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Abstract: In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen
bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial
CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt
coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the
coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates
in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state
architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-
TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein.
Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole
donor ability of Chs, we believe that the findings presented herein are of remarkable importance for
supramolecular chemists as well as for those scientists working in the field of solid state chemistry.

Keywords: σ-hole interactions; chalcogen bonding; supramolecular chemistry; DFT study;
metal coordination

1. Introduction

Since the beginning of the 21st century, the ability of elements from Groups 13–18
covalently bound to electron withdrawing groups (EWG) to favorably interact with Lewis
bases (e.g., lone pair donors, π-systems and anions) has been subject of extensive investi-
gation [1–13]. It all began with the standardization of the electropositive site to describe
the main features of the hydrogen bonding (HB) interaction and from there, it became
common to name the noncovalent interactions (NCIs) between nucleophile and electrophile
sites (known as σ-holes) by using the name of the group to which the electrophilic atom
belongs [14,15]. In this context, the International Union of Pure and Applied Chemistry
(IUPAC) have already recommended the terms halogen bond (HaB) [16] and chalcogen
bond (ChB) [17] for naming the NCIs encompassing atoms from groups 17 and 18, respec-
tively. Furthermore, a specific name is given to each group, being aerogen or noble gas
bonding (NgB, group 18) [12], pnictogen bonding (PnB, group 15), [18,19] tetrel bonding
(TtB, group 14) [20], and triel bonding (TrB, group 13) [7]. Furthermore, elements from
groups 7, 8, 11 and 12 acting as Lewis acids have recently received the names of matere
bonding (MaB, group 7) [21], osme bonding (OmB, group 8) [22], spodium bonding (SpB,
group 12) [23] and regium or coinage bonding (CiB, group 11) [24–27].

The use of σ-holes as an alternative to HB interactions has been reported in many
studies belonging to a broad spectrum of fields, such as host-guest chemistry, catalysis,
supramolecular chemistry, membrane transport, crystal engineering, etc. [28–45]. In addi-
tion, comparisons have been made to unveil similarities and differences between σ-hole
interactions and the HB in both energetic and geometric characteristics [46–51].

Nowadays a remarkable progress has been achieved regarding the supramolecular
chemistry of chalcogen bonding, particularly in regulating and fine tuning novel chemical
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systems for applications in crystal engineering, supramolecular chemistry, catalysis, trans-
port of anions and functional materials [3,9,10,42]. As a common feature among the σ-hole
family of interactions, the physical nature of the ChB is mainly based on electrostatics, while
dispersion forces, polarization, charge-transfer, orbital delocalization and π-conjugation are
also potential contributors to the ChB formation and strengthening [52–55]. In this context,
two key features of the ChB interaction are both the strength and directionality. The former
is related to the difference between the sum of van der Waals radii of the interacting atoms
(ΣrvdW (Ch···A), where A = Lewis base) and the experimental Ch···A distance. The latter
is related to the location of a σ-hole (opposite to the R–Ch bond), hence, the strength of
the interaction is maximized at a ∠R–Ch···A angle of 180◦, representing a measure of the
directionality. In a parallel way to other σ-hole based interactions, both the strength and
directionality of ChBs mainly depend on several factors:

Ch atom involved: Conversely to HB, the σ-hole donor ability varies upon modifi-
cation of the Ch atom [39,56,57]. In Table 1 are gathered the atomic polarizabilities (α)
and van der Waals radii (RvdW) of the chalcogen elements from period 2 to 5. As noted,
the atomic α value becomes higher from 3.0 a.u. in O to 25.9 a.u. in Te. Interestingly, the
difference in the atomic polarizability between O and S is noticeable (around 4 times higher
for S), whilst the variations between S and Se or Se and Te are of lesser magnitude.

Table 1. Atomic polarizabilities (α, a.u.) calculated at the MP2/def2-TZVP level of theory of chalcogen
(Ch) elements and their van der Waals radii (RvdW, Å).

