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Primary aldosteronism (PA) is the most common type of endocrine hypertension, and

numerous experimental and clinical evidence have verified that prolonged exposure

to excess aldosterone is responsible for an increased risk of cerebro-cardiovascular

events and target organ damage (TOD) in patients with PA. Therefore, focusing on

restoring the toxic effects of excess aldosterone on the target organs is very important

to reduce cerebro-cardiovascular events. Current evidence convincingly demonstrates

that both surgical and medical treatment strategies would benefit cerebro-cardiovascular

outcomes andmortality in the long term. Understanding cerebro-cardiovascular risk in PA

would help clinical doctors to achieve both early diagnosis and treatment. Therefore, in

this review, we will summarize the cerebro-cardiovascular risk in PA, focusing on the TOD

of aldosterone, including brain, heart, vascular system, renal, adipose tissues, diabetes,

and obstructive sleep apnea (OSA). Furthermore, the various treatment outcomes of

adrenalectomy and medical treatment for patients with PA will also be discussed. We

hope this knowledge will help improve cerebro-cardiovascular prognosis and reduce the

incidence and mortality of cerebro-cardiovascular events in patients with PA.

Keywords: primary aldosteronism, aldosterone, cerebro-cardiovascular risk, target organ damage, mechanism,

treatment

INTRODUCTION

Primary aldosteronism (PA) is a clinical syndrome mainly characterized by hypertension,
suppressed levels of plasma renin, and autonomous plasma aldosterone overproduction.
Recognition of the prevalence of PA has increased from <1% to over 10% of patients with
hypertension, with the in-depth knowledge and application of the screening-confirmation-typing
system (1). Moreover, the prevalence of PA in patients with refractory hypertension ranges from
8.9 to 33% (2). Therefore, PA is the most common type of endocrine hypertension. However,
PA is often underestimated, and patients with untreated (or inappropriately treated) PA have an
increased risk of cardiovascular events and target organ damage (TOD). A substantial body of
clinical studies have demonstrated that undiagnosed PA is associated with stroke, heart failure
(HF), diabetes mellitus (DM), obstructive sleep apnea (OSA), renal failure, and other consequential
cardiovascular events, along with poorer health-related quality of life (QoL), even premature death
(3–8). Prolonged exposure to excess aldosterone has a toxic effect on target organs, including the
brain, heart, vascular system, kidney, adipose tissues, and OSA, which could increase the incidence
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and mortality of cerebro-cardiovascular events in patients with
PA (4, 5). Most importantly, the rate of TOD, to a large extent,
could be reversed via removing the toxic effects of excess
aldosterone with either adrenalectomy (ADX) or treatment with
a mineral ocorticoid receptor antagonist (MRA) (9). Therefore,
this review aims to discuss the new evidence linking aldosterone
to the TOD and treatment outcome of PA, thereby hoping to help
decrease the risk of developing cerebro-cardiovascular and renal
complications in patients with PA.

MECHANISMS OF ALDOSTERONE ON
TARGET ORGANS

Aldosterone, a mineral corticoid hormone, is synthesized in
the zona glomerulosa of the adrenal glands. Aldosterone is one
of the effector molecules of the renin-angiotensin-aldosterone
system (RAAS), whose synthesis and secretion are stimulated
by angiotensin II (Ang-II) through the angiotensin I receptor
(ATI-R) in the adrenal cortex (10). The genomic effects of
aldosterone occur through binding to the mineral ocorticoid
receptor (MR), translocating to the nucleus, interacting with
DNA, and thus promoting the transcription of genes that regulate
the transport of sodium and potassium and fluid balance (11).
Aldosterone induces rapid cellular responses by modulating
intracellular calcium (Ca+2 ) and cyclic adenosinemonophosphate
(cAMP) levels; sodium/hydrogen (Na+/H+) exchanger activity;
and phosphorylation of signaling molecules, including protein
kinase C (PKC), epidermal growth factor receptor (EGFR),
mitogen-activated protein kinases (MAPKs), (including c-Jun
NH2-terminal kinase), and extracellular signal-regulated kinases
(ERKs) 1/2 (12–14). Recent insights into sodium and potassium
have demonstrated that excess aldosterone promotes epithelial
sodium channel (ENaC) activity and facilitates renal outer
medullary K+ channel (ROMK) activity to increase the sodium
chloride cotransporter (NCC) and pendrinapical abundance in
the late but not in the early distal convoluted tubule, which
allows sodium/potassium exchange through the ENaC, ROMK,
and big potassium channel (15). Wu et al. demonstrated that oral
co-administration of fludrocortisone acetate (a potent mineral
ocorticoid) and KCl in patients with PA is associated with
reduced pendrin and enhanced ROMK in urinary extracellular
vesicles (16). Based on this, Stavropoulos et al. assumed that
pendrin inhibitionmight confer an efficacious therapeutic option
for patients with PA (17).

Besides, the aldosterone non-genomic pathways are through
the AT1-R, G-protein-coupled receptor, and EGFR (18). These
receptors include the MAPK/ERK1/2/p38 signaling pathways,
mediating vascular remodeling, inflammation, hemodynamic
alterations, nephrosclerosis, and fibrosis (19, 20), as well as
being involved in cardiovascular, renal, and metabolic diseases
(21, 22). Therefore, the outcome of aldosterone excess would
induce structural and functional alterations in the heart, kidney,
and vascular system, which leads to the development of cardiac
hypertrophy, stroke, coronary heart disease, nephrosclerosis,
vascular inflammation, sclerosis, myocardial infarction, fibrosis,
and tissue remodeling (5, 23–25). The major pathophysiological

non-genomic mechanisms involved in the impact of aldosterone
on target organs are summarized in Figure 1, and part of the
detailed mechanisms are discussed as follows.

Aldosterone and Oxidative Stress
Multiple animal (rats and mice) studies have demonstrated
that aldosterone and Ang-II potentiate each other’s action in
inducing oxidative stress via elevating levels of oxidative stress
markers (malondialdehyde, procollagen type 1 amino-terminal
propeptide et al.), leading to detrimental consequences in the
target organs of patients with PA (26–28). Human red blood
cells (RBCs) are anucleated cells and are particularly sensitive
to oxidative assault. Bordin et al. verified that RBCs from
patients with PA displayed membrane alterations and increased
senescence in vitro, which were accompanied by increased high
molecular weight aggregates and diamide-induced band 3 Tyr-P
levels (29). Moreover, in an in vivo study, they demonstrated that,
due to the MR-mediated response involving ligand specificity,
aldosterone would induce MR activation and lead to RBC
membrane alterations and IgG binding in patients with PA (30).

