
model. Our simulator has the function of emulating the effects of noise, and it supports many kinds of useful
quantum gates and operations. To make full use of the Sunway distributed system, the simulation was imple-
mented in a two-level parallel way. With 16,384 computational nodes, roughly 10% of the computing resource
of the Sunway, random quantum circuits with up to 40, 75 and 200 qubits can be simulated on full, partial and
single amplitude modes, respectively.

Based on the simulator, we further developed the quantum algorithms for solving the Poisson equations and
for quantum arithmetic of evaluating transcendental functions. The present quantum fast Poisson solver takes
the HHL algorithm as the framework, and provides an exponential speedup over the classical methods in the
terms of dimension. The qFBE method provides a unified and programmed way of evaluating the transcendental
functions, including the logarithmic, exponential, arc-cosine, arc-sine, cosine, sine, arc-cotangent, arc-tangent,
cotangent and tangent functions.

For future work, we will (1) advance the study of quantum Poisson solver to further reduce the algorithm
complexity and quantify the effect of noise, and (2) optimize the qFBE circuits by selecting the proper circuits
of evaluating algebraic functions. Furthermore, we will expand the applications of the present simulator to other
fields, like variational quantum algorithms and quantum machine learning.

Received: 13 October 2020; Accepted: 9 November 2020

References
	 1.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).
	 2.	 Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter. Phys. 11, 369 (2020).
	 3.	 Dalzell, A. M., Harrow, A. W., Koh, D. E. & Placa, R. L. L. How many qubits are needed for quantum computational supremacy?.

Quantum 4, 264 (2020).
	 4.	 Pednault, E., Gunnels, J.A., Nannicini, G., Horesh, L. & Wisnieff, R. Leveraging secondary storage to simulate deep 54-qubit

Sycamore circuits. arXiv, 1910.09534v2 (2019).
	 5.	 Villalonga, B. et al. Establishing the quantum supremacy frontier with a 281 Pflops/s simulation. Quantum Sci. Technol. 5, 3 (2020).
	 6.	 Gray, J. & Kourtis, S. Hyper-optimized tensor network contraction. arXiv 2002, 01935 (2020).
	 7.	 Huang, C., et al. Classical simulation of quantum supremacy circuits. arXiv, 2005.06787 (2020).
	 8.	 Pednault, E., et al. Breaking the 49-qubit barrier in the simulation of quantum circuits. arXiv, 1710.05867 (2017).

…

…

C
1 -(n

-2
)

Reg.I

Reg.O C
1 -i

C
1 -0

0|0
|0i …

1|0n

0| ma
…

0|w
| iw

1| nw

1| n ma

(a)

Output

…
0|a

…

C
2 -0

C
2 -i

C
2 -(n-1

)
0|v

| iv
1| nv

Reg.I

Reg.O

…

…

(b)

Output

Figure 8.   The overall circuits for evaluating functions in Group 1 (a), and Group 2 (b). The Group 1 circuit
consists of n−1 modules G1-i, which implement the recursions in Eq. (7). Similarly, the Group 2 circuit consists
of n modules G2-i, which corresponds to the iterations in Eq. (8). Both circuits mainly include two registers for
inputs and outputs.

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

	 9.	 Boixo, S., Isakov, S. V., Smelyanskiy, V. N. & Neven, H. Simulation of low-depth quantum circuits as complex undirected graphical
models. arXiv, 1712.05384v2 (2018).

	10.	 Chen, Z.-Y. et al. 64-qubit quantum circuit simulation. Sci. Bull. 63, 964 (2018).
	11.	 Zulehner, A. & Wille, R. Advanced simulation of quantum computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38,

5 (2019).
	12.	 Li, R.-L., Wu, B.-J., Ying, M.-S., Sun, X.-M. & Yang, G.-W. Quantum supremacy circuit simulation on Sunway TaihuLight. IEEE.

Trans. Parallel. Distrib. Syst. 31, 4 (2020).
	13.	 Jones, T., Brown, A., Bush, I. & Benjamin, C. QuEST and high performance simulation of quantum computers. Sci. Rep. 9, 10736

(2019).
	14.	 Raedt, H. D. et al. Massively parallel quantum computer simulator, eleven years later. Comput. Phys. Commun. 237, 47 (2019).
	15.	 Guo, C. et al. General-purpose quantum circuit simulator with projected entangled-pair states and the quantum supremacy frontier.

