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Purpose: To assess clinical applicability of automatic image analysis in microbial kerati-
tis (MK) by evaluating the relationship between biomarker measurements on slit-lamp
photography (SLP) and best-corrected visual acuity (BCVA).

Methods: Seventy-six patients withMKwith SLP images and same-day logarithmof the
minimum angle of resolution (logMAR) BCVA were evaluated. MK biomarkers (stromal
infiltrate, white blood cell infiltration, corneal edema, hypopyon, epithelial defect)
were segmented manually by ophthalmologists and automatically by a novel, open-
source, deep learning–based segmentation algorithm. Five measurements (presence,
maximum width, total area, proportion of the corneal limbus area affected, centrality)
were calculated. Correlations between the measurements and BCVA were calculated.
An automatic regression model estimated BCVA from the measurements. Differences
in performance between using manual and automatic measurements were evaluated
using William’s test (for correlation) and the paired-sample t-test (for absolute error).

Results: Measurements had high correlations of 0.86 (manual) and 0.84 (automatic)
with true BCVA. Estimated BCVA had average (mean ± SD) absolute errors of 0.39 ±
0.27 logMAR (manual, median: 0.30) and 0.35 ± 0.28 logMAR (automatic, median: 0.30)
and high correlations of 0.76 (manual) and 0.80 (automatic) with true BCVA. Differences
between using manual and automatic measurements were not statistically significant
for correlations of measurements with true BCVA (P = .66), absolute errors of estimated
BCVA (P = .15), or correlations of estimated BCVA with true BCVA (P = .60).

Conclusions: The proposed algorithm measured MK biomarkers as accurately as
ophthalmologists. Measurements were highly correlated with and estimative of visual
acuity.

Translational Relevance: This study demonstrates the potential of developing fully
automatic objective and standardized strategies to aid ophthalmologists in the clinical
assessment of MK.

Introduction

Microbial keratitis (MK) is an infectious corneal
disease manifesting in a diverse range of presentations.
It is one of the leading causes of blindness worldwide,

with many risk factors such as ocular trauma, contact
lens use, hygiene, climate, and geography.1–8 Ophthal-
mologists assess disease severity and recommend treat-
ment regimens by evaluating the morphology of MK
biomarkers. Key biomarkers are the stromal infil-
trate (SI), epithelial defect (ED), and presence of a
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hypopyon.9–11 Other biomarkers such as white blood
cell (WBC) infiltration and swelling due to surround-
ing corneal edema, if present, may also be indicative of
disease severity.

The current methods to measure and record the
morphology of MK biomarkers are subjective and
includemanual slit-lamp biomicroscopemeasurements
using built-in calipers or manual rulers, free-text
descriptions, and schematic drawings in the electronic
health records (EHRs).12 Measurements are not always
consistently recorded in the EHR.13,14 Additionally,
patients can be seen by multiple ophthalmologists
and have multiple follow-ups. Studies have shown that
measurements differ among ophthalmologists, even
in controlled settings.15 Strategies have been devel-
oped that use measurements of the SI and hypopyon
to aid ophthalmologists in the clinical assessment
of MK.16–18 However, these strategies do not use
measurements of other biomarkers such as the ED,
WBC infiltration, and corneal edema. Furthermore, to
date, these strategies have not been widely adopted in
clinical practice given the variability and subjectivity of
manual measurements. Therefore, ophthalmologists do
not use any image-based, let alone automatic, methods
to measure and use MK biomarkers systematically for
clinical assessment.