Aldosterone has been reported to activate nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase and increase
reactive oxygen species (ROS) levels in several kinds of cells,
including myocardial cells, endothelial cells (ECs), vascular
smooth muscle cells (VSMCs), and mesangial cells in rats (31,
32). Petramala et al. firstly demonstrated increased oxidative
stress characterized by increased serum levels of NADPH oxidase
(Nox-2-derived peptide) and urinary excretion of isoprostanes in
patients with PA (33). Besides, aldosterone would interact with
Ang-II to activate NADPH oxidase through the phosphorylation
and activation of p47phox and Rac1 (27, 28, 32), as well
as c-Src-dependent mechanisms, in mice (26). Aldosterone
increased rat myocyte ROS production by the non-genomic
activation of NADPH oxidase, which in turn triggers apoptosis
of myocyte associated with the activation of apoptosis signal-
regulating kinase 1 (ASK1) (34). Besides, aldosterone activating
the MR in ECs and VSMCs, derived from mice, rats, or
humans, is associated with ROS production through increasing
the expression and activity of NADPH oxidases in the heart
(26, 35–37). Aldosterone decreases the expression of glucose-6-
phosphate dehydrogenase (G6PD), shifting the balance toward
increased oxidative stress in bovine and human ECs (38). In
human pulmonary artery ECs, aldosterone increases ROS, which
in turn modifies the cysteinyl thiols in the endothelial nitric
oxide synthase (eNOS) activating region of the endothelin B
receptor, thus decreasing endothelin-1-stimulated eNOS activity
(37). In addition, MRs in SMCs contribute to Ang-II-induced
vascular oxidative stress both in mice and humans (39).
Moreover, oxidative stress, in turn, promotes rat SMC senescence
(40). Another important signaling molecule in VSMCs, c-
Src, is a critical proximal regulator of NAD(P)H oxidase
(41), and aldosterone rapidly increases activation of MAPKs
(p38MAPK, c-Jun NH2-terminal kinase, and ERK1/2) through
c-Src-dependent pathways in mice (26). In addition, chronic
treatment with aldosterone will induce MAPK activation via a
ROS-dependent pathway and then, increase the expression of
p67phox, p22phox, Nox4, Gp91phox, p47phox, and Rac1 in
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FIGURE 1 | The non-genomic mechanisms of aldosterone-modulating TOD. ALD interacts with Ang-II by binding to the MR or ATR to exert its toxic effect on the

target organs. ALD promotes inflammation, oxidative stress, fibrosis, migration, proliferation, adhesion, endothelial dysfunction, and vascular remodeling through

different kinds of mediators and signaling pathways in various cells, including ECs, VSMCs, myocytes, fibroblasts, mesangial cells, and podocytes. ALD, aldosterone;

Ang-II, angiotensin II; ATR, angiotensin receptor; MR, mineral ocorticoid receptor; AT1, angiotensin receptor 1; AT2, angiotensin receptor 2; ECs, endothelial cells;

VSMCs, vascular smooth muscle cells; eNOS, endothelial nitric oxide synthase; TGF-β, transforming growth factor β; CTGF, connective tissue growth factor; PAI-1,

plasminogen activator inhibitor 1; ECM, extracellular matrix; GFR, growth factor receptor; NGAL, neutrophil gelatinase-associated lipocalin; PDGF, platelet-derived

growth factor; EGF, epidermal growth factor; IL-1β, interleukin 1β; IL-6, interleukin 6; MCP-1, monocyte chemoattractant protein-1; OPN, osteopontin; TNF-α, tumor

necrosis factor-α; ICAM-1, intercellular adhesion molecule-1; NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; ASK1, apoptosis

signal-regulated kinase 1; ERK1/2, extracellular signal-regulated kinase 1/2; PI3K, phosphoinositide 3-kinase; NF-κB, NF-kappaB; TOD, target organ damage.

the rat kidney (42–44), and it also induces apoptosis in rat
mesangial cells (45).

Aldosterone and Inflammation
Early study has demonstrated that rats treated with aldosterone
have perivascular leucocyte infiltration and increased expression
of interleukin (IL)6, IL-1β, osteopontin (OPN), monocyte
chemoattractant protein 1 (MCP-1), and cyc-2 in the kidney
(46). Besides, aldosterone participated in the process of
inflammation in mice by increasing the expression of
adhesion molecule-1 and the activation of c-Jun and c-Fos

in response to pro-inflammatory stimuli (47). Eissler et al.
also demonstrated that aldosterone causes the overexpression
of toll-like receptor4 (TLR4) and the higher expression of
inflammatory cytokines (TNF-α, IL-1, and MCP-1) in rat
cardiac tissue (48). Moreover, aldosterone had pro-inflammatory
effects by increasing neutrophil gelatinase-associated lipocalin
(NGAL) expression in mice dendritic cells, macrophages, and
peripheral blood mononuclear cells (49). In mice dendritic cells,
aldosterone also induces the secretion of the pro-inflammatory
cytokines IL-6 and transforming growth factor β (TGF-β) via
MR activation (50).
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Aldosterone and Fibrosis
In experiments with rats and mice, aldosterone administration
has been associated with an increase in TGF-β, connective tissue
growth factor (CTGF), and collagen gene expression that is
accompanied by kidney fibrosis (51–54). Aldosterone has been
reported to increase the production of plasminogen activator
inhibitor-1 (PAI-1) and subsequent extracellular matrix (ECM)
accumulation in the development of glomerulo sclerosis and
SMC stiffness (55–58). Besides, aldosterone has been reported
to stimulate collagen gene expression and synthesis in cultured
fibroblasts via activation of cellular ERK1/2 phosphorylation
(59) and increase the mRNA levels of collagens I, III, and IV
in rat glomerular mesangial cells (60). Moreover, aldosterone
stimulates fibronectin synthesis through MR-dependent
activation and phosphorylation of the c-Jun N-terminal kinase
in rats (61). Aldosterone also induces expression of OPN in rat
fibroblasts (62) and stimulates rat fibroblasts, resulting in rapid
activation of growth-factor receptors (GFRs) and the induction
of phosphoinositide 3-kinase/mitogen-activated protein kinase
(PI3K/MAPK) signaling, which stimulates proliferation of
fibroblasts (63). In addition, in human studies, NGAL has been
shown to increase the production of galectin-3 and collagen I
through the NF-κB pathway (64, 65) and acted through the TGF-
β signaling, epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and their receptors, thus contributing to
the development of fibrosis (66, 67).

