

Fullerenes

International Edition: DOI: 10.1002/anie.201900983 German Edition: DOI: 10.1002/ange.201900983

First Synthesis and Characterization of CH₄@C₆₀

Sally Bloodworth, Gabriela Sitinova, Shamim Alom, Sara Vidal, George R. Bacanu, Stuart J. Elliott, Mark E. Light, Julie M. Herniman, G. John Langley, Malcolm H. Levitt, and Richard J. Whitby*

Abstract: The endohedral fullerene $CH_4@C_{60}$ in which each C_{60} fullerene cage encapsulates a single methane molecule, has been synthesized for the first time. Methane is the first organic molecule, as well as the largest, to have been encapsulated in C_{60} to date. The key orifice contraction step, a photochemical desulfinylation of an open fullerene, was completed, even though it is inhibited by the endohedral molecule. The crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate shows no significant distortion of the carbon cage, relative to the C_{60} analogue, and shows the methane hydrogens as a shell of electron density around the central carbon, indicative of the quantum nature of the methane. The ¹H spin-lattice relaxation times (T_1) for endohedral methane are similar to those observed in the gas phase, indicating that methane is freely rotating inside the C_{60} cage. The synthesis of $CH_4@C_{60}$ opens a route to endofullerenes incorporating large guest molecules and atoms.

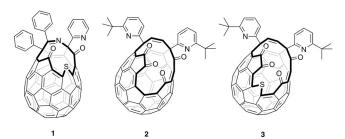
Soon after the discovery of C_{60} in 1985,^[1] came recognition that its approximately spherical 3.7 Å diameter cavity provides a unique environment in which to isolate single atoms.^[2] Since then endohedral fullerenes, that is, compounds denoted $A@C_{60}$ in which molecules or atoms are enclosed within the fullerene cage, have been the focus of substantial experimental and theoretical efforts.^[3-5] Endohedral fullerenes may be synthesized by forming the fullerene in the presence of the endohedral species (particularly successful for metallofullerenes),^[3,5] by high temperature and pressure treatment of the fullerene with the endohedral species (inert gas@ C_{60}), ^[6,7]

[*] Dr. S. Bloodworth, G. Sitinova, S. Alom, Dr. S. Vidal, G. R. Bacanu, Dr. S. J. Elliott, Dr. M. E. Light, J. M. Herniman, Prof. G. J. Langley, Prof. M. H. Levitt, Prof. R. J. Whitby

Chemistry, Faculty of Engineering and Physical Sciences

University of Southampton Southampton, SO17 1BJ (UK)

E-mail: rjw1@soton.ac.uk


Dr. S. J. Elliott

Current address: Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, FRE 2034 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon

5 Rue de la Doua, 69100 Villeurbanne (France)

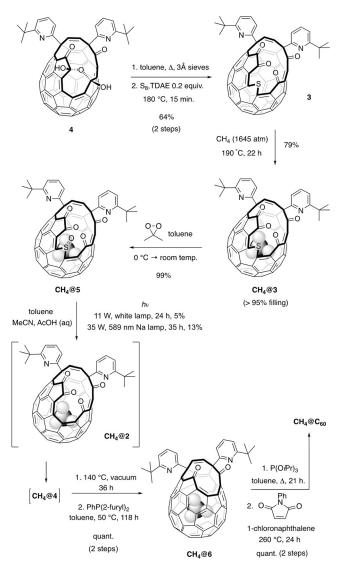
Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201900983.

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Figure 1. Open-cage fullerenes. Preparation of $H_2@C_{60}$ from 1, and of $H_2O@C_{60}$ and $HF@C_{60}$ from 2, is known; as are a series of open-cage derivatives A@3.

or by ion bombardment of the fullerene $(N@C_{60})$, [8] but all give very low incorporation and require extensive purification. Furthermore, these methods are not applicable to the incorporation of small organic molecules.

