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Abstract

Recent work by Ciernia et al. (2020) identified how genetic and epigenetic mechanisms interact to 

regulate innate immune memory in bone marrow derived macrophages. The authors examined 

the BTBR strain, a naturally occurring mouse model of Autism Spectrum Disorder (ASD) 

that captures the complex genetics, behavioral and immune dysregulation found in the human 

disorder. Immune cell cultures from the BTBR strain compared to the standard C57 showed 

hyper-responsive immune gene expression that was linked to altered chromatin accessibility at 

sites with genetic differences between the strains. Together, findings from this work demonstrated 

that multiple levels of gene regulation likely dictate the formation of innate immune memory 

and are likely disrupted in immune cells in ASD. Future work will be needed to extend these 

findings to immune gene regulation in the brain and how changes in immune function are related 

to abnormal behaviors in brain disorders.
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COMMENTARY

Autism spectrum disorder (ASD) currently affects 1 in 66 children in Canada, making 

it one of the most prevalent forms of childhood neurodevelopmental abnormalities. ASD 

is characterized by impairments in social communication and the presence of restricted 

interests and repetitive behaviors [1]. Symptoms are highly heterogeneous varying from mild 

to severe and are further complicated by the frequent occurrence of comorbidities [2]. The 

underlying etiology of ASD is equally as complex and involves both environmental and 

genetic risk factors [3–5]. While ASD is highly heritable, the genetic architecture is complex 

with hundreds of gene variants and copy number variants (CNV) associated with ASD 
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[6]. Together, genetic analysis can currently only identify a potentially causative genetic 

abnormality in 20% of clinically diagnosed ASD cases [7]. However, these genetic studies 

have identified several categories of genes that have been implicated in ASD, including 

synaptic genes and regulators of chromatin structure and transcription [8]. A variety 

of epigenetic mechanisms appear disrupted in ASD including DNA methylation [9–11], 

post-translational modifications of histone tails [12], and non-coding RNAs [13]. Studies 

identifying differentially expressed genes in postmortem ASD brain samples have identified 

misregulation of both neuronal and immune genes [13–16], suggesting that epigenetic 

regulation of interactions between innate immune responses and neuronal activity play a 

critical role in the etiology of ASD.

Children with ASD often display a variety of immune related abnormalities [17] including 

altered brain, cerebral spinal fluid, and blood cytokine expression [18], as well as changes in 

both peripheral immune cell populations [19] and alterations in microglia morphology and 

density [20–24]. Together, this evidence suggests a disruption in the critical link between 

the developing immune system and fetal brain. There has been growing investment in 

understanding how microglia, the resident innate immune cells of the brain, are impacted 

in brain disorders like ASD. Microglia are uniquely long-lived cells that self-renew over 

the lifespan [25,26], suggesting that processes dictating early microglial development can 

have long-lasting impacts on cellular function and disease development. In addition to 

their role as the brain’s resident immune cells, microglia play critical roles in maintaining 

normal brain function through interactions with other brain cell types to regulate neuronal 

cell number [27], shape brain circuitry [28,29], and fine-tune neuronal connections [30–32] 

throughout life.

In reaction to an inflammatory event, microglia rapidly upregulate expression of pro-

inflammatory genes and adopt a less-ramified morphology conducive for increased 

phagocytosis. After the resolution of the inflammatory event, microglia can remain 

“ primed ”, a permissive state in which subsequent immune challenges produce exacerbated 

inflammatory responses. Microglial priming has been observed to exacerbate pathology in 

mouse models of aging [33,34], Multiple Sclerosis [35], Parkinson’s Disease [36], stroke 

[37,38], and Alzheimer’s Disease [39–41]. In contrast to priming, repeated exposure to 

pathogens or other infectious agents can produce a subsequent repression of immune 

activation (tolerance), preventing the development of chronic inflammation or sepsis. While 

the mechanisms regulating innate immune memory in microglia are poorly understood 

[38,42,43], more easily accessible peripheral macrophage populations have served as model 

systems for identifying epigenetic regulators of innate immune memory.