Image-based and computer-aided methods can
reduce clinician-dependent variability and improve
reliability of measurements.19,20 Slit-lamp photogra-
phy (SLP) is a low-cost technology universally avail-
able in eye clinics that provides high-resolution digital
images of the eye.21 Semiautomatic and fully automatic
segmentation algorithms have been developed for SLP
images of MK.19,22–26 These are promising steps
toward developing objective and standardized strate-
gies to aid ophthalmologists in the clinical assessment
of MK.However, some key questions that remain to be
addressed are (1) how well these image-based measure-
ments correlate with other important clinical measures
such as visual function and (2) if these automatic
segmentation algorithms can successfully substitute
manual measurement methods to aid ophthalmolo-
gists in decision making for clinical care.27 Often, it
is not clear whether the performance of an automatic
segmentation algorithm is good enough for clinical
application. While performance metrics such as sensi-
tivity, specificity, and the Dice similarity coefficient
(DSC) are commonly used to measure the agreement
between manual and automatic segmentations, there
are no established thresholds that define clinically
acceptable performance. Furthermore, such perfor-
mance metrics are interpreted based on the assump-
tion that manual segmentations are the gold standard
and error free, which may not necessarily be the case,

especially in complex or ambiguous cases. Therefore,
an alternative approach to evaluate the performance
of an automatic segmentation algorithm is to use both
manual and automatic segmentations in a downstream
task that uses an independent measure as the gold
standard instead. The difference in performances in
this downstream task can then be used to determine
if the automatic segmentations are as good as manual
segmentations.

In this study, we evaluate the clinical applica-
bility of automatic image-based measurements on
SLP images by comparing a novel, open-source,
fully automatic, deep learning–based segmentation
algorithm to manual segmentation by ophthalmolo-
gists. We evaluate (1) the correlation between image-
based measurements of MK biomarkers and best-
corrected visual acuity (BCVA) and (2) the ability to
estimate BCVA from these image-based measurements
using machine learning.

Methods

Data Set

The data set for this study was collected from
patients at two academic eye hospitals—the Univer-
sity of Michigan Kellogg Eye Center (Ann Arbor, MI,
USA) and Aravind Eye Care System (Madurai, India).
Approval was obtained from the University of Michi-
gan Institutional Review Board and Aravind Madurai
Ethics Committee. The study adhered to the tenets of
the Declaration of Helsinki.

Inclusion criteria were patients 15 years or older
with MK as diagnosed by the treating clinician.
Patients were excluded from participation if from a
vulnerable population (i.e., hospitalized, imprisoned,
institutionalized) or pregnant or not able to provide
consent. Patients were also excluded if they had a
corneal perforation, a prior corneal incisional surgery
(i.e., corneal transplantation), or no light perception
vision. Patients were not excluded for other preexisting
health or ocular conditions.

Participants were photographed under diffuse white
light illumination and/or diffuse blue light illumination
with fluorescein staining following an SLP protocol.19
Topical artificial tears were applied prior to imaging.
For fluorescein staining, one drop of tetracaine was
applied to a fluorescein strip, and the strip was then
applied to the participant’s lower fornix. The photog-
rapher allowed the participant to remove any excess
tears and then immediately proceeded to imaging.
Participants were photographed using a Canon EOS
7D camera (Tokyo, Japan) mounted on a Haag-Streit
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International BX 900 model slit-lamp biomicroscope
(Köniz, Switzerland). Ambient room lighting and a
diffuse beam at maximum width (30 mm) of the light
source withmaximum light intensity as tolerated by the
participant were used. Same-day BCVA was measured
by the clinical standard of Snellen acuity and converted
to logarithm of the minimum angle of resolution
(logMAR) for analysis.28

Regions andMeasurements of Interest

Pathologic regions of interest (ROIs) were evalu-
ated as MK biomarkers. The SI, WBC infiltration,
corneal edema, and hypopyon were segmented on
diffuse white light images. The ED was segmented on
diffuse blue light images. Nonpathologic ROIs were
imaging-associated and anatomic structures. Ocular
surface light reflexes, the pupil, and the corneal limbus
were segmented on both diffuse white light and diffuse
blue light images. The corneal limbus provided a refer-
ence for the true size of the ROIs, where the published
average adult corneal limbus diameter of 11.7 mm was
used to estimate the pixel resolution in millimeters to
enable conversion from pixels to millimeters to obtain
clinically meaningful measurements.12,29

Five measurements of interest were calculated for
each pathologic ROI—the presence (absent or present),
maximum width (mm), total area (mm2), and propor-
tion of the corneal limbus area affected (0–1) and
centrality (mm−1).9,16–19

The proportion of the corneal limbus area affected
was calculated as

Proportion of the corneal limbus area aflected =
Total area of the ROI

Total area of the corneal limbus
and centrality was calculated as

Centrality = log
(
1 + 1

D

)
,

where D was the distance (mm) of the centroid of
the ROI from the centroid of the corneal limbus. A
logarithmic scale was used to avoid extreme values of
centrality for ROIs very close to the center.