Ch α RvdW

O 3.0 1.52

S 11.8 1.80

Se 17.5 1.90

Te 25.9 2.06

R groups attached to the Ch atom: The substituents (R) effect to the Ch···A bond
features have been analysed from a theoretical perspective [58–62], evidencing that EWG
enhance the strength of the ChB through the formation of larger and deeper σ-hole(s).
Conversely, the use of electron-donating groups (EDG) resulted in a weakening of the
interaction. Both types of substituents have been used to correlate structure-property
functions, as well as a source of stabilization of the secondary coordination sphere in metal
complexes. Figure 1 shows several Molecular Electrostatic Potential (MEP) surfaces of the
–CH3 and –CF3 substituted Selenium and Tellurium derivatives. As noted, two σ-holes are
located on each Ch atom on the extension of the C–Se and C–Te bonds and their MEP values
become more positive ongoing from Se to Te, in agreement with the atomic polarizabilities
discussed above. Moreover, the use of strong EWG (e.g., –CF3) increases the potential of
the σ-hole, thus enhancing the σ-hole donor ability of the Ch atom and strengthening the
interaction. Finally, using EDG as substituents of the Lewis base can also enhance the ChB
interaction by increasing the nucleophilicity of the electron rich moiety [63,64].
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Figure 1. MEP surfaces (MP2 [65]/def2-TZVP [66] level of theory) of the Ch(CH3)2 and Ch(CF3)2

(Ch = Se and Te) molecules. The energy values at concrete points of the surface are given in kcal/mol
(0.001 a.u.). The calculations have been performed by means of the Turbomole 7.0 software (Karlsruhe,
Germany) [67].

Interacting partner (A): A variety of classical nucleophile species (e.g., lone pair
bearing chalcogen, pnictogen or halogen atoms), including metal ions with available dz2

(Rh+, Ni2+, Pt2+, Pd2+) or dx2 − y2(Au+) orbitals can act as electron donor moieties to form
strong ChBs [68–75]. Moreover, in a similar fashion to aromatic π-systems, the chelate ring
has also been observed to participate as a ChB acceptor in intermolecular ChBs [76].

In this article, we illustrate several X-ray structures to highlight that ChBs in metal
complexes can be used as an effective tool in crystal engineering and in the generation of
functional materials. Particularly, we have focused our attention on a divalent Ch moiety
coordinated to a metal center, which certainly increases the R–Ch σ-hole, leading to new
opportunities to use ChBs as a supramolecular tool in coordination chemistry [77,78]. To
illustrate this idea, two examples have been selected (see Figure 2), where a bidentate
Se/Te ligand is coordinated to a Pd2+ ion in addition to two chloride ions in a square
planar geometry. Upon coordination, there is one Se/Te σ-hole still available to undergo
ChB interactions, which exhibits an enhanced electrostatic potential (up to 14 kcal/mol)
compared to the uncoordinated ligand.
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In this context, the Cambridge Structural Database (CSD) [79] has been inspected and
a series of selected examples where Se or Te atoms coordinated to square planar metal
coordinated behave as an electrophilic center (chalcogen bond donor) have been discussed.
In a parallel way to X-ray analysis, the presence of intermolecular chalcogen bonding
in metal organic complexes has been also analyzed from a theoretical perspective. The
selection of square planar complexes instead of octahedral is to prevent steric effects that
may hamper the formation of ChB interactions, as represented in Scheme 1. We believe
this review article will attract the attention of both theoreticians and experimentalists to
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investigate the ChBs in coordination compounds, which can be used as a new synthon in
crystal engineering and improve the functional properties of materials.
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2. Computational Methods

Calculations regarding the supramolecular complexes have been carried out at the
PBE0 [80,81]-D3 [82]/def2-TZVP [66] level of theory using the program Turbomole 7.2 (Karl-
sruhe, Germany) [67]. The binding energy values (∆EBSSE) were calculated as the energy
difference between the optimized structures of the complex and isolated monomers fol-
lowing the supermolecule approximation (∆Ecomplex = Ecomplex − EmonomerA − EmonomerB).
Using the Gaussian 16 software [83], the MEP surfaces of compounds Ch(CH3)2, Ch(CF3)2,
[PdCl2{1,2-C6H4Ch(CH3)2}] and 1,2-C6H4Ch(CH3)2 (Ch = Se and Te) have been computed
at the MP2 [65]/def2-TZVP level of theory.