ALDOSTERONE AND TOD

With this new evidence, excessive aldosterone is regarded as an
important determinant of the cerebro-cardiovascular risk profile
in patients with PA, which has a toxic effect on the cerebro-
cardiovascular system. Moreover, aldosterone is associated with
severe TOD (including the brain, heart, kidney, vascular system,
adipose tissues, and OSA) as shown in Figure 2, independently
from blood pressure (BP) levels (7, 25).

Toxic Effects of Aldosterone on Stroke
Stroke is defined as ischemic or hemorrhagic cerebrovascular
disease, including cerebral infarction, cerebral hemorrhage, or
transient ischemic attack (TIA) (9, 68). Experimental and
human studies have verified that excess aldosterone promotes
cerebral vascular oxidative stress, inflammation, and endothelial
dysfunction, which increases the risk of stroke, independent
of BP and other risk factors (9, 43, 68, 69). Cerebrovascular
accidents or TIAs are more frequent in patients with PA than
essential hypertension (EH), and cerebral infarction is the most
frequent of the cerebrovascular events (70).

In animal studies, as early as 1992, Kim et al. found
that plasma aldosterone was increased in a 25-week-old
stroke-prone spontaneously hypertensive rat (SHRSP) (71).
Accordingly, Enea et al. reported that plasma aldosterone
levels were significantly increased and enhanced stroke
development in SHRSP rats (from 442 ± 56.5 pg/ml to
739 ± 125.7 pg/ml) vs. Wistar-Kyoto rats (72, 73). Other
studies have reported that rats fed aldosterone chronically
experienced strokes, and treatment with a MRA ameliorated

the effects (43, 74). A mechanism study demonstrated that
Nox2-containing NADPH oxidase-mediated aldosterone
induced increases in ROS production and endothelial
dysfunction in cerebral arteries from mice, independently
of BP changes (75).

In clinical studies, as early as 1998, Litchfield et al. found that
patients with glucocorticoid-remediable aldosteronism tended
to have an early onset of stroke (cerebral hemorrhage), which
was related to increased aldosterone levels (68). Accordingly,
Cristiana et al. verified that prolonged exposure to elevated
aldosterone levels could increase the incidence of stroke or
TIA in patients with PA when compared to patients with
EH (9). Moreover, Takeda et al. investigated the incidence of
cerebrovascular complications in 224 cases of PA in Japan and
found that there were 14 cases of cerebral hemorrhage and 10
cases of cerebral infarction (76). Another retrospective study
showed that stroke and TIA were increased significantly in
patients with PA compared to those with EH (10.4 vs. 4.9%)
(77), and the latest multicenter study also demonstrated that the
prevalence of stroke was about 7.4% in Japan (78). In addition,
Milliez et al. reported 12.9% of patients with PA had a history of
stroke (4). However, Miyaji et al. discovered the incidence of PA
in patients with acute stroke was just 4.% (79). The reasons to
underestimate this incidence of stroke in patients with PA might
be due to the demographic bias and non-standard confirmatory
test strategies.

Toxic Effects of Aldosterone on the Heart
Structural and functional abnormalities of the heart are common
consequences of hypertensive states (80), and about 14 to 35%
of patients with PA have cardiovascular complications, including
myocardial hypertrophy, myocardial fibrosis, coronary artery
disease (CAD), heart failure (HF), and atrial fibrillation (AF)
(7, 81–83). Moreover, several large studies from different parts
of the world have demonstrated that among patients with
hypertension of equal severity and duration, those with PA
have significantly more cardiovascular pathology than those
with essential hypertension (5, 84, 85). Experimental and
clinical studies have also demonstrated that both cardiomyocytes
and cardiac fibroblasts express MR with a high affinity for
aldosterone, and they could be activated by high aldosterone
levels (86, 87). Based on that, aldosterone has been proved to
affect both the structure and function of the heart and is regarded
as a potential cardiovascular risk factor in patients with PA
(86–88). The role of aldosterone in left ventricular hypertrophy
(LVH), CAD, HF, and arrhythmias will be discussed as follows.

Aldosterone and LVH
Left ventricular (LV) remodeling is a process of changes in LV
size, shape, texture, and function regulated by various stimuli
including aldosterone, and it includes two parts in PA: LVH and
fibrosis (89). PA is associated with a higher degree of LVH and
increased LV mass index (LVMI) when compared to matched
EH, and LVH leads to changes in cardiac size, mass, geometry,
and function (83). LVH is the most common cardiac structural
abnormality induced by excess aldosterone, independently of
its effects on BP (7, 74, 90, 91). Myocardial hypertrophy
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FIGURE 2 | Aldosterone and TOD. Aldosterone has a toxic effect on target organs, including the brain, heart, vascular system, kidney, respiratory system, and

adipose tissues. It increases the incidence of stroke, LVH, CAD, HF, arrhythmias, renal failure, vascular fibrosis and stiffness, endothelial dysfunction, glucose and lipid

metabolism disturbances, insulin resistance, OSA, and so on. TIA, transient ischemic attack; DM, diabetes mellitus; LVH, left ventricular hypertrophy; CAD, coronary

artery disease; MI, myocardial infarction; HF, heart failure; AF, atrial fibrillation; SVT, sustained ventricular tachycardia; VF, ventricular fibrillation; eGFR, estimated

glomerular filtration rate; CIMT, carotid intima-media thickness; PWV, pulse wave velocity; OSA, obstructive sleep apnea; TOD, target organ damage.

evaluated by electrocardiogram or echocardiography, especially
LVH, was reported to be about two times as frequent in
patients with PA when compared to that in otherwise similar
patients with EH (4, 83, 92). The latest study demonstrated
that autonomous aldosterone secretion levels, not the basal
aldosterone concentration itself, were correlated significantly
with LVMI, even after adjusting for age and BP (88). A recent
meta-analysis by Monticone et al. (5) based on a pooled
population from 20 studies, totaling 5,672 patients, documented
that LV mass was higher in patients with PA compared to that
in counterparts with EH (mean difference ranging from 20 to 69
g/m2 for LVmass/BSA and from 5 to 58 g/m2.7 for LVmass/h2.7).

In animal studies, the experimental study suggested that long-
term aldosterone-salt treatment in rats displayed an increase
in cardiac fibrosis and LVH (93). The endogenous aldosterone
produced in the heart directly stimulates the hypertrophy of
ventricular myocytes in neonatal rats via activation of ERK, JNK,
and protein kinase C-α (PKC-α), affecting cardiac hypertrophy
and function in hypertensive rats (94, 95). Besides, aldosterone
has been shown to increase the size of rat cardiac myocytes, along
with an increase in ROS and nitric oxide (NO) (96). Moreover,
elevated aldosterone has been shown to promote myocardial

hypertrophy and fibrosis in the rat model of aldosterone
system overexpression (97).