Manual Segmentation

Manual segmentation of the ROIs on the SLP
images was performed by ophthalmologists (MFK,
KHK) using ImageJ software (National Institutes of
Health, Bethesda, MD, USA), as described in prior
work.12,26 Each image was segmented by one ophthal-
mologist. Segmentations were reviewed by a corneal

specialist (MAW), who was also available for consul-
tation and discussion involving difficult or ambiguous
cases.

Automatic Segmentation

Automatic segmentation of the ROIs on the SLP
images was performed by a novel modified version of
our recently published, open-source, fully automatic,
deep learning–based algorithm, SLIT-Net.26 SLIT-Net
is a convolutional neural network (CNN) designed and
trained to identify and segment ROIs on SLP images.
Separate networks were trained for diffuse white light
and diffuse blue light images. The modifications made
since the publication of SLIT-Net are summarized
below.More details are available in Online Supplemen-
tary 1.

1. Extended training: The training procedure was
extended from 100 epochs to 300 epochs.

2. Threshold validation: The validation procedure
of retaining the weights of the best-performing
epoch as the final weights of the network, by
monitoring the performance on the hold-out
validation set for the last 20 epochs at fixed classi-
fication and segmentation thresholds of 0.5, was
replaced with a threshold validation procedure.
For threshold validation, the weights of the final
epoch were retained as the final weights of the
network, and grid search was used to determine
the best-performing classification and segmen-
tation thresholds for each individual ROI class
by monitoring the performance on the hold-out
validation set.

3. Limbus-Net: The corneal limbus was segmented
by Limbus-Net, a CNN designed and trained to
specifically segment the corneal limbus on SLP
images to obtain more accurate segmentation
of this ROI. The images were cropped to the
region automatically segmented by Limbus-Net
before being provided as input to SLIT-Net for
the subsequent segmentation of all other ROIs.
This was done to focus the field of view as all
other ROIs should occur only within the corneal
limbus.

To evaluate the performance of the automatic
segmentation algorithm, the DSC30 was calculated
to measure the proportion of overlap between the
automatic segmentations and the gold-standard
manual segmentations. The DSC ranges from
0 to 1, whereby a higher value indicates better
performance. The absolute errors of the corneal
limbus diameter and the resulting pixel resolution
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obtained from the automatic segmentations were also
calculated, using the corresponding values obtained
from the gold-standard manual segmentations,
whereby a lower value indicates better performance.

Correlation With BCVA

Pearson’s correlation was calculated to analyze
the relationship between the measurements of patho-
logic ROIs obtained from either manual or automatic
segmentations and BCVA. For individual measure-
ments, the correlation coefficient was calculated
between each measurement of interest and BCVA.
For multiple measurements, a multivariable linear
regression model was fitted using the least squares
approach with all five measurements of interest as the
input variables and BCVA as the outcome variable.
The multiple correlation coefficient was calculated as
Pearson’s correlation between the fitted values from
the model and BCVA.31,32 The multiple correlation
analysis was performed for each individual pathologic
ROI and the combination of all pathologic ROIs.

Estimation of BCVA

A radial basis function kernel epsilon–support
vector machine (SVM)33,34 for regression was trained
to estimate BCVA using the measurements of patho-
logic ROIs obtained from either manual or automatic
segmentations. The radial basis function kernel
epsilon-SVM was selected based on early experi-
ments comparing a range of linear and nonlinear
models. These models included linear regression, ridge
regression, decision tree, random forest, multilayer
perceptron, and SVM models, and results indicated
that the best performance could be achieved with the
radial basis function kernel epsilon-SVM.