The macroscopic-scale preparation of endohedral fullerenes by multi-step "molecular surgery" [9–12] involves chemically opening an orifice in the fullerene, of a size suitable to allow entry of the single molecule. Suturing of this orifice to restore the pristine carbon cage was pioneered by Komatsu^[13,14] and Murata^[15] who reported the first syntheses of $H_2@C_{60}$ and $H_2O@C_{60}$ following insertion of H_2 or H_2O under high-pressure, into open-cage fullerenes **1** and **2**, respectively. Optimized procedures for the synthesis of $H_2@C_{60}$ and $H_2O@C_{60}$ have subsequently been reported by ourselves, [16] based on Murata's open-cage C_{60} derivative **2**, and also applied to the synthesis of $HF@C_{60}$ (Figure 1). [17,18]


The macroscopic quantities of endohedral fullerenes provided by molecular surgery have allowed detailed investigation of physical properties, including by neutron scattering, infrared spectroscopy, and NMR spectroscopy. These methods have shown that, as a result of the inert and highly symmetrical environment of the cavity, an entrapped molecule behaves much as would be expected in the very low-pressure gas state, [17,19–23] displaying free rotation at cryogenic temperatures. [19–24]

The endohedral fullerenes $H_2@C_{60}$ and $H_2O@C_{60}$ are exceptional platforms for the study of nuclear spin isomer-

ism, [24,31-33] in which only certain combinations of nuclear spin states and molecular rotational states are allowed by the Pauli principle. We are particularly interested in CH₄@C₆₀, since spin isomerism is also exhibited by methane, which exists as three nuclear spin isomers with the J=0 rotational state having nuclear spin I=2, the J=1 rotational state having nuclear spin I=1, and the J=2 rotational state having nuclear spin states I = 0 and I = 1. [34,35] Methane is one of the largest possible guests for C₆₀[36] and herein, we report conditions for optimized CH₄ encapsulation by 3 and the first successful closure sequence to reform the pristine C₆₀ cage. Our work constitutes the first synthesis of CH₄@C₆₀ and raises the exciting prospect of accessing other endohedral fullerenes, A@C60, in which the endohedral species is a "large" guest molecule; including A = O2, N2, CO, NO, NH₃, CH₃OH, CH₂O, and CO₂, as well as the atoms Ar and

 $CH_4@C_{60}$ was prepared according to the procedures shown in Scheme 1. Open-cage fullerene 3 was obtained

Scheme 1. Synthesis of $CH_4@C_{60}$. Optimized CH_4 encapsulation by **3** and a successful closure sequence, involving photochemical desulfinylation, are applied to the first synthesis of $CH_4@C_{60}$.

from bis(hemiketal) 4^[15] according to the published method.^[25] We have previously shown the 17-membered orifice of 3 to be suitable for entry of a single molecule of methane, achieving 65% encapsulation by heating 3 at 200°C under 153 atm of methane. [28] Upon increasing the pressure of methane above 1500 atm, we obtained CH₄@3 with more than 95% encapsulation of methane (estimated from the ¹H NMR spectrum) after 22 h at 190 °C. Oxidation with dimethyldioxirane^[37] gave the sulfoxide CH₄@5 cleanly. Photochemical removal of the sulfinyl group (SO) has been reported for ringcontraction of the sulfoxide derivative of open-cage fullerene 1, using visible-light irradiation. [13,38-40] Unfortunately, Murata and co-workers found that the sulfoxide derivative of 3 (i.e. 5) does not undergo simple loss of SO under the same conditions, but undergoes decomposition accompanied by a low-yielding rearrangement to a lactone side product.^[41] However, we noted that the dominant species in the positiveion atmospheric pressure photoionization (APPI) mass spectrum of 5 appears at m/z = 1102.18 and corresponds to the radical cation C₈₂H₂₆N₂O₄^{+*} resulting from loss of SO from 5, indicating that ring-contraction by photochemical removal of SO is feasible. Since we found that the expected product 2 from the photochemical ring-contraction is unstable under visible light irradiation, we considered that the reaction might be facilitated if 2 could be trapped in situ as the bis(hemiketal) 4. We were pleased to observe that in a mixed solvent system of toluene, acetonitrile, and acetic acid (10% v/v aq.), irradiation of sulfoxide 5 (containing endohedral water under the partly aqueous reaction conditions), in the visible range for 24 h with an 11 W bulb, gave a mixture of 4 and H₂O@4 in 25% yield of isolated product, with a similar amount of unreacted 5 remaining. A longer period of irradiation did not lead to a higher yield of 4. Product(s) of polymerization or decomposition, which were not identified, accounted for the remaining material, and none of the lactone product recovered by Murata et al. was isolated.