To compute the contribution of the Chalcogen bond contacts (in kcal/mol) the follow-
ing equations were used [84]:

Eint = 0.375 × V(r) − 0.5655 (for those ChBs involving Se)

Eint = 0.556 × V(r) + 0.6445 (for those ChBs involving Te)

Finally, the Bader’s “Atoms in molecules” theory [85,86] has been used to analyze and
describe the interactions discussed in this work using the AIMall calculation package [87].
The PBE0/def2-TZVP level of theory was used for the wavefunction analysis as well as for
the NBO charge analysis (also using Gaussian-16 software).

3. Results and Discussion
3.1. CSD Search

We have inspected the CSD and found 103 structures where either divalent Se or Te is
coordinated to square planar metal centers, which were in all cases Pt or Pd. No examples
with other typical square planar metals like Ni and Rh were found. Remarkably, in 73 out of
103 structures, we detected the existence of ChB interactions, using the following geometric
criteria: Ch···X distance shorter than the sum of van der Waals radii plus 0.2 Å (ΣRvdw + 0.2)
and ] R–Ch···X greater than 160 degrees (X = O, C, Pt, Pd, Cl and I). Table S1 compiles the
CSD reference codes, geometric features and donor-acceptor atoms. Most of the hits are
observed for Se (40 structures) and chloride as electron donor (52 structures). Other electron
donors are Br, I, O and C-atoms belonging to electron rich aromatic rings. Interestingly, we
have also observed some structures where it is the metal center that acts as electron donor
(3 for Pd and 3 for Pt). The geometric features, energies and characterization of the ChBs
are provided in the following sections.

3.2. Selenium Derivatives
3.2.1. Oxygen as Electron Donor

Figure 3a shows a self-assembled dimer that is formed in the solid state of
dichloro-(2,3:7,8-bis(methylenedioxy)-selenanthrene-Se,Se′)-platinum(II) (refcode DUW-
MEN [88]). It can be observed that one O-atom of the methylenedioxy group is located
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opposite to the C–Se bond, thus forming a ChB. The MEP surface (Figure 3b) of this com-
pound reveals the existence of three σ-holes opposite to the three covalent bonds, including
the coordination Pt–Se bond. It can be observed that the intensity of the σ-hole opposite
to the C–Se bond is large, which is quite unexpected considering the electronegativity of
carbon (C–Se bond is not much polarized). This is explained by the coordination of Se
to the Pt that increases the Lewis acidity of the Se-atom. It can be also observed that the
approximation of the O-atom to the Se could not be possible for a hypothetical octahedral
complex due to the presence of an apical ligand.
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Two additional examples showing Ch···O contacts with a clear structure direct-
ing role are shown in Figure 4. Both complexes present the same ligand [2-(phenyl((2-
(phenylselanyl)ethyl)imino)methyl)phenolato], coligand (chloride) and the difference re-
sides in the transition metal (Pd for XUFHEM [89] and Pt for XUFHIQ [89]). Both struc-
tures form very similar self-assembled dimers in the solid state where two symmetrically
equivalent Se···O contacts are established. Both dimers also present metal···metal (M···M)
interactions with distances shorter than 3.45 Å. The Se···O distances are shorter in XUFHEM
(Figure 4a) structure, likely influenced by the shorter Pd···Pd distance. The directionality
of the ChBs is worse (with respect to linearity) than the observed in DUWMEN structure
(Figure 4b), which is also due to the restriction imposed by the M···M interaction.
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3.2.2. Halogen as Electron Donor

As commented above, most hits from the CSD search present an halogen atom as
electron donor, basically because chloride is widely used in the synthesis of Pd and Pt
complexes. Figure 5a highlights a self-assembled dimer that is formed in the solid state of
(1,2-bis(phenylseleno)benzene)-dichlorido-palladium(II) (refcode XILFEE [90]), selected as
representative X-ray structure with Se···Cl contacts. It can be observed that the chloride
ligands are located opposite to the C–Se bonds, thus forming four concurrent ChBs and one
Pd···Pd contact. The MEP surface of this compound (see Figure 5b) reveals the existence
of two σ-holes opposite to (i) one C–Se covalent bond and (ii) to one Pt–Se coordination
bond. The second C–Se σ-hole is buried by the large negative belt of Cl. It can be observed
that the MEP value at the σ-hole opposite to the Pd–Se bond is larger likely due to the
contribution of the nearby C–H bond.
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Three additional examples showing Ch···Cl contacts are represented in Figure 6, in
all cases the adducts are self-assembled dimers. In the dimer of dichloro-(diphenyl(2-
(phenylselanyl)phenyl)phosphine)-platinum (PUYWUC [91], Figure 6a), the Pt···Pt inter-
action is not established and the formation of the dimer is dominated by ChBs. In the
other two structures (refcodes TAFWIJ [92], Figure 6b and EPULIM [93], Figure 6c), Pd···Pd
interactions coexist with the Se···Cl contacts. Among them, TAFWIJ structure is the one
exhibiting the highest directionality (C–Se···Cl = 176.1◦) and the shortest M···M distance.
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3.2.3. Carbon as Electron Donor