The SVM was trained for 3000 iterations with an
epsilon of 0.05 and L2 weight regularization applied
with a factor of 2. All five measurements of inter-
est were used for all pathologic ROIs. Continuous
measurements were normalized by subtracting the
mean and dividing by the standard deviation to ensure
that all measurements were on a similar scale. All
estimated values were rounded to one decimal place
and capped to the minimum (0.0 logMAR) and
maximum (2.3 logMAR) values in the data set.

To evaluate the performance of the BCVA estima-
tion algorithm, Pearson’s correlation between the true
BCVA and estimated BCVA and the absolute error
of the estimated BCVA were calculated. Performance
metrics were calculated separately for the models using
measurements obtained from manual and automatic
segmentations.

Statistical Significance Tests

To determine the statistical significance of the differ-
ence between using manual and automatic segmenta-
tions, William’s test was used for the differences in
correlation, and the paired-sample t-test was used for
the differences in absolute error.

Cross-Validation

Sixfold cross-validation was used to evaluate the
performance of the automatic segmentation and
BCVA estimation algorithms on all available data
to avoid selection bias and to ensure independence
between the training and testing sets. For each
algorithm, the participants were randomly divided into
six groups of approximately equal size. Five groups
were designated as the training set, and the remain-
ing group was designated as the testing set. The groups
were rotated such that each group was used once for
testing. For validation procedures, one group from the
training set was designated as the hold-out validation
set.

Implementation

The data set was prepared using ImageJ and
MATLAB (MathWorks, Natick, MA, USA). The
automatic segmentation and BCVA estimation
algorithms were implemented in Python using the
TensorFlow35 (version 1.5.1), Keras36 (version 2.0.8),
and Scikit-learn37 (version 0.22.2) libraries. Statis-
tical analysis was performed using MATLAB38

(version 9.5.0 R2018b). The data set and new and
improved algorithms are available on GitHub at
https://github.com/jessicaloohw/SLIT-Net_v2.

Results

Data Set

The data set consisted of 76 participants with SLP
images and same-day BCVA. Twenty-seven partici-
pants (35.5%) were from the United States, and 49
participants (64.5%) were from India. Each partici-
pant had one diffuse white light image and one diffuse
blue light image available from one eye. BCVA ranged
from 0.0 to 2.3 logMAR, and the mean ± SD BCVA
was 1.3 ± 0.74 (median, 1.4) logMAR. Five partici-
pants had missing demographic information from the
clinical chart. The remaining 71 participants ranged
from 19 to 88 years of age and were on average (mean
± SD) 49.6 ± 15.2 (median, 49) years. Twenty-five

https://github.com/jessicaloohw/SLIT-Netv2
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participants (35%) were female. The cause of MK was
fungi in 32 cases (45.1%), bacteria in 16 cases (22.5%),
a mixture of fungi and bacteria in 2 cases (2.8%),
acanthamoeba in 2 cases (2.8%), and indeterminant
in 19 cases (26.8%) due to either no culture being
performed or no growth in the culture.

One hundred and thirteen additional participants
with SLP images were included for the development
of the automatic segmentation algorithm. Fifty-nine
participants had both diffuse white light and diffuse
blue light images available, 44 participants had only
diffuse white light images available, and 10 participants
had only diffuse blue light images available. Ten partic-
ipants had more than one image available for a specific
illumination. In total, 195 diffuse white light images
and 148 diffuse blue light images from 189 participants
were available for the development of the automatic
segmentation algorithm.