Phys. Rev. Lett. 123, 190501 (2019).
	16.	 Chen, M.-C. et al. Quantum-teleportation-inspired algorithm for sampling large random quantum circuits. Phys. Rev. Lett. 124,

080502 (2020).
	17.	 Pilch, J. & Długopolski, J. An FPGA-based real quantum computer emulator. J. Comput. Electron. 18, 329 (2019).
	18.	 Mahmud, N., El-Araby, E. & Caliga, D. Scaling reconfigurable emulation of quantum algorithms at high precision and high

throughput. Quantum Eng. 1, e19 (2019).
	19.	 Fu, H.-H. et al. The Sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59, 072001 (2016).
	20.	 Long, G.-L. General quantum interference principle and duality computer. Commun. Theor. Phys. 45, 825 (2006).
	21.	 Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information 171–202 (Cambridge University Press, Cam-

bridge, 2010).
	22.	 Chen, J.-X., Zhang, F., Huang, C., Newman, M. & Shi, Y.-Y. Classical simulation of intermediate-size quantum circuits. arXiv,

1805.01450v2 (2018).
	23.	 Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018).
	24.	 Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).
	25.	 Lukaszewicz, G. & Kalita, P. Navier-Stokes Equations: An Introduction with Applications (Springer International Publishing, Cham,

2016).
	26.	 Steijl, R. & Barakos, G. N. Parallel evaluation of quantum algorithms for computational fluid dynamics. Comput. Fluids 173, 22–28

(2018).
	27.	 Wang, S. B. et al. Quantum fast Poisson solver: the algorithm and complete and modular circuit design. Quantum Inf. Process 19,

170 (2020).
	28.	 Wang, S. B., et al. A quantum Poisson solver implementable on NISQ devices. arXiv, 2005.00256 (2020).
	29.	 Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).
	30.	 Ritter, K. & Wasilkowski, G. W. On the average case complexity of solving Poisson equations. Lect. Appl. Math. 32, 677 (1996).
	31.	 Draper, T. G., Kutin, S. A., Rains, E. M. & Svore, K. M. A logarithmic-depth quantum carry-lookahead adder. Quantum Inf. Comput.

6, 351 (2006).
	32.	 Rines, R. & Chuang, I. High Performance Quantum Modular Multipliers. arXiv, 1801.01081 (2018).
	33.	 Thapliyal, H., Munoz-Coreas, E., Varun, T.S.S. & Humble, T.S. Quantum circuit designs of integer division optimizing T-count

and T-depth. arXiv, 1809.09732 (2018).
	34.	 Munoz-Coreas, E. & Thapliyal, H. T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm.

ACM J. Emerg. Technol. Comput. Syst. 14, 3 (2018).
	35.	 Bhaskar, M. K., Hadfield, S., Papageorgiou, A. & Petras, I. Quantum algorithms and circuits for scientific computing. Quantum

Inf. Comput. 16, 197 (2016).
	36.	 Häner, T., Roetteler, M. & Svore, K.M. Optimizing quantum circuits for arithmetic. arXiv, 1805.12445 (2018).
	37.	 Wang, S. B. et al. Quantum circuits design for evaluating transcendental functions based on a function-value binary expansion

method. Quantum Inf. Process 19, 347 (2020).
	38.	 Borwein, J. M. & Girgensohn, R. Addition theorems and binary expansions. Can. J. Math. 47, 262 (1995).

Acknowledgements
We are very grateful to the National Supercomputing Center in Wuxi for the great computing resource. The
present work is financially supported by the National Natural Science Foundation of China (Grant No. 61575180,
61701464, 11475160) and the Pilot National Laboratory for Marine Science and Technology (Qingdao).

Author contributions
Z.W. designed the quantum algorithms for applications, participated partially in the design of the simulator and
prepared the manuscript. Z.C. wrote the simulation programs and tested the simulator. S.W. and W.L. designed
the quantum algorithms for applications and tested the simulator. Y.G., G.G. and Z.W. planned, organized and
supervised the project. All authors discussed the results and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-020-79777​-y.

Correspondence and requests for materials should be addressed to Y.G., G.G. or Z.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1038/s41598-020-79777-y
https://doi.org/10.1038/s41598-020-79777-y
www.nature.com/reprints

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:355 | https://doi.org/10.1038/s41598-020-79777-y

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

http://creativecommons.org/licenses/by/4.0/

	A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer
	Simulation techniques
	Sunway TaihuLight supercomputer.
	Full amplitude mode.
	Partial amplitude mode.
	Single amplitude mode.
	Simulation of the effect of noise.

	Results and applications
	Implementation of RQCs.
	Quantum fast Poisson solver.
	Quantum arithmetic of transcendental functions.

	Conclusions
	References
	Acknowledgements