In clinical studies, several cross-sectional studies have
reported both LV wall thickness and LV dimension
were increased in patients with PA (98–101). The mean
interventricular septum and posterior wall thicknesses were
increased, leading to higher rates of LVH in patients with PA
relative to individuals with EH (101). The other two types of
research have demonstrated that patients with PA had reduced
diastolic function and increased LV wall thickness, even in the
absence of arterial hypertension (102, 103). Exclusive analysis of
a prospective study confirmed the association of PA with higher
LV internal dimensions and higher LVMI compared with those
in subjects with EH (104). Besides, the prevalence of LVH had
no significant gender difference in patients with PA (105). What
is more, Chen et al. demonstrated that patients with PA showed
not only LV abnormalities but also impaired right ventricular
function because of hyper aldosteronism (106).

Aldosterone and CAD
Coronary artery disease (CAD) often includes myocardial
infarction (MI) and stenocardia, and MI is the most common
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manifestation of CAD. Mihailidou et al. demonstrated that
aldosterone increased the incidence of MI, aggravating cardiac
damage (107). Increasing production of cardiac aldosterone
has been shown to increase the risk of MI, and in turn, MI
could raise aldosterone synthase mRNA (the terminal enzyme
of aldosterone synthesis) and the level of aldosterone in rats
(108). Aldosterone has also been shown to induce a vascular
inflammatory phenotype in rat heart and strongly increased
cyclooxygenase 2 (COX-2) in ventricular cardiomyocytes after
MI (109). Besides, increased levels of aldosterone have been
shown to activate MR in the brain and then enhance
apoptosis both in rat myocytes and nonmyocytes in the
peri-infarct and infarct areas post-MI, contributing to the
inflammatory response (110).

Patients with PA experiencedMI or unstable angina, requiring
angioplasty more frequently than those with EH, both at PA
diagnosis, during follow-up, and in the overall period of the
study (4, 9, 77, 111). Milliez et al. demonstrated non-fatal MI
was diagnosed in 4.0% of 124 patients with PA and 0.6% of 456
patients with EH (4). Subsequently, Catena et al. demonstrated an
increased risk of MI in patients with PA at diagnosis and during
a 7-year follow-up study (9). In addition, a multicenter study in
Japan involving 2,582 patients with PA found that the prevalence
of CAD (including MI or angina) was 9.4% (78).

Aldosterone and HF
Heart failure (HF) is defined as, “a complex clinical syndrome
that could result from any structural or functional cardiac
disorder, which impairs the ability of the ventricle to fill or eject
blood” (77, 111, 112). HF has been singled out as a clinical
and public health problem and is associated with significant
morbidity, mortality, and healthcare expenditures (112). The
risks of developing HF requiring hospitalization and mortality
were significantly higher in patients with PA than EH controls
(111). Although Takeda et al. showed the incidence of congestive
heart failure (CHF) in the PA group was a little lower than that
in the EH group in 1995, this difference did not reach statistical
significance (76). However, a large cohort study confirmed
that the incidence of HF was much higher in patients with
PA compared to that in patients with EH (111). Moreover, a
multicenter study in Japan also found that the prevalence of HF
(about 0.6%) was higher among patients with PA compared to
that among EH controls (78).

Aldosterone and Arrhythmias
Atrial fibrillation (AF) is one of themost important and prevalent
types of arrhythmias and imposes an increasing burden on
the healthcare system, owing to the need for lifelong care
and pharmacological treatment, which is associated with an
increased risk of cardiovascular events (113). In patients with
PA, aldosterone not only increased cardiac structural remodeling
(such as atrial fibroblasts, LVH, and interstitial collagen) (114)
but also promoted AF by altering repolarizing potassium
currents, leading to action potential shortening in rats (115).
Furthermore, Lu et al. reported that aldosterone enhanced the
expression of Kv1.5, a promising target for the treatment of AF,

by activating ROS-dependent phosphorylation of Smad 2/3 and
ERK 1/2 in a rat AF model (116).

A growing body of evidence has demonstrated increased
sustained arrhythmias, including AF, sustained ventricular
tachycardia, atrial flutter, and ventricular fibrillation (VF), in
patients with PA compared to those with EH (77, 111, 117, 118).
Milliez et al. reported a history of AF in 7.3% of patients with
PA (4), which was consistent with the latest study that showed a
marked increase in the relative risk of AF (12.1-fold) in patients
with PA compared to patients with EH (119). In addition, another
study also reported that patients with PA had a 7.2-fold higher
prevalence of history or current AF than patients with EH (101).
Consistently, both a multicenter study and a large cohort study
confirmed that the incidences of arrhythmias, especially AF, were
all significantly higher among patients with PA compared to those
among other hypertensive patients (78, 120). Besides, Catena
et al. demonstrated an increased risk of sustained arrhythmias
in patients with PA at diagnosis compared to patients with
EH during a 7-year follow-up study (9). More seriously, PA
with hypokalemia has been shown to increase the risk of life-
threatening ventricular arrhythmias (121).

Toxic Effects of Aldosterone on the
Vascular System
Aldosterone has been shown to regulate vascular contractility,
cell growth, and apoptosis. Aldosterone-mediated EC growth and
endothelium-mediated regulation of vasore activity via activation
of G protein-coupled estrogen receptor (GPER) were observed in
rats (122). Aldosterone has been shown to interact with Ang-II
to increase apoptosis of rat microvascular ECs via upregulation
of protein tyrosine phosphatase 1B (PTP1B) expression and
inhibition of the PI3K/Akt pathway (123). In addition, in an in
vitro study, aldosterone was shown to contribute to an increase
of collagen synthesis and fibrosis in mice VSMCs (8, 26).

It is well documented that excess aldosterone is responsible
for increased arterial wall stiffness due to the morphological
and functional abnormalities of the blood vessel wall (3, 6, 8).
The mechanisms leading to structural abnormalities include
increases in both arterial wall stiffness (6) and carotid intima-
media thickness (CIMT) (124), as well as abnormal endothelial
function (8). The excess aldosterone generates oxidative stress
to cause endothelial dysfunction and collagen remodeling or
reduce the bioavailability of NO to directly affect EGFR, both
of which lead to an increase in fibrosis and vascular stiffness
(125, 126). Furthermore, increased CIMT was more frequent
in patients with PA than in controls with EH (8, 127, 128). In
addition, pulse wave velocity (PWV) is regarded to be another
reliable marker of atherosclerosis and arterial stiffness. Several
studies have demonstrated that PWV values, as well as brachial-
ankle/heart-ankle PWV, increased in patients with PA compared
to those in controls with EH, and this difference was independent
of BP levels (125).