Automatic Segmentation

The 189 participants with SLP images were used
for training and testing the automatic segmentation
algorithm. Table 1 shows the average DSC of the
automatic segmentation algorithm. Table 2 shows the
average absolute error of the corneal limbus diame-
ter and resulting pixel resolution obtained from the
automatic segmentation algorithm. Overall, the perfor-
mance of the automatic segmentation algorithm was
good, with moderate to high DSCs and low absolute
errors.39 All DSCs had a mean above 0.6 and a median
above 0.8. The DSCs for the corneal limbus were at
least 0.9, indicating very high performance, and the
absolute errors of the resulting pixel resolution were
less than half a micron, indicating accurate conver-
sion from pixels to millimeters to obtain clinically

meaningful measurements. The performance of this
novel modified version of the automatic segmenta-
tion algorithmwas significantly better than the original
version. More details are available in Online Supple-
mentary 2.

Correlation With BCVA

The 76 participants with SLP images and same-day
BCVA were used for the correlation analysis. Table 3
shows the correlation coefficients between individual
measurements of interest and BCVA. Overall, the
correlation coefficients ranged from −0.18 to 0.70,
and most correlations were statistically significant,
except for some measurements of corneal edema and
some measurements of presence. The highest correla-
tions were most frequently observed for measurements
of maximum width, whereas the lowest correlations
were most frequently observed for measurements of
presence. There were no statistically significant differ-
ences between using manual and automatic segmenta-
tions for anymeasurements of the SI,WBC infiltration,
hypopyon, and ED. There was a statistically signifi-
cant increase in correlation using automatic segmen-
tations for all measurements of corneal edema, except
presence. More details are available in Online Supple-
mentary 3.

Table 4 shows the multiple correlation coefficients
between all five measurements of interest and BCVA.
Overall, the correlation coefficients ranged from 0.26
to 0.86, and all correlations were statistically signifi-
cant. While the correlations were low to moderate for
individual pathologic ROIs, the correlation was high
for the combination of all pathologic ROIs.39 There
were no statistically significant differences between

Table 1. Average (Mean ± SD, Median) DSC of the Automatic Segmentation Algorithm on Diffuse White Light
and Diffuse Blue Light Images

Illumination Type of ROI ROI DSC

Diffuse white light Pathologic SI 0.68 ± 0.30, 0.81
WBC infiltration 0.62 ± 0.40, 0.83
Corneal edema 0.72 ± 0.45, 1.00
Hypopyon 0.91 ± 0.25, 1.00

Nonpathologic Light reflexes 0.74 ± 0.28, 0.86
Pupil 0.76 ± 0.35, 0.94

Corneal limbus 0.93 ± 0.17, 0.97
Diffuse blue light Pathologic ED 0.78 ± 0.33, 0.93

Nonpathologic Light reflexes 0.80 ± 0.20, 0.87
Pupil 0.67 ± 0.40, 0.87

Corneal limbus 0.90 ± 0.14, 0.94
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Table 2. Average (Mean± SD,Median) Absolute Error of the Corneal LimbusDiameter and Resulting Pixel Resolu-
tion Obtained From the Automatic Segmentation Algorithm on Diffuse White Light and Diffuse Blue Light Images

Illumination
Absolute Error of Corneal Limbus

Diameter (Pixels)
Absolute Error of Pixel Resolution

(10−3 mm)

Diffuse white light 57 ± 64, 40 0.23 ± 0.47, 0.08
Diffuse blue light 164 ± 182, 105 0.38 ± 0.57, 0.19

Six diffuse white light and three diffuse blue light images were excluded from analysis due to the corneal limbus not being
segmented manually.

Table 3. Correlation Coefficients between the Individual Measurements of Interest and BCVA

Manual Segmentations Automatic Segmentations

ROI P W A % C P W A % C

SI 0.27 0.65 0.49 0.47 0.37 0.36 0.70 0.58 0.58 0.52
WBC infiltration 0.11 0.46 0.51 0.51 0.40 0.28 0.55 0.61 0.60 0.47
Corneal edema −0.18 −0.14 −0.07 −0.08 −0.13 0.14 0.21 0.26 0.25 0.20
Hypopyon 0.55 0.57 0.45 0.46 0.57 0.58 0.58 0.52 0.53 0.59
ED 0.21 0.54 0.44 0.42 0.34 0.31 0.57 0.46 0.44 0.37

Statistically significant (P ≤ 0.05) correlation coefficients are shown in bold.
William’s test was used to determine the statistical significance betweenmanual and automatic segmentations. Statistically

significant (P ≤ 0.05) differences are underlined. % indicates the proportion of corneal limbus area affected. A, total area; C,
centrality; P, presence; W, maximumwidth.