Figure 7a shows a dimer extracted from an 1D supramolecular assembly that propa-
gates in the crystal packing of chloro-[8-({[2-(phenylselanyl)ethyl]imino}methyl)naphthalen-
1-yl]-palladium(II) complex (refcode BEJWIZ [94]). The C-atom bonded to the Pd is located
opposite to the C–Se bond, thus playing the electron donor role in this ChB interaction,
which is facilitated by the anionic nature of this C-atom. The MEP surface (Figure 7b)
shows a small σ-hole opposite to the C–Se bond that merges with the large blue region
under the influence of the methylene group.
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Other two examples of X-ray structures exhibiting Se···C contacts, where the electron
donor C-atom belongs to an aromatic system, are given in Figure 8. It is interesting to high-
light that for chloro-(2,4-di-t-butyl-6-(((2-(phenylselanyl)ethyl)imino)methyl)phenolato)-
palladium(II) structure (Figure 8a, refcode COKFIT [95]), the self-assembled dimer does not
present M···M interactions and the C-atom is located opposite to the Pd–Se bond. Therefore,
in this compound, the third σ-hole at the Se-atom that emerges upon Pd-complexation is
responsible for the formation of the dimers. In this example, the ChBs are the only forces
governing the assembly. For the other example (TOQPEV [96], Figure 8b), in addition to
the ChBs opposite to the C–Se bonds, an M···M interaction is established further support-
ing the formation of the self-assembled dimer. Curiously, the Pd–Se···C ChBs (dimer of
COKFIT) are more directional than the C–Se···C (dimer of TOPQEV). To our knowledge,
there are not previous examples in the literature of M–CH···X ChBs, where the electron rich
atom is opposite to a M–Ch bond. This interesting and unexplored topic deserves further
investigation by the scientific community.
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3.2.4. Metal as Electron Donor

The role of metal centers in d8 or d10 configuration as electron donors has been recently
analyzed for halogen bonding interactions [97]. However, similar investigations for chalco-
gen bonding are unprecedented. In this section, we show several examples where Pt or Pd
act as electron donors in ChBs. Figure 9a shows a self-assembled dimer observed in the
solid state of refcode VUGWOK [98]. The Pd is located opposite to the C–Se bond, thus
acting as electron donor in the ChB interaction. The MEP surface (Figure 9b) shows a small
σ-hole opposite to the Pd–Se bond (+8.1 kcal/mol) and a more intense one opposite to a
C–Se bond (+16.9 kcal/mol).
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Other three interesting examples of X-ray structures exhibiting Se···M (M = Pt, Pd)
are depicted in Figure 10. It is worthy to comment that the C–Se···M angle is in all cases
higher than 170◦, thus confirming the strong directionality of the interaction and that the
nucleophilic metal center (filled dz

2 orbital) is pointing to the σ-hole opposite to the C–Se
bond. For the three selected examples (QETFED [99] (Figure 10a), QETFAZ [99] (Figure 10b)
and MELJUJ [100] (Figure 10c)) the distances are similar (around 3.7 Å). Finally, in Table 2,
the list of CSD codes including compound names and formulas of the Se involving dimers
is given.
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Table 2. List of CSD codes, compound names and formulas of the Se involving dimers.