Recent work from our lab describes how changes in chromatin accessibility contribute to 

altered innate immune memory in the bone marrow derived macrophage (BMDM) cultures 

from the BTBR T+Itpr3tf/J (BTBR) mouse strain, a common model for ASD. BTBR mice 

were derived from an inbred strain carrying the at (nonagouti; black and tan) and wild type 

T (brachyury) mutations that were crossed with mice with the tufted (Itpr3tf) allele. This 

mouse strain shows impairments in social behaviors, increased repetitive behaviors [44–

48], and numerous genetic [49] and anatomical [50] alterations compared to the standard 

C57BL/6J mouse, making it a widely used model for ASD [51]. In addition, there is 
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increasing evidence that BTBR mice also show increased baseline inflammation similar to 

that observed in children with ASD [51–54] and hence may serve as a more representative 

model of multiple genetic hits combined with environmentally driven inflammation. BTBR 

mice show increased levels of multiple cytokines in the brain (IL-1β, IL-18, IL-33, IL-6, 

and IL-12) [52] as well as increases in microglial numbers [55] and expression of microglial 

activation markers.

The complexity of the BTBR model allowed us to examine how differences in strain 

genetics and epigenetics potentially combine to impact immune gene regulation. We 

specifically examined how BMDM from each strain responded to repeated treatments 

with lipopolysaccharide (LPS), a component of the outer wall of gram-negative bacteria. 

Repeated low dose exposures to LPS has previously been shown to induce an endotoxin 

tolerance [56], in which repeated exposures result in blunted pro-inflammatory gene 

expression responses. This paradigm has been widely used to study immune gene regulation, 

and suppression of pro-inflammatory genes during the formation of tolerance requires 

epigenetic regulation [56,57]. Following repeated treatment with LPS to mimic repeated 

bacterial infections, we validated previously observed hyper-responses in immune gene 

expression in the BTBR compared to C57. Many of the genes that were tolerized (repressed) 

in expression in response to repeated LPS in C57, failed to fully attenuate in the BTBR. 

To begin to identify potential mechanisms underlying the differences in gene regulation 

between the strains, we profiled chromatin accessibility using ATAC-sequencing. Previous 

work examining nucleosome positioning at the Il6 promoter region demonstrated that 

changes in chromatin accessibility were key for induction of immune tolerance of Il6 
expression [56]. Consequently, we sought to test the hypothesis that differences in chromatin 

accessibility between the strains would help explain differences in gene expression.

We identified differentially accessible regions (DARs) between strains and LPS treatments. 

The majority of LPS responsive regions were similar between strains, but there was a 

significant subset that showed differential levels of accessibility in response to LPS between 

strains. For example, several hundred regions showed either higher or lower accessibility 

at baseline between the strains. These same regions then showed altered responses to 

subsequent LPS treatment. For example, these inaccessible regions in the BTBR at baseline 

failed to open in response to LPS. These baseline DARs were enriched for markers of active 

enhancers, suggesting that they are regulatory regions with differential regulation between 

strains. Similarly, a subset of regions that changed chromatin accessibility in response to 

repeated LPS in the C57, failed to change in the BTBR. There were also regions that were 

uniquely responsive in the BTBR to LPS, together indicating both a failure in chromatin 

dynamics in some regions and abnormal chromatin dynamics in others. These regions were 

significantly enriched for strain-specific genetic variants, supporting the hypothesis that 

differences in the BTBR genome underlie at least some of the altered chromatin responses 

to LPS treatment. The strain-specific genetic variants were predicted to alter transcription 

factor binding of a few known regulatory factors, but the majority of motifs were similarly 

represented between the strains across LPS treatments. This suggests that changes in 

chromatin accessibility may contribute to altered gene expression through mechanisms 

beyond simple transcription factor accessibility, such as altered histone modifications or 

long-range chromatin interactions.
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Histone modifications have been demonstrated to play important roles in the regulation 

of innate immune memory [56–58]. In a model of β-glucan induced immune priming, 

H3K4me1 (monomethylation of the 4th lysine residue of histone 3), a hallmark of enhancer 

regions [59–61], has been shown to increase in parallel with de novo H3K27ac (acetylation 

at the 27th lysine residue of histone 3) marks at distal regulatory regions in macrophages 

[58]. Interestingly, H3K4me1 marks remained elevated despite the return of H3K27ac to 

baseline at these regions [43,58]. Histone methylation relaxes local chromatin structure, 

allowing for steric accessibility to transcriptional machinery and increased gene expression. 