Table 4. Multiple Correlation Coefficients Between All FiveMeasurements of Interest (Presence, MaximumWidth,
Total Area, Proportion of Corneal Limbus Area Affected, and Centrality) and BCVA for Each Individual Pathologic
ROI and the Combination of all Pathologic ROIs From the Multivariable Linear Regression Model

ROI Manual Segmentations Automatic Segmentations

SI 0.71 0.74
WBC infiltration 0.62 0.66
Corneal edema 0.26 0.38
Hypopyon 0.59 0.59
ED 0.64 0.61
Combination 0.86 0.84

All correlation coefficients were statistically significant (P ≤ 0.05).
William’s test was used to determine the statistical significance betweenmanual and automatic segmentations. There were

no statistically significant differences between using manual and automatic segmentations.

using manual and automatic segmentations. More
details are available in Online Supplementary 3.

Estimation of BCVA

The 76 participants with SLP images and same-
day BCVA were used for training and testing the
BCVA estimation algorithm. Overall, the performance
of the BCVA estimation algorithm was good with
high correlations and moderate absolute errors.39,40
Using the measurements of pathologic ROIs obtained
from manual segmentation, the algorithm achieved

a correlation of 0.76 (P ≤ 0.001) and an average
absolute error of 0.39 ± 0.27 (median, 0.30) logMAR.
Using the measurements of pathologic ROIs obtained
fromautomatic segmentation, the algorithm achieved a
correlation of 0.80 (P≤ 0.001) and an average absolute
error of 0.35 ± 0.28 (median:, 0.30) logMAR. While
the performance was better using automatic segmenta-
tions, this difference was not statistically significant (P
= .60 for the correlation and P = .15 for the absolute
error). Figure 1 shows the relationship between the
true BCVA and estimated BCVA of the algorithm
using the measurements obtained from either manual
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Figure 1. Scatterplot showing the relationship between the true BCVA and estimated BCVA of the BCVA estimation algorithm. The differ-
ence in performance between using manual and automatic segmentations was not statistically significant.

Figure 2. Example of SLP images with manual and automatic segmentations. The estimated BCVA was 0.7 logMAR and 0.5 logMAR using
the measurements obtained frommanual and automatic segmentations, respectively. The true BCVA was 0.5 logMAR.

or automatic segmentations. Figures 2 to 5 show
examples of the segmented images and the correspond-
ing estimated BCVA.

Discussion

MK is an infectious corneal disease and one of the
leading causes of blindness worldwide. The purpose
of this work is to aid ophthalmologists in the clinical
assessment of MK by developing automatic decision
aid tools and algorithms that analyze MK biomark-

ers linked to clinical outcomes. Five MK biomark-
ers (SI, WBC infiltration, corneal edema, hypopyon,
and ED) were analyzed based on five measurements
of interest (presence, maximum width, total area,
proportion of the corneal limbus area affected, and
centrality). Measurements of interest were calculated
using two segmentation methods—manual segmenta-
tion by ophthalmologists and automatic segmenta-
tion by a novel modified version of our open-source,
fully automatic, deep learning–based segmentation
algorithm. The automatic segmentations overlapped
with the manual segmentations with moderate to high
DSCs ranging from 0.62 to 0.93. There were also low
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Figure 3. Example of SLP images with manual and automatic segmentations. The estimated BCVA was 1.7 logMAR using both measure-
ments obtained frommanual and automatic segmentations. The true BCVA was 2.0 logMAR.

Figure 4. Example of SLP images with manual and automatic segmentations. The estimated BCVA was 0.8 logMAR and 0.9 logMAR using
the measurements obtained frommanual and automatic segmentations, respectively. The true BCVA was 0.4 logMAR.

absolute errors of less than half a micron in estimat-
ing the pixel resolution when converting from pixels
to millimeters to obtain clinically meaningful measure-
ments. The performance of this novel modified version
of the algorithm was significantly better than the origi-
nal version.26 The measurements had good estima-

tion of same-day visual acuity, indicating important
structure–function correlation.