CSD Code Name Formula

DUWMEN
dichloro-(2,3:7,8-bis(methylenedioxy)-

selenanthrene-Se,Se′)-platinum(II)
acetone solvate

C14H8Cl2O4PtSe2, C3H6O

XUFHEM
chloro-(2-(phenyl((2-(phenylselanyl-

kSe)ethyl)imino-kN)methyl)phenolato-kO)-
palladium(II)

C21H18ClNOPdSe

XUFHIQ
chloro-(2-(phenyl((2-(phenylselanyl-

kSe)ethyl)imino-kN)methyl)phenolato-kO)-
platinum(II)

C21H18ClNOPtSe

XILFEE (1,2-bis(phenylseleno)benzene)-dichlorido-
palladium(II) C18H14Cl2PdSe2

PUYWUC cichloro-(diphenyl(2-
(phenylselanyl)phenyl)phosphine)-platinum C24H19Cl2PPtSe

TAFWIJ dichloro-(2-(phenylselanyl)aniline)-palladium(II)
acetonitrile solvate C12H11Cl2NPdSe, C2H3N

EPULIM
dichloro-(1-(2,6-di-isopropylphenyl)-4-

((phenylselanyl)methyl)-1H-1,2,3-triazole)-
palladium(II)

C21H25Cl2N3PdSe

BEJWIZ
chloro-[8-({[2-

(phenylselanyl)ethyl]imino}methyl)naphthalen-1-
yl]-palladium(II)

C19H16ClNPdSe

COKFIT
chloro-(2,4-di-t-butyl-6-(((2-

(phenylselanyl)ethyl)imino)methyl)phenolato)-
palladium(II)

C23H30ClNOPdSe

TOQPEV chloro-(2-(1-(2-(phenylselanyl)ethylimino)ethyl)-
1-naphtholato-N,O,Se)-palladium(II) C20H18ClNOPdSe

VUGWOK chloro-(1,7-bis(phenylselenomethyl)-1,7-dicarba-
closo-dodecaborate-B,S,S′)-palladium(II) C16H23B10ClPdSe2

QETFED
dichloro-(1-methyl-3-[(phenylselanyl)methyl]-

imidazol-2-ylidene)-platinum(II)
acetonitrile solvate

C11H12Cl2N2PtSe,
0.5(C2H3N)

QETFAZ
dichloro-(1-methyl-3-[(phenylselanyl)methyl]-

imidazol-2-ylidene)-palladium(II)
acetonitrile solvate

C11H12Cl2N2PdSe,
0.5(C2H3N)

MELJUJ chloro-((2-((2-methylselanyl)ethyl)iminomethyl)-
6-(1-ethylpropyl)phenolato)-palladium(II) C15H22ClNOPdSe

3.3. Tellurium Derivatives

In case of tellurium complexes, the CSD search shows that there are no examples
involving oxygen as electron donor. In most of the hits, the electron donor is a halogen atom
(Cl, Br or I), a π-system or a metal center (Pd and Pt) as discussed in the following sections.

3.3.1. Halogen as Electron Donor

Figure 11a highlights a self-assembled dimer that is formed in the X-ray packing of
bis(benzenetellurenyl iodide)-di-iodo-palladium(II) (refcode CUHMOJ [101]), selected as
representative structure showing Te···I contacts. It can be observed that the iodide ligands
are located approximately opposite to the C–Te bonds (] C–Te···I = 161.1◦), thus forming
four concurrent ChBs and one Pd···Pd contact (3.402 Å). The MEP surface of this compound
(see Figure 11b) reveals the existence of two σ-holes opposite to (i) one C–Te covalent bond
and (ii) to a Pd–Te coordination bond. The third σ-hole (expected opposite to the I–Te
bond) is completely covered by the large and negative belt of I. It can be observed that the
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MEP value at the σ-hole opposite to the Pd–Te bond is smaller (+15.7 kcal/mol) than that
opposite to the C–I bond (+18.8 kcal/mol).
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Three additional examples showing Te···Cl, Br contacts are represented in Figure 12,
where all three form self-assembled dimers in the solid state that are relevant in the
crystal packing. In the dimer of dichloro-[1-(2-{[2,6-di-isopropylphenyl]tellanyl}phenyl)-
N,N-dimethylmethanamine]-palladium(II) (CODTEX [102]), the M···M interaction is not
established and the dimer formation is basically dominated by Te···Cl ChBs that are less
directional (157◦) compared to those previously described for Se (Figure 12a). It is known
that the directionality of ChBs decreases on going from S to Te because the size of the
σ-hole is larger in the more polarizable Ch atoms. In the other two structures represented
in Figure 12 (refcodes JAGZIA [103] (Figure 12b) and TAPYEO [104] (Figure 12c)), Pd···Pd
and Pt···Pt interactions coexist with the Te···Br and Te···Cl contacts, respectively. JAGZIA
structure is the one with higher directionality (] C–Te···Br = 171.7◦) and shorter M···M
distance (3.568 Å) whilst TAPYEO exhibits longer M···M distance (3.730 Å) and smaller
angle (] C–Te···Cl = 154.7◦).
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3.3.2. Carbon as Electron Donor