Thus, the persistent accumulation of H3K4me1 has been implicated as an epigenetic 

mechanism of establishing long-term innate immune memory [43,57,58]. In another study, 

treatment with LPS delayed the deposition of H3K27ac and H3K4me3 (trimethylation of 

the 4th lysine residue of histone 3), which predominantly marks active promoter regions 

[5961], in macrophages at promoters of pro-inflammatory genes, which attenuated responses 

to a secondary LPS challenge and contributed to immune tolerance [57,62]. However, 

how well these findings translate to microglia is uncertain. Transcriptomic and epigenomic 

(ATAC-seq and ChIP-seq) analysis of resident macrophage populations across numerous 

tissues, including brain microglia, revealed tissue-of-origin specific signatures [63–65], 

indicating that microglia have unique epigenetic profiles that differentiate them from other 

macrophages.

While the literature surrounding histone modifications regulating innate immune memory 

has thus far focused mainly on H3K27ac and H3K4me3, there are undoubtedly numerous 

additional histone modifications and other epigenetic mechanisms that act in concert to 

regulate gene transcription. For example, long-range chromatin interactions have recently 

been shown to play important roles in various central nervous system disorders [66,67] 

and in innate immune memory [68]. In a foundational study of brain cell-type specific 

promoter-enhancer interactions, Nott et al. (2019) found that microglial enhancers were 

significantly enriched for Alzheimer’s Disease (AD) risk variants identified in two landmark 

large-scale genome-wide association studies [69,70]. Proximity ligation-assisted ChIP-seq 

(PLACseq), a method which identifies long-range chromatin interactions between specific 

regions, revealed that AD-risk variants were linked to distal active promoters rather than 

simply the most proximal gene promoter, as had been previously assumed. Furthermore, 

enhancers harboring AD-risk variants were PLAC-linked to active promoters of both 

known AD genes from GWAS studies and an extended subset of novel genes [66]. In 

ASD, genome-wide profiling of enhancer marks (H3K27ac) of 257 postmortem ASD 

and matched control brain samples, showed increased acetylation for genes involved in 

synaptic function and neuronal excitability and decreased acetylation for genes involved 

in immune process related to microglia [12]. ASD has also been linked to polymorphisms 

in enhancer regions including the 5p14.1 locus, a region that exhibits enhancer activity 

that regulates expression of neurons in an autism-associated mouse model [71,72]. These 

findings highlight the importance of interpreting changes in histone modifications in the 

larger context of promoter-enhancer interactions in establishing innate immune memory and 

immune gene regulation abnormalities in ASD.

Repeated exposure to LPS has been shown to result in priming and tolerance of responses 

to subsequent immune challenges [38,43,57], thus serving as a valuable model for studying 
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basic mechanisms of innate immune memory. Microglia also appears to show both priming 

and tolerance to repeated peripheral injections of LPS, leading to changes in cellular 

morphology, phagocytosis activity and gene expression [37,38]. Innate immune priming and 

tolerance in the brain also appear to rely on epigenetic regulation of microglia [38]; however, 

how well these mechanisms mirror those observed in peripheral macrophages or cultured 

immune cells is unclear. Together the findings of Ciernia et al. (2020) help lay the ground 

work for understanding how genetics and epigenetics combine to alter immune function in 

cultured macrophages. Future work will be needed to mechanistically test how epigenetic 

mechanisms coordinate gene expression in microglia and how these mechanisms may be 

perturbed in brain disorders such as ASD.
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Figure 1: 
Genetic variation influences differential epigenetic regulation (histone modifications, long-

range chromatin interactions) that shapes innate immune phenotypes in Autism Spectrum 

Disorder.
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