What is more, excess aldosterone has been shown to cause
reduced endothelial progenitor cell (EPC) vascular elasticity,
proliferation, differentiation, and migration in patients with
PA (129), and the deficiency of EPCs may result in increased
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aortic stiffness and vascular damage (130). Moreover, endothelial
inflammation contributed to the negative remodeling of the
cerebral vasculature, which made the vessel wall less flexible
and further impaired dilatation of the cerebral vessels during
the stroke (131). Furthermore, pronounced fibrosis of small
resistance arteries was also detected in patients with PA compared
with BP-matched patients with EH (132).

Toxic Effects of Aldosterone on the Kidney
Clinical studies have indicated that plasma aldosterone
concentration (PAC) was associated with renal dysfunction, and
the incidence of renal complications was higher among patients
with PA when compared to patients with EH at equivalent
BPs (7, 133). A high PAC could affect more pronounced renal
damage, including renal glomeruli and tubules (134–136). The
latest histopathological analysis of patients with PA demonstrated
that both mineral ocorticoid receptor and 11β-hydroxysteroid
dehydrogenase type 2 were significantly higher in the renal
tubules of patients with hyperaldosteronism, which resulted
in interstitial fibrosis and segmental glomerulosclerosis. In the
meantime, in those with hyperaldosteronism, glomerular size
was significantly larger, luminal stenosis tended to be more
marked, and arteriolar hyalinization was significantly more
pronounced, but the intima-to-media ratio was significantly
lower (134). In addition, the effective markers of kidney damage,
including β2-microglobulin (β2-MG), urinary liver fatty acid-
binding protein (L-FABP), and N-acetyl-β-D-glucosaminidase
(NAG) for tubular damage, as well as urinary albumin-creatinine
ratio (ACR) for glomerular damage, were significantly correlated
with the PAC (136). In addition, severe vascular and glomerular
sclerosis, fibrinoid necrosis and thrombosis, interstitial leukocyte
infiltration, and tubular damage and regeneration were
observed in aldosterone-treated rats, which leads to renal injury
and fibrosis (46).

The structural renal damage induced by a high PAC in
patients with PA may be associated with unfortunate outcomes,
such as renal injury and renal failure (137, 138). Patients
with PA presented more frequently with microalbuminuria and
albuminuria, lower eGFR, and increased creatinine levels (111,
136, 139, 140). Studies have reported that albuminuria and renal
failure were found in a range from 8 to 24% in subjects with
PA (138, 141). Also, 24-h microalbuminuria was significantly
greater in patients with PA compared to controls with EH in
the PAPY study (142). Both Reincke et al. and Kawashima
et al. found the prevalence of albuminuria was increased, and
eGFR was lowered greatly in patients with PA, independent of
other known risk factors (143, 144). Moreover, a recent meta-
analysis study including 6,056 patients with PA also verified that
patients with PA had an increased eGFR compared with other
hypertensive patients [by 3.37 ml/min IQR (0.82–5.93)] and
more severe albuminuria [standard mean difference.55 (0.19–
0.91)], resulting in an association with microalbuminuria [odds
ratio (OR): 2.09 (1.40; 3.12)] and proteinuria [OR: 2.68 (1.89;
3.79)] (145). The follow-up study further demonstrated that the
greater risk of impairment of kidney function in patients with PA
was independent of BP degree (146).

Another crucial influence of aldosterone excess in patients
with PA is relative hyperfiltration (147). Most patients with
long-standing PA have some degree of renal insufficiency, but
aldosterone excess-induced glomerular hyperfiltration may mask
mild to moderate underlying renal failure (148). The early sign
of long-lasting hyperfiltration is microalbuminuria (149), and
preventing the development of microalbuminuria by recognizing
glomerular hyperfiltration becomes an important target in the
management of PA (150). Therefore, the relative hyperfiltration
beyond the effect of hypertension in PA could mislead clinicians
as to the interpretation of normal and abnormal renal function
by examining eGFR data only. Therefore, clinicians should be
aware of possible underlying renal damage in patients with PA
even when the eGFR is normal.

Toxic Effects of Aldosterone on Adipose
Tissue
Adipose tissue is a complex, essential, and highly active metabolic
and endocrine organ (151). It has been believed to have autocrine,
paracrine, and endocrine functions and plays a key role in the
pathogenesis of glucose and lipid metabolism disturbances and
insulin resistance (IR) in patients with PA (152, 153). A high PAC
may induce adipose tissue dysfunction and lead to inflammation,
fibrosis, and a high incidence of metabolic syndrome in patients
with PA (154, 155). Years ago, Rondinone et al. demonstrated
that MRs were presented in adipocytes isolated from rats and
aldosterone could induce differentiation of 3T3-L1 cells because
of the presence of specific mineral ocorticoid-binding sites (156).

Both subcutaneous adipose tissue (SAT) and visceral adipose
tissue (VAT) were observed to have a potential interplay with
aldosterone in patients with PA (157–159). Studies have reported
that the number and affinity of insulin receptors in SAT were
reduced significantly, which resulted in glucose intolerance and
reduced insulin sensitivity in patients with PA (160, 161). Besides,
the expression of PCK1, ADIPOQ, PLIN, and PPARG in VAT
were inversely correlated with excess aldosterone levels, which
in turn contribute to the IR observed in patients with PA (159).
Mechanism studies have demonstrated that aldosterone-reduced
glucose uptake in human adipocytes by reducing GLUT4 cell-
surface localization and phosphorylation of IRS1, PI3K, and AKT
(162), as well as insulin signaling, was impaired in a rat model of
PA (163). In addition, aldosterone excess was also associated with
a reduction of both leptin and adiponectin expression in VAT in
patients with aldosterone-producing adenoma (APA) (164, 165).
Besides, elevated aldosterone levels are associated with elevated
circulating resistin levels and cardiac morphological changes,
independent of the presence of metabolic syndrome in patients
with PA (154). However, other studies have shown that the
correlation between the PAC and the percentage of VAT was not
evident in patients with APA (158), and patients with APA had
smaller visceral fat areas than their counterparts with EH (166).