We have found only two structures in the database showing Te···C interactions, which
are represented in Figure 13, refcodes SIDDAL [105] and WIXSEB [106]. In the former
the chloro-(2-(1-((2-((4-methoxyphenyl)tellanyl)ethyl)amino)ethyl)phenolato)-palladium(II)
forms discrete dimers with short Pd···Pd distance (3.203 Å) reinforced by short and di-
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rectional Te···Cl contacts (see Figure 13a) using the σ-hole opposite to the CAromatic–Te
bond. In addition, these dimers self-assemble via the formation of ChBs using the σ-hole
opposite the Caliphatic–Te bond where the electron donor C-atom belongs to the aromatic
system, with longer distances (3.871 Å) and smaller angles (] C–Te···C = 166.7◦). In the
other example (WIBSEX [106] (Figure 13b)) only one type of ChB is established with shorter
Te···C distance (3.465 Å) and better directionality (] C–Te···C = 172.5◦) compared to the
SIDDAL dimer.
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3.3.3. Metal as Electron Donor

For tellurium, we have also found the interesting Ch···d8[M] ChB interaction com-
mented above in two structures (M = Pt). Figure 14a shows a self-assembled dimer observed
in the solid state of one of both (refcode ABOREP [107]). The Pt is located opposite to
the C–Te bond, thus acting as electron donor in the ChB interaction. The MEP surface of
chloro-(4-(2-(phenyltelluro)ethylimino)pentan-2-onato-N,O,Te)-platinum(II) complex (see
Figure 14b) shows three σ-holes opposite to the three covalent bonds. The σ-hole opposite
to the Caliphatic–Te bond presents the lowest value (+9.4 kcal/mol) while the other two
exhibit similar and significantly larger MEP values (+21.9 and +25.1 kcal/mol) because
they are under the influence of the CH bonds.
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The other example of X-ray structure exhibiting Te···Pt ChBs is depicted in Figure 15,
that corresponds to chloro-(N-(3-(phenyltellanyl)propyl)pyridine-2-carboxamidato)-
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platinum(II) complex (refcode CUHMAV [101]). It also forms self-assembled dimers in
the solid state where the Pt atom is positioned opposite to the Ar–Te bond (3.715 Å).
The directionality (] C–Te···Pt = 165.5◦) of the ChB interactions suggests that the nucle-
ophilic dz

2 orbital of Pt is pointing to the tellurium σ-hole, as it has been demonstrated
for halogen bonded complexes [97]. Finally, in Table 3, the list of CSD codes including
compound names and formulas of the Se involving dimers is given.
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Table 3. List of CSD codes, compound names and formulas of the Te involving dimers.

CSD Code Name Formula

CUHMOJ bis(benzenetellurenyl iodide)-di-iodo-palladium(II) C12H10I4PdTe2

CODTEX
dichloro-[1-(2-{[2,6-di-

isopropylphenyl]tellanyl}phenyl)-N,N-
dimethylmethanamine]-palladium

C21H29Cl2NPdTe

JAGZIA dibromo-(meso-1,3-bis(phenyltelluro)propane)-
palladium(II) C15H16Br2PdTe2

TAPYEO cis-Dichloro-(2-(4-ethoxyphenyl-
telluro)ethyl(methyl)sulfido)-platinum(II) C11H16Cl2OPtSTe

SIDDAL

chloro-(2-(1-((2-((4-
methoxyphenyl)tellanyl)ethyl)amino)ethyl)phenolato)-

palladium(II)
dichloromethane solvate

C17H20ClNO2PdTe,
0.5(CH2Cl2)