The analysis of the correlation between individ-
ual measurements and BCVA showed that the highest
correlations were most often observed for the measure-
ments of maximum width, and the lowest correlations
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Figure 5. Example of SLP images with manual and automatic segmentations. The estimated BCVA was 1.1 logMAR using both measure-
ments obtained frommanual and automatic segmentations. The true BCVA was 0.8 logMAR.

were most often observed for measurements of
presence of a biomarker. This indicates that measure-
ments of the size, rather than the presence of a
biomarker, are more correlated with visual acuity. The
moderate correlations observed for measurements of
centrality may in part be due to the logarithmic scale
used in the calculations.Wewill further explore alterna-
tive approaches for calculating centrality to determine
if improved correlation with BCVA can be achieved,
such as using a different scaling function or calculat-
ing centrality based on the edge of the ROI instead
of the centroid of the ROI. There were no statisti-
cally significant differences between using manual and
automatic segmentations for any measurements of the
SI, WBC infiltration, hypopyon, and ED. Interest-
ingly, all measurements of corneal edema had negative
correlations with BCVA using manual segmentations
but positive correlations using automatic segmenta-
tions, and these differences were statistically signifi-
cant for all measurements except presence. Prior work
has shown that corneal edema is a difficult biomarker
to identify and segment even by experienced ophthal-
mologists, and using automatic segmentations may
improve segmentation consistency.26 This indicates
that assessing corneal edema may play a role in assess-
ing visual function in corneal imaging of MK. While
not necessarily the most prominent biomarker in MK,
corneal edema certainly affects visual acuity across
many anterior segment conditions, such as Fuchs
dystrophy.

The multiple correlation analysis showed that
for individual pathologic ROIs, measurements of
the SI and ED had the highest correlations with
BCVA, consistent with the current clinical knowl-
edge and understanding of the disease.9,10,41 However,
adding measurements of other biomarkers, including
WBC infiltration, corneal edema, and the hypopyon,
increased the correlations up to 20%. This demon-
strates the importance of including not only the SI
and ED in assessment but other biomarkers as well.
Overall, for the combination of all pathologic ROIs,
the measurements had high correlations of 0.86 and
0.84 with BCVA, using manual and automatic segmen-
tations, respectively. There were no statistically signifi-
cant differences between using manual and automatic
segmentations.

Using an SVM, BCVA could be automatically
estimated from the measurements. The estimated
BCVA had high correlations of 0.76 and 0.80 with the
true BCVA and average absolute errors of 0.39 ± 0.27
(median, 0.30) logMARand 0.35± 0.28 (median, 0.30)
logMAR, using manual and automatic segmentations,
respectively. While the performance using automatic
segmentations was better than using manual segmen-
tations, this difference was not statistically signifi-
cant, most likely due to the small sample size. The
performance was considered good as the median
absolute errors were approximate to the minimum
standard of 15 letters on the Early Treatment Diabetic
Retinopathy Study (ETDRS) chart (corresponding



Automatic Biomarker Measurement to Estimate BCVA TVST | October 2021 | Vol. 10 | No. 12 | Article 2 | 10