Toxic Effects of Aldosterone on Diabetes
Mellitus (DM)
Primary aldosteronism (PA) is frequently associated with
impaired insulin sensitivity and an increased risk of
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developing DM. A multi-institutional, cross-sectional study
demonstrated that DM was an independent risk factor in cardio-
cerebrovascular events and renal complications in patients
with PA (167). Elevated aldosterone levels were independently
associated with IR, as observed by Kumagai et al. in a 10-
year prospective study (168). Recent studies have further
demonstrated that patients with APA presented with increased
levels of not only aldosterone but also cortisol via the expression
of both CYP11B1 and CYP11B2. CYP11B1 is required for the
synthesis of cortisol and 11β-hydroxy and rostenedione, and
CYP11B2 catalyzes aldosterone synthesis (169). Gerards et al.
demonstrated that impaired glucose metabolism was associated
with cortisol cosecretion, which increased the risk of type 2 DM
in patients with PA (170). Besides, the coexistence of autonomous
cortisol secretion was associated with poor clinical outcomes and
psychological symptoms in patients with PA (171, 172). A recent
prospective cohort study demonstrated that PA caused decreased
insulin secretion and an increased rate of insulin clearance,
which lead to glucose intolerance (173). Physically, insulin and
glucose are delivered to different organs by the circulation,
and they enter specific cells through NO-dependent transport
(174). In patients with PA, excess aldosterone and MR activation
increase ROS and promote endothelial remodeling, resulting
in VSMC-related IR (175), skeletal muscle-related IR (176),
and adipocyte-related IR (177). Furthermore, the relationship
between PA and the increased prevalence of abnormal glucose
metabolism was strengthened by two meta-analyses. Subjects
with PA had a higher risk of developing DM (OR 1.33, 95%
CI1.01–1.74) and a higher prevalence of DM compared to
subjects with EH (OR 1.55, 95% CI 1.01–2.36, p= 0.04) (5). They
also had an increased prevalence of impaired fasting glucose
[31.2% (95% CI15.81–46.60%)], impaired glucose tolerance
[26.19% (95% CI 15.17–37.21%)], and DM [15.22% (95%
CI9.93–20.51%)] (178).

Aldosterone and OSA
Obstructive Sleep Apnea (OSA) is the most frequent secondary
condition associated with resistant hypertension, and the
association between OSA and PA has been a matter of debate
(179). Recently, several efforts have been devoted to investigating
the bidirectional relationship between aldosterone levels and
OSA (180, 181). A small sample size (53 patients) study showed
that 34% of hypertensive patients with OSA had PA (180).
Besides, a prospective study that enrolled 207 patients with
OSA showed the frequency of PA in patients with moderate-
to-severe OSA was up to 21.3%, suggesting that moderate-to-
severe OSA predicted the presence of PA (182). However, the
Hypertensives with Primary Aldosteronism andOSA (HYPNOS)
study demonstrated that the prevalence of PA in patients
with OSA was 8.9% (11.8% of Caucasian ethnicity and 5.9%
of Chinese ethnicity) (181), which is challenging the current
recommendation of the 2016 Endocrine Society guidelines that
recommend screening for PA in all hypertensive patients with
OSA (183). But the latest study supported that rigorous screening
for PA is cost-saving due to the aversion of cardiovascular risk
even if screening was conservatively presumed to identify only
3% of new PA cases (184). What is more, aldosterone levels

contributed to the severity of OSA in patients with PA (185).
Accordingly, the HYPNOS study found the prevalence of OSA
was 67.6% in the overall cohort of patients with PA (64.4% of
Caucasian ethnicity, and 70.0% of Chinese ethnicity, respectively)
(181). Another retrospective study in the Japanese population
also showed that 55% of patients with PA were diagnosed with
OSA (135). Interestingly, both of the studies by Wolley and
Gaddam verified that treatment with a MRA in patients with PA
significantly reduced the number of those with OSA (186, 187).
Collectively, early screening of patients with moderate-to-severe
OSA for PA could reduce TOD. Most importantly, improving
the awareness of the impact of hyper aldosteronemia on OSA in
patients with PA can help to reduce morbidity and mortality in
patients with moderate-to-severe OSA.

TREATMENT OUTCOMES OF PA

Targeted treatment with either adrenalectomy (ADX) and MRA
are the two common, well-documented treatments to improve
the outcomes of patients with PA. The current practice guidelines
recommend ADX for lateralized aldosterone excess, whereas
bilateral lesions are treated using a MRA (183, 188). When
ADX was performed for lateralized aldosterone excess, the cure
rate for hypertension (a composite of patients who are cured
or experience a marked improvement) was up to 82% and
that of the biochemical aspects of PA was close to 100%. Even
when antihypertensive treatment cannot be withdrawn after
ADX, the number or the doses of antihypertensive drugs can
be markedly decreased, and/or resistant hypertension can be
resolved (189). However, it should be noted that aldosterone
levels, which are the occupation of aldosterone target-MR, are
tightly regulated by the RAAS system, and treatment with a
MRA cannot fully replicate physiological control. Interestingly,
ADX was also associated with a considerable improvement
in several indexes of QoL (190). For patients who are not
candidates for surgery, treatment with anMRA is a reasonable
alternative to ADX. However, it is difficult to assess response to
therapy in PA due to a lack of standardized outcome measures.
Although the majority of subjects benefited from both surgical
andmedical therapies in observational studies (120, 191, 192), the
absence of unifying criteria for therapeutic response has limited
comparative investigations. In 2017, the Primary Aldosteronism
Surgical Outcome (PASO) study published explicit criteria
for biochemical and clinical outcomes after ADX, but the
complexity of the PASO criteria significantly limits their utility
in routine clinical settings. Because the PASO criteria do not
reflect the secondary outcomes associated with PA, including
cardiovascular and renal dysfunction, which are arguable of
significant clinical importance (193).

Recent investigations of therapeutic outcomes in PA have
evaluated alternative endpoints, including target organ function,
QoL, and overall survival (194). Although overall mortality after
the diagnosis of PA and initiation of specific treatment is similar
to that of matched controls with EH, available evidence, based on
predominantly retrospective and a few prospective observational
studies, shows that treatment of PA by ADX or treatment with
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anMRA reduced the all-cause morbidity of untreated PA, thereby
reducing overall mortality (9, 195). Besides, the TOD induced by
excess aldosterone could also be reversed, to a great degree, via
ADX or treatment with anMRA (196, 197). Several recent studies
(2011–2021) evaluating ADX vs. MRA therapy are discussed
below and summarized in Table 1.