When $CH_4@5$ was subjected to identical photochemical conditions, the corresponding product of SO loss followed by hydration, $CH_4@4$, was obtained in only 5% yield, retaining more than 95% methane filling. We confirmed that the observed drop in yield is due to the presence of endohedral methane by carrying out photolysis on a sample of $CH_4@5$ with 83% filling (Supporting Information, Section S5), from which the product $CH_4@4$ was obtained with only 57% filling as a result of the much higher-yielding conversion of the portion of the material that does not contain methane.

The yield of the photochemical ring-contraction was significantly increased upon switching to irradiation with monochromatic (yellow) light at 589 nm, using a low-pressure sodium lamp. A mixture of **5** and $H_2O@\mathbf{5}$ was converted to the bis(hemiketal) mixture ($\mathbf{4} + H_2O@\mathbf{4}$) in 43 % yield of isolated product. The corresponding reaction of $CH_4@\mathbf{5}$ under irradiation at 589 nm gave $CH_4@\mathbf{4}$ in a yield of 13 %, in accordance with the expected inhibition of the reaction by endohedral methane, and is a valuable improvement in comparison with the very low yield obtained using white light. It is rare for endohedral species to affect the reactivity of the fullerene cage, [42,43] particularly in such a dramatic (and unfortunate) fashion, but while it is disappointing that this step remains

5039

low-yielding, with $CH_4@4$ in hand we were now able to adapt known procedures for suturing of the bis(hemiketal) orifice to an intact C_{60} shell.

CH₄@4 (more than 95% filling) was contaminated by a trace of H₂O@4, identified by the ¹H NMR resonance of endohedral water at $\delta = -9.84 \text{ ppm}^{[16]}$ and distinct from the ¹H resonance for endohedral methane in CH₄@4, which appears as a sharp singlet at $\delta = -11.22$ ppm (CDCl₃). Since the percentage filling of H₂O will be amplified by a factor of approximately five during photochemical ring contraction (Supporting Information, Section S5.1), we extrapolate the methane filling in CH₄@5 to be more than 99.5%. To avoid final contamination of $CH_4@C_{60}$ by $H_2O@C_{60}$, $CH_4@4$ was heated at 140°C under a dynamic vacuum (approximately 0.5 mm Hg) for 36 h to obtain CH₄@2 with accompanying removal of the endohedral water contaminant. No loss of CH₄ was observed. Subsequent reduction to CH₄@6 using di-(2furyl)phenylphosphine in toluene, at a temperature of 50°C (too low for water re-entry), gave CH₄@6 (more than 95% filling) in quantitative yield. Endohedral methane appears as a singlet with a shift of $\delta_{\rm H} = -9.82$ ppm (700 MHz, [D₈]THF, 295 K) in the ¹H NMR spectrum of CH₄@6, and no H₂O@6 was present. Finally, the orifice of CH₄@6 was sutured, using identical conditions to those reported for $H_2O@6$, [16] and $CH_4@C_{60}$ was obtained with $100.0 \pm 0.3\%$ filling after removal of traces of (empty) C₆₀ by preparative HPLC on a CosmosilTM Buckyprep column. An independently prepared sample of H₂O@C₆₀ was found to co-elute with CH₄@C₆₀, confirming the necessity for removal of contaminant endohedral water earlier in the synthesis.

The positive-ion APPI mass spectrum of $CH_4@C_{60}$ is in agreement with the calculated isotope distribution pattern for $C_{61}H_4$ (Figure 2), and the ultrahigh resolution also confirms that $H_2O@C_{60}$ is not present since the isotope patterns for $CH_4@C_{60}$ and $H_2O@C_{60}$ were shown to be non-overlapping (Supporting Information, Section S4).