to 0.3 logMAR) often used in the field of
ophthalmology.42–46 The mean absolute error using
automatic segmentations was also less than half the
SD of BCVA (0.5 SD = 0.37 logMAR), whereby half
the SD may be considered the minimally important
difference for health-related quality of life.40 However,
while the levels of correlation reflect a positive trend,
some of the individual absolute errors may still be
considered large by clinical standards. Therefore, there
is certainly room for improvement of the algorithm
before it can be implemented for real-world clinical use.
Optimizing the algorithm and improving the size and
robustness of the data set will likely reduce the absolute
error, ideally to within five letters on the ETDRS chart
(corresponding to 0.1 logMAR). As BCVA depends
on many other factors besides corneal features, the
inclusion of additional clinically relevant features and
demographics such as age, race, gender, and location
will be important. In particular, BCVA would also be
affected by the presence of other ocular diseases that do
not manifest in the SLP images, such as retinal or optic
nerve diseases. Thus, this algorithm is not expected to
be applicable to all patient populations, such as a much
older patient population, which may also be affected
by age-related macular degeneration. The inclusion of
ocular history, demographics, or biomarkers obtained
from images of other parts of the eye, such as optical
coherence tomography, will also be important to
improve the performance of the algorithm and extend
the target population of the algorithm beyond patients
with MK.

Overall, the accuracy and utility of using image-
based measurements for assessing functional sever-
ity in MK was demonstrated by the significant
correlations and the ability to estimate BCVA from
these measurements. There was no statistically signif-
icant difference between using manual and automatic
segmentations in most cases, as well as statistically
significant improvement in some cases, demonstrating
the accuracy and clinical applicability of the automatic
segmentation algorithm in lieu of time-consuming and
labor-intensive manual segmentation by ophthalmolo-
gists. While this was a pilot study based on a limited
data set of 76 participants, these results can have
important clinical implications in the future as the
data set expands and the algorithms are improved. For
example, if remote health care personnel could take a
photograph of a cornea and be able to automatically
assess the patient’s visual acuity with some certainty,
the health care team would have better knowledge
about triage and referral of the patient to tertiary eye
care centers. However, the automatic algorithm would
only be intended for use as a decision support tool to
aid health care personnel and should not be used in a

standalone manner. Any estimations provided by the
algorithm would need to be interpreted based on the
specific patient’s context and health care personnel’s
expertise. The standard questions pertaining to the
patient’s ocular history and major population health
ocular conditions such as diabetic eye disease, macular
degeneration, cataracts, and glaucoma should be asked
and considered accordingly. Further research is neces-
sary before this technology can be implemented for
real-world clinical use. As the research progresses,
standardized strategies for quantified imaging are
adopted, and our understanding of the structure–
function relationship in MK evolves, we expect that it
will ultimately lead to improved diagnosis, prognosis,
and treatment, similar to what has been observed in
other diseases such as macular degeneration, diabetic
macular edema, and glaucoma over the past three
decades.47–50

There are limitations to this study. Since the enroll-
ment was a pilot study, it is based on a limited data
set of 76 participants with an MK diagnosis. However,
the MK population can be much more diverse than
the study population. Therefore, care must be taken
when extrapolating the results from this study to
the larger MK population. We will further investi-
gate the structure–function relationship in MK as
we expand the data set in our ongoing prospective
clinical study (Automated Quantitative Ulcer Analysis
Study [AQUA], NCT04420962). We also note that the
current study indicates only correlation, not causation,
between the image-based measurements and BCVA.
We will delve deeper into descriptive analysis and
model interpretation in future work. For example,
we will use univariate analysis followed by a feature
selection procedure to select potential predictors and
confounders to build a final model to provide a clearer
picture regarding any significant associations of the
individual predictors or lack thereof. We will also
investigate the relationship between the morphol-
ogy of MK biomarkers and other important factors
such as pathogenesis, patient-reported symptoms
and discomfort, and other clinical findings. We will
continue to improve the algorithms as well, including
exploring the use of images taken under different
illuminations.

In conclusion, image-based and computer-aided
measurements of the morphology of MK biomarkers
show a high correlation with visual function and can
be used to assess the disease, paving the way for the
development of objective and standardized strategies
to aid ophthalmologists in the clinical assessment of
MK. The performance of the novel modified version of
our open-source, fully automatic, deep learning–based
segmentation algorithm was as accurate as manual
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segmentation by ophthalmologists, demonstrating the
potential of these strategies being fully automatic
and requiring only minimal manual intervention from
ophthalmologists for clinical use. To promote future
research in this area, we have made our data set and
new and improved algorithms open source and freely
available online.
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