Cerebro-Cardiovascular Outcomes
The cardiovascular system responds dynamically to aldosterone.
PA is associated with vascular and cardiac remodeling beyond the
degree of BP, which is the presumed mechanism for the higher
rates of cardiovascular events (3, 4, 83). A retrospective cohort
study showed that patients with PA treated with MRA had a
higher risk of stroke (a competing hazard ratio = 1.83, P <

0.001), while ADX lowered the risk of incident stroke (competing
for a hazard ratio = 0.75) compared to controls with EH (191).
Catena et al. reported that both ADX and treatment with MRA
(spironolactone) decreased LVM in patients with PA (196).
Targeted surgical and medical treatment of PA-induced LVM via
LV inward remodeling and ADX contributed to a prominent and
persistent decrease in LVMI, while medical treatment resulted in
a borderline significant fall (101). Besides, the worse LV diastolic
function in patients with PA could be reversed after ADX (102),
and ADX exerted a beneficial effect on LV geometry and structure
by reducing LV concentric geometry and the burden of LVH
in patients with PA (197). In addition, ADX lowers the risks
of congestive heart failure (CHF) and all-cause mortality in a
long-term follow-up (112).

However, studies have shown the different effects of medical
or surgical treatment on AF in patients with PA. Pan et al.
demonstrated that patients with PA who underwent ADX had
a lower incidence of new-onset atrial fibrillation (NOAF), but
this finding was not observed in patients with PA who received
a lower dose of MRA therapy (198). The authors supposed the
differences between the two strategies might be caused by the
different doses of MRA therapy. A higher dosage of MRA may
have higher clinical efficacy and reduce the differences between
ADX and MRA therapy. However, this issue needs further large
prospective randomized trials to figure this out. In addition,
patients with PA treated with MRA (renin remained suppressed)
had a significantly higher risk of AF, where treatment of PA with
MRA substantially increases renin, or with surgical ADX was
associated with no significant difference in reducing the risk for
developing AF (120). Accordingly, Rossi et al. also demonstrated
that treatment withMRA had a higher incidence of AF, compared
with both ADX treatment for PA and the EH group (192), which
was confirmed by a recent meta-analysis. This meta-analysis
enrolled 2,705 patients with PA, and the results demonstrated
that the incidence of NOAF among the patients with PA receiving
treatment with MRA was much higher compared to those
inpatients for PA who underwent ADX (pooled OR: 2.83, 95%
CI: 1.76–4.57 in the random-effects model). The pooled OR was
1.91 (95% CI: 1.11–3.28) when compared to the patients with
EH (205). These data suggested that persistent renin suppression
may serve as a biomarker for inadequate MR blockade, leading to
ongoing aldosterone exposure and consequent cardiometabolic
effects. Taken together, surgical treatment seems to have a better

protective effect on AF than medical treatment in patients
with PA.

Renal Outcomes
The renal system is a direct target organ of hyper aldosteronism,
and patients with PA often have an association with decreased
eGFR and CKD (139, 142, 144). Effective treatment with either
surgery or MRA therapy will unmask the underlying CKD in
patients with PA (206). Short- and long-term follow-up after
ADX consistently indicated that early involvement of the kidney
in patients with PA was characterized by functional changes that
would be largely reversible, with a significant decrease in urinary
albumin excretion (207), and microalbuminuria was more likely
to subside to normal levels (204). Besides, ADX had significantly
lower utilization of antihypertensive medications, higher rates
of normalization of BP, and improved eGFR compared with
treatment with MRA (202). However, for elderly patients, MRA
therapy may be more appropriate (204). Of course, a few major
cardiovascular events and mortality events were also observed
after surgical treatment (208). Studies found that kidney function
further deteriorated after ADX in patients with PA (209, 210),
and the incidence and risk of postoperative acute kidney injury
were significantly higher in patients with PA after surgical ADX
(211). MRAs must be dosed with care in the setting of CKD,
as they may precipitate hyperkalemia [49]. Therefore, clinicians
should pay more attention to postoperative renal function in
patients with PA at elevated risk for a decline in kidney function,
and it is important to evaluate the age, preoperative PAC,
and preoperative potassium level before choosing the method
of treatment.

Other Outcomes of the Vascular System
Arterial stiffness is one of the important factors in patients with
PA and severe arterial stiffness before surgery was significantly
associated with renal function decline and less LVM regression
after ADX in patients with lateralized PA (212). Strauch et al.
found that the PWV significantly decreased after ADX, whereas
there are no changes in arterial stiffness (PWV, augmentation
index) indices in patients treated with MRA (spironolactone)
(213). Another study also showed both brachial-ankle PWV
(baPWV) and heart-ankle PWV (haPWV) were significantly
reduced after ADX in patients with APA, which suggested
that ADX could reverse adverse vascular changes in patients
with APA (127).

Major Limitations and Disadvantages of
Treatments
The treatment objectives for patients with PA include resolution
of hypokalemia and prevention of the morbidity and mortality
associated with hypertension, progressive CKD, and further TOD
(cerebro-cardiovascular, renal, and vascular systems). Although
the surgery would improve the QoL of patients to normal
population-adjusted values, it is more cost-effective in the long
term, because the patients require fewer medications and less
frequent clinic visits (190). Besides, surgery may also bring about
superior cardiovascular, renal, and metabolic outcomes (214,
215). However, there exist some limitations and disadvantages
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TABLE 1 | A summary of selected recent studies (2011–2021) comparing medical and surgical treatments of PA.

Study Source Year Design Groups Primary

outcome

Results

Chang et al.,

Surgery. (191)

Taiwan 2020 Retrospective cohort APA+ADX (n = 1,047),

PA+MRA (n = 3,167),

each subgroup

matched 1:4 with EH

Stroke ADX associated with lower risk of

stroke compared to EH; MRA was not

Kim et al.,

Hypertension.

(119)

Korea 2021 Retrospective cohort PA +ADX (n = 755), PA

+MRA (n = 663), each

subgroup matched 1:5

with EH

NOAF Time-dependent increases in NOAF

risk in both ADX and MRA groups

compared with EH.

Pan et al., J Amer

Heart Assoc. (198)

Taiwan,China 2020 Retrospective cohort PA +ADX (n = 534), PA

+MRA (n = 1,668),

matched with EH (N =

8,808)

AF ADX associated with lower risk of AF

compared to EH; MRA was not. ADX

had a lower rate of mortality, major

cardiac and cardiac/cerebrovascular

events compared with MRA

Puar et al., Clin

Endocrinol (Oxf)

(199)

Singapore 2020 Retrospective cohort study unilateral PA+ ADX (n

= 86); unilateral PA+

MRA (n = 68)

A composite

incident of

cardiovascular

events

MRA improves clinical and

biochemical control, and offer similar

cardiovascular protection compared

with ADX

Hundemer et al.,

JAMA Cardiol.