A crystal structure of the nickel(II) octaethylporphyrin/benzene solvate $^{[44]}$ of $CH_4@C_{60}$ was obtained (CCDC 1858399 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.) and is similar to that reported for the equivalent C_{60} solvate, $^{[45]}$ with the

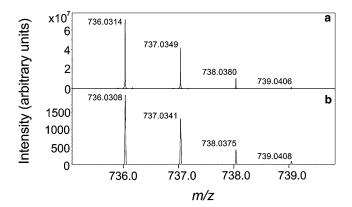


Figure 2. Positive-ion APPI mass spectrum of $CH_4@C_{60}$. a) Experimental data and b) model isotope pattern for $C_{61}H_4$; m/z 735–740.

exception of a spherically symmetrical electron density distribution located at the center of the fullerene, corresponding to the endohedral methane molecule. The electron density map shows a faint spherical shell around the main center of the endohedral electron density, at a radius of 1.03 Å (Figure 3). This shell of distributed electron density corre-

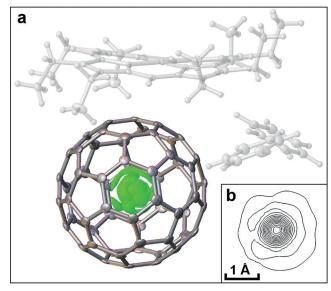
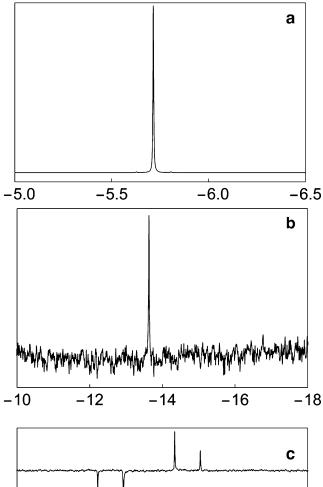
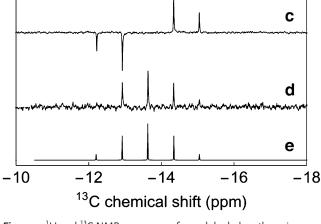


Figure 3. Crystal structure for the nickel (II) octaethylporphyrin/ benzene solvate of $CH_4@C_{60}$. a) Thermal ellipsoids for the cage atoms of $CH_4@C_{60}$ and the difference electron density map for endohedral CH_4 (surface drawn at the 0.6 e ų level) are shown. Ni II OEP and benzene are shown as thermal ellipsoids in white and all thermal ellipsoids are shown at 50% probability. b) Selected slice through the center of difference electron density at the CH_4 position, contours drawn at approximately 0.9 e ų. A faint shell of electron density at a radius of 1.03 Å from the center of the cage is visible. This corresponds to the delocalized wavefunction of the methane hydrogen atoms. CCDC 1858399 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. Structure details are reported in Section S6 of the Supporting Information.

sponds to the delocalized nuclear wavefunction of the methane hydrogens, as expected for a quantum description of the freely rotating molecule. This quantum description is well-established for the analogous systems $H_2@C_{60},\,H_2O@C_{60},\,$ and $HF@C_{60},\,$ which have been extensively studied by neutron-scattering and infrared spectroscopy. $^{[17,20-22]}$ A classical description in which the methane explores a random set of orientations would give a similar result. There is no geometrical evidence (within 3-sigma) for distortion of the cage relative to the C_{60} analogue, or displacement of the methane from its center.

Detailed NMR characterization of ${\rm CH_4@C_{60}}$ was carried out. The $^1{\rm H}$ NMR spectrum in 1,2-dichlorobenzene- d_4 displays a singlet at $\delta_{\rm H}=-5.71$ ppm, where the shift results from the shielding effect of the ${\rm C_{60}}$ cage, compared with $^{12}{\rm CH_4}$ in the gas phase, which has a chemical shift of $\delta_{\rm H}=2.166\pm0.002$ ppm. $^{[46]}$ From the natural abundance $^{13}{\rm CH_4@C_{60}}$, the measured coupling is $^1J_{\rm HC}=124.3\pm0.2$ Hz (at 295 K), in comparison with $^1J_{\rm HC}=125.3$ Hz (at 292 K) measured in the