WIXSEB
(µ2-N-(o-phenylene)methyllidene)-N′-((3-formyl-o-

phenylene)methylidene)-platinum(II)-tellurium
hexafluorophosphate

C23H19N2OPtTe+, F6P−

ABOREP chloro-(4-(2-(phenyltelluro)ethylimino)pentan-2-
onato-N,O,Te)-platinum(II) C13H16ClNOPtTe

CUHMAV chloro-(N-(3-(phenyltellanyl)propyl)pyridine-2-
carboxamidato)-platinum(II) C15H15ClN2OPtTe

4. Theoretical Study
4.1. Energetic Study

With the purpose to shed light on the nature and directionality of the ChBs stud-
ied herein we have performed a computational study on three selected dimers (XILFEE,
MELJUJ and CUHMOJ). In Table 4 the binding energies (∆EBSSE) and the contribution
of the Chalcogen bond contacts (derived from the V(r) predictor) (∆EChB), equilibrium
distances (d) as well as the value of the density at the bond critical point that characterizes
the interaction (ρ·102) are included.



Int. J. Mol. Sci. 2022, 23, 4188 13 of 18

Table 4. Binding energies and the contribution of the Chalcogen bond contacts (∆EBSSE and ∆EChB in
kcal/mol, respectively), equilibrium distances (d, in Å), C–Ch···X (X = Cl, O and I), angle (∠, in ◦)
and value of the density at the bond critical point (ρ 102, in a.u.) for XILFEE, MELJUJ and CUHMOJ
optimized dimers. The NBO charges of both chalcogen bond donor (QD) and acceptor (QA) atoms
are also indicated in e.

CSD Code ∆EBSSE ∆EChB d ∠ ρ 102 QD (e) QA (e)

XILFEE −32.0 −7.9 a 3.359 165.6 1.15 0.78 −0.42

MELJUJ −31.5 −2.7 a 3.445 c 170.6 c 0.63 0.70 −0.64

CUHMOJ −24.5 −4.8 b 3.724 178.9 1.19 0.79 −0.15
a Values obtained using the equation Eint = 0.375 * V(r) − 0.5655 from reference [86]. b Values obtained using the
equation Eint = 0.556 × V(r) + 0.6445 from reference [86]. c Values measured to the Pd-O bond centroid.

Firstly, the energetics, in all three calculated structures, large and attractive interaction
energy values (ranging from −24.5 to −32.0 kcal/mol) were obtained, which involve the
chalcogen bonding interactions as well as other noncovalent forces (e.g., hydrogen bonding,
metal···metal interactions or π-π stacking). These results agree with very recent reports on
similar supramolecular assemblies [108]. Secondly, the chalcogen bonding energies also
achieved negative and attractive values (ranging from −2.7 to −7.9 kcal/mol). Finally,
the NBO charges analyses resulted in positive values in the case of the ChB donor atom
(Se/Te) of around 0.80e and negative ones in the case of the ChB acceptor atom (Cl, O and
I), ranging between −0.2 and −0.6e.

4.2. AIM Analysis

Figure 16a shows the QTAIM analysis of the XILFEE self-assembled dimer. The
existence of the four Se···Cl ChBs is confirmed by the presence of four bond CPs and bond
paths interconnecting the Se and Cl atoms. The QTAIM analysis also confirms the presence
of a Pd···Pd interaction, characterized by a bond CP and bond path connecting both atoms.
The dimerization energy is very large (−32.0 kcal/mol) due to the coexistence of five
contacts, thus validating the structure directing role of such interactions in the solid state.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 16. Distribution of intermolecular bond CPs (colored in pink)and bond paths regarding 

XILFEE (a), MELJUJ (b) and CUHMOJ (c) dimers. The value of the density at the bond CP is given 

in a.u. (ρ·100). Pd···Pd and ancillary HB interactions are highlighted in red. 

Finally, Figure 16c shows the QTAIM analysis of the CUHMOJ self-assembled dimer. 

The existence of the four Te···I ChBs is corroborated by the presence of four bond CPs and 

bond paths interconnecting the Te and I atoms. The QTAIM analysis also evidences a 

Pd···Pd interaction, characterized by a bond CP and bond path connecting both atoms. 

The dimerization energy is large (−24.5 kcal/mol) due to the coexistence of five contacts, 

thus further supporting the structure directing role of such interactions in the solid state. 