(200)

America 2018 Retrospective cohort PA +ADX (n = 201), PA

+MRA (n = 195),

age-matchedEH (n =

40,092)

AF PA+MRA with suppressed renin had

higher risk of AF, compared to EH, PA

+ADX and PA+MRA with

non-suppressed renin

Hundemer et al.,

lancetdiabetes

endo. (120)

America 2018 retrospective cohort PA +MRA (n = 602),

age-matchedEH (n =

41,853)

Incident of

cardiovascular

events

MRA had significantlyhigher risk for

incident cardiovascular events and

death compared with EH.

Billmann et al.,

Surgery. (201)

Germany 2020 Retrospective cohort study Unilateral PA+pMIA (n

= 78), unilateral

PA+tMIA (n = 156)

Occurrence of

postoperative and

hypocortisolim

pMIA is comparable to tMIA in terms

of clinical and biochemical, and

reduced hypocortisolism and

hypoglycemia.

Katabami et al., J

Hypertension.

(202)

Japan 2019 Retrospective cohort PA with APA +ADX (n

= 276), PA with APA

+MRA (n = 63)

Renal function, BP,

anti-hypertensive

medication use

ADX associated with lower number of

antihypertensive medications, higher

rates of normal BP, and improved

eGFR compared with MRA

Hundemer et al.,

Hypertension.

(203)

America 2018 Retrospective cohort PA +ADX (n=120), PA

+MRA (n = 400), age

and eGFR-matched EH

(n = 15,474)

Renal function MRA treatment is associated with

annual decline in eGFR and higher

risk of CKD compared to EH; ADX

was not

Park et al., Endocr

J. (204)

Korea 2017 Retrospective study APA +ADX (n = 206)

PA +MRA (n = 64)

Renalfunction and

Hypokalemia

a lower postoperative eGFR and

higher serum potassium levels in

ADX, compared to MRA

Velema et al.,

JCEM. (190)

Dutch 2018 RCT (SPARTACUS) PA+ADX (n = 92) PA

+MRA (n = 92)

QoL Both ADX and MRA treatment

improved QoL after 1 year. ADX

associated with better QoL compared

to MRA treatment despite equivalent

BP control

PA, primary aldosteronism; APA, aldosterone-producing adenoma; ADX, adrenalectomy; MRA, mineralocorticoid receptor antagonist; EH, essential hypertension; AF, atrial fibrillation;

NOAF, new-onset atrial fibrillation; pMIA, partial minimally invasive adrenalectomy; tMIA, total minimally invasive adrenalectomy; eGFR, estimated glomerular filtration rate; RCT,

randomized clinical trial; SPARTACUS, A Randomized Trial Comparing Adrenal Vein Sampling and Computed Tomography Scan; BP, blood pressure; QoL, quality of life.

to the surgical treatment (i.e., ADX) of PA. Firstly, not all
patients with PA are suitable for ADX, and ADX is the best
choice for common unilateral APA (aldosteronoma), primary
unilateral adrenal hyperplasia, and multinodular unilateral
adrenocortical hyperplasia. Secondly, there exists a risk of
short-term hypoaldosteronism, leading to clinically important
hyperkalemia after ADX surgery (216, 217). Thirdly, because
glomerular hyperfiltration associated with aldosterone excess
might mask mild-to-moderate underlying renal failure, most

patients with long-standing PA have some degree of renal
insufficiency. Some studies demonstrated that kidney function
further deteriorated after ADX (209, 210) and the incidence and
risk of postoperative acute kidney injury were significantly higher
after ADX in patients with PA (211). For medical treatment,
it is essential that the MRA dosage must be adequate to fully
block the toxic effects of hyperaldosteronism. Nevertheless,
for unselective MRA (spironolactone, canrenone, potassium
canrenoate), painful gynaecomastia, erectile dysfunction, and
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decreased libido in men are induced in PA patients with
spironolactone at dosages of more than 50 mg/day, because
spironolactone and its metabolites are antagonists of the
androgen receptor. They also are agonists of the progesterone
receptor and thus interfere with the estrus cycle. These off-
target effects occur at 25 mg/day after chronic use in some
patients. Besides, agonist activity at the progesterone receptor
may result in menstrual irregularity in women (218). Eplerenone,
a competitive and selective MRA, is more expensive, weaker,
and shorter-acting than the other MRAs. Most importantly, in
patients with PA, lifetime use of MRA could increase the pill
burden of antihypertensive medications significantly and reduce
QoL greatly.

CONCLUSIONS AND PERSPECTIVES

Primary aldosteronism (PA) is the most common cause of
endocrine hypertension, and hyperaldosteronemia is one of the
important characteristics for patients with PA (219). Increasing
experimental and clinical data suggest prolonged exposure to
elevated aldosterone concentrations in patients with PA is
associated with increased TOD, including brain, heart, kidney,
vessels, adipose tissues, and OSA, and therefore, leads to an
increase in morbidity from cerebro-cardiovascular events. To
attenuate the toxic effects of excess aldosterone, the first and key
step is to screen for PA, especially in patients with hypertension
that is severe and/or resistant to treatment. Early diagnosis
is the fundamental and critical point to obtain benefits from
the prevention of the development of TOD, because ADX for
patients with unilateral could bring BP under control with the
withdrawal or prominent reduction in the number and dosage of
antihypertensive medications, as well as even reverse TOD (220).
Besides, titration of MRA therapy to increase plasma renin levels
may be an effective approach to avoid excessive cardiovascular
risk in medically treated patients with PA. Furthermore, there
are novel third-generation nonsteroidal MRAs (like eplerenone,
the receptor selectivity of AZD-9977, esaxerenone, finerenone,
and KBP-5074) currently in clinical trials and provide a

cardiorenal benefit above that of current optimized standard-
of-care treatment in a high-risk population with reduced renal
function, and with a lower risk of hyperkalemia (221–224). These
nonsteroidal MRAs generally exhibit both high affinity and good
selectivity for the MR over other steroid receptors may have a
better safety profile in patients with PA (222–226). For example,
finerenone from Bayer is non-steroidal, and suggested to be
cardiac preferring (over the kidney) in contrast with the steroidal
MRAs (227). Esaxerenone from Daiichi-Sankyo showed over
10 times as potent as eplerenone in terms of lowering blood
pressure: its particular clinical significance claims to be a safe
and effective antihypertensive in patients with moderate renal
dysfunction and/or T2DM and albuminuria (228). Therefore,
these novel nonsteroidal MRAs have better therapeutic options
for patients with PA in the future (222–224). In addition, more
accurate methods to select patients with unilateral PA for ADX
are needed inmedically treated patients in the future (183). Taken
together, there should be a low threshold for initiating screening
for PA, since the early diagnosis of PA and early initiation
of specific treatment strategies have a substantial impact on
reducing cerebro-cardiovascular events and mortality in the
long term.
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