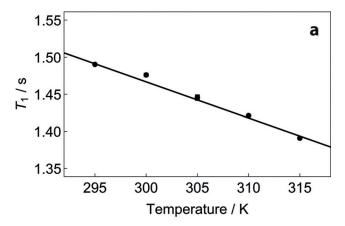

gas phase. [47] The liquid state 13 C{ 1 H} NMR spectrum reports a sharp singlet for endohedral methane at $\delta_{\rm C} = -13.63$ ppm in 1,2-dichlorobenzene- d_4 , again shielded in comparison with the reported shift of $\delta_{\rm C} = -8.648 \pm 0.001$ ppm measured in the gas phase [46] (Figure 4 a,b).


Figure 4c,d shows the relevant section of the INEPT NMR spectrum of 13CH₄@C₆₀, alongside experimental and simulated proton-coupled ¹³C NMR spectra. The INEPT pulse sequence was used as defined by Morris and Freeman^[48] with an interpulse delay of $\tau = \frac{1}{4J_{HC}} = 2.012 \text{ ms}$ ($J_{HC} =$ 124.3 Hz). The experimental ¹³C resonance is a 1:4:6:4:1 quintet with chemical shift $\delta_C = -13.63$ ppm. The ¹³C NMR resonance for the cage in $CH_4@C_{60}$ appears at $\delta_C =$ 143.20 ppm, shifted by $\Delta \delta = +0.52$ ppm relative to C_{60} itself. This is a large deshielded shift of the cage ¹³C NMR resonance in comparison with the effect of smaller molecular endohedral species (HF@C₆₀, $\Delta \delta = +0.04 \text{ ppm}$, [17] H₂@C₆₀, $\Delta \delta = +$ 0.08 ppm, [16] and $H_2O@C_{60}$, $\Delta\delta = +0.11$ ppm[15,16]), consistent with the large size of methane. Correlation of $\Delta\delta$ with the van der Waals radius of the enclosed species has been described for the inert gas@ C_{60} series.^[49]

The $^1\mathrm{H}$ spin-lattice relaxation time constant of $^{12}\mathrm{CH_4@C_{60}}$ was found to be $T_1=1.4904\pm0.0005$ s at 295 K. Measurement of T_1 as a function of temperature indicates a clear increase in relaxation rate constant (T_1^{-1}) with increasing temperature. This is indicative of a significant spin-rotation contribution to the relaxation, and is consistent with $^1\mathrm{H}$ relaxation of methane in the gas phase[51] (Figure 5 a).

The 13 C T_1 values for endohedral methane, reported by the 13 C satellites of the 1 H spectrum using a modified INEPT sequence (Supporting Information, Section S3.2), are slightly different: $T_1 = 0.39 \pm 0.14$ s for the less shielded satellite, and $T_1 = 0.55 \pm 0.14$ s for the more shielded satellite (Figure 5 b). This difference is likely to be associated with cross-correlated relaxation effects. [52]

In summary, CH₄@C₆₀, the first example of an organic molecule trapped in C₆₀, has been synthesized. CH₄ is the largest molecule, with the greatest number of atoms, to have been encapsulated in C₆₀ to date. The first step of the orifice contraction was strongly inhibited by the presence of endohedral methane, resulting in a low yield for the key photolytic step. CH₄@C₆₀ was characterized by high resolution mass spectrometry, NMR spectroscopy, and X-ray crystallography. ¹H spin-lattice relaxation times for endohedral methane are similar to those observed in the gas phase, providing evidence that methane is freely rotating inside the C₆₀ cage. The experimental ¹³C NMR chemical shift of the cage carbon is shifted by +0.52 ppm relative to empty C_{60} . We find no evidence for distortion of the cage from a crystal structure of the nickel(II) octaethylporphyrin/ benzene solvate of $CH_4@C_{60}$. In the crystal structure, the hydrogen atoms of methane appear as a spherically symmetric sphere of electron density, consistent with a delocalized quantum state. Neutron scattering, infrared spectroscopy, and cryogenic NMR spectroscopy experiments are now planned to study spin-isomerism and spin-isomer conversion of the encapsulated methane molecules. The successful synthesis of CH₄@C₆₀ opens a route to novel endofullerenes A@C₆₀ enclosing "large" endohedral species A, such as $A = O_2$,