The interaction energy is smaller (in absolute value) than that observed for the XILFEE 

dimer (see Figure 16a) described above, where a similar combination of interactions is 

observed. This is likely due to the fact that chloride is better electron donor than iodide 

(the MEP value at the negative belt is larger). 

5. Concluding Remarks 

In this review article, the CSD has been inspected to demonstrate the existence and 

strong directing role of ChBs interaction involving metal coordinated Se and Te atoms. 

The formation of the coordination bond has a double effect. First, it provides an additional 

σ-hole to the Se or Te atoms and, secondly, increases their Lewis base acidity, thus rein-

forcing their ability to establish ChBs. We have provided several examples of structures 

retrieved from the CSD that evidence the structure directing role of such interactions. 

Moreover, the energetic features of the ChBs have been computed and the interactions 

characterized by using the QTAIM. In some of these examples, the electron donor system 

is the metal center (Pd or Pt). This result is significant, since Ch···d8[M] interactions have 

not been studied before, as far as our knowledge extends. More investigation is thus 

needed in this direction, since it can be relevant in several fields like supramolecular 

chemistry, crystal engineering, coordination chemistry and supramolecular catalysis. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1. 

Author Contributions: Conceptualization, A.F. and A.B.; methodology, A.F. and A.B.; software, 

A.F. and A.B.; investigation, A.F. and A.B.; writing—original draft preparation, A.B. and A.F., writ-

ing—review and editing, A.F. and A.B., visualization, A.F. and A.B., project administration, A.F.; 

funding acquisition, A.F. All authors have read and agreed to the published version of the manu-

script. 

Figure 16. Distribution of intermolecular bond CPs (colored in pink)and bond paths regarding
XILFEE (a), MELJUJ (b) and CUHMOJ (c) dimers. The value of the density at the bond CP is given in
a.u. (ρ·100). Pd···Pd and ancillary HB interactions are highlighted in red.

On the other hand, in Figure 16b the QTAIM analysis of the MELJUJ structure is
shown. As noticed, the presence of two Se···O ChBs is confirmed by the existence of
two bond CPs and bond paths interconnecting the Se and O atoms. This result differs
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from the X-ray crystal structure, which exhibited a Se···Pd ChB. In addition, the exis-
tence of ancillary hydrogen bonding (HB) interactions between the CH groups from the
aliphatic chain of the ligand and the chloride atoms was also confirmed by means of a
bond CP and a bond path connecting both moieties. The dimerization energy is also large
(−31.5 kcal/mol) due to the existence of both ChB and HB interactions, which contribute
to the formation and stabilization of this supramolecular assembly.

Finally, Figure 16c shows the QTAIM analysis of the CUHMOJ self-assembled dimer.
The existence of the four Te···I ChBs is corroborated by the presence of four bond CPs
and bond paths interconnecting the Te and I atoms. The QTAIM analysis also evidences a
Pd···Pd interaction, characterized by a bond CP and bond path connecting both atoms. The
dimerization energy is large (−24.5 kcal/mol) due to the coexistence of five contacts, thus
further supporting the structure directing role of such interactions in the solid state. The
interaction energy is smaller (in absolute value) than that observed for the XILFEE dimer
(see Figure 16a) described above, where a similar combination of interactions is observed.
This is likely due to the fact that chloride is better electron donor than iodide (the MEP
value at the negative belt is larger).

5. Concluding Remarks

In this review article, the CSD has been inspected to demonstrate the existence and
strong directing role of ChBs interaction involving metal coordinated Se and Te atoms. The
formation of the coordination bond has a double effect. First, it provides an additional
σ-hole to the Se or Te atoms and, secondly, increases their Lewis base acidity, thus rein-
forcing their ability to establish ChBs. We have provided several examples of structures
retrieved from the CSD that evidence the structure directing role of such interactions.
Moreover, the energetic features of the ChBs have been computed and the interactions
characterized by using the QTAIM. In some of these examples, the electron donor system is
the metal center (Pd or Pt). This result is significant, since Ch···d8[M] interactions have not
been studied before, as far as our knowledge extends. More investigation is thus needed
in this direction, since it can be relevant in several fields like supramolecular chemistry,
crystal engineering, coordination chemistry and supramolecular catalysis.
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