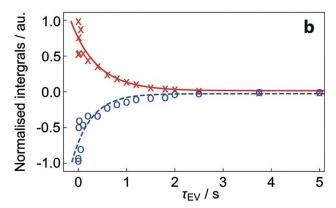


Figure 4. ¹H and ¹³C NMR resonances for endohedral methane in CH₄@C₆₀. a) Experimental ¹H NMR resonance of CH₄@C₆₀ acquired with 1 transient, b) Experimental ¹³C NMR resonance of CH₄@C₆₀ with ¹H WALTZ16 decoupling (nutation frequency = 14.2 kHz), acquired with 4928 transients and a delay of 10 s between scans, c) Experimental non-proton-decoupled ¹³C INEPT spectrum, acquired with 35 840 transients and a delay of 4.5 s between scans, d) Experimental non-proton-decoupled ¹³C NMR spectrum excited by a single 90° pulse, acquired with 35 840 transients and a delay of 4.5 s between scans, e) Numerical simulation of (d) using SpinDynamica. ^[50] All experimental spectra were acquired for a degassed 4.5 mM sample of CH₄@C₆₀ in 1,2-dichlorobenzene- d_4 at 16.45 T (¹H nuclear Larmor frequency = 700 MHz and ¹³C nuclear Larmor frequency = 176 MHz) and 295 K.

NO, NH₃, N₂, CO₂, CH₃OH, and H₂CO, with exciting prospects for the study of these encapsulated small molecules.

Figure 5. Experimental 1 H and 13 C spin-lattice relaxation times for endohedral methane in CH₄@C₆₀. a) Experimental 1 H spin lattice relaxation as a function of temperature for 12 CH₄@C₆₀. The best straight-line fit to the experimental data points is shown. 1 H longitudinal relaxation times were measured using the inversion-recovery pulse sequence; b) Experimental 13 C spin-lattice relaxation curves for 13 CH₄@C₆₀ (natural abundance). Spectra were acquired for a degassed 4.5 mM solution of CH₄@C₆₀ in 1,2-dichlorobenzene- d_4 at 16.45 T (1 H nuclear Larmor frequency=700 MHz) and 295 K. Red data points $\bf x$ correspond to the satellite at δ = -5.638 ppm; Blue data points $\bf o$ correspond to the satellite at δ = -5.815 ppm. The 13 C longitudinal relaxation time T_1 was measured using the pulse sequence described in Section S3.2 of the Supporting Information. All signal amplitudes were normalized to the maximum integral (second data point, $\tau_{\rm EV}$ = 1 ms). The fitted curves have single exponential form.

Experimental Section

Details of the synthesis and characterization of $CH_4@C_{60}$ are in the Supporting Information. Original data may be found at https://doi.org/10.5258/SOTON/D0809.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EP/M001962/1, EP/P009980/1), including core capability (EP/K039466), and the European Research Council (786707-FunMagResBeacons).

Conflict of interest

The authors declare no conflict of interest.

Keywords: endohedral fullerene · mass spectrometry · NMR spectroscopy · synthetic methods · X-ray diffraction

How to cite: Angew. Chem. Int. Ed. **2019**, 58, 5038–5043 Angew. Chem. **2019**, 131, 5092–5097

- [1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, *Nature* **1985**, *318*, 162–163.
- [2] J. R. Heath, S. C. O'Brien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, R. E. Smalley, J. Am. Chem. Soc. 1985, 107, 7779–7780.
- [3] X. Lu, L. Feng, T. Akasaka, S. Nagase, Chem. Soc. Rev. 2012, 41, 7723-7760.
- [4] A. A. Popov, Nanostruct. Sci. Technol. 2017, 1-34.
- [5] A. A. Popov, S. F. Yang, L. Dunsch, *Chem. Rev.* 2013, 113, 5989–6113.
- [6] S. Osuna, M. Swart, M. Sola, Chem. Eur. J. 2009, 15, 13111– 13123.
- [7] M. Saunders, R. J. Cross, H. A. Jiménez-Vázquez, R. Shimshi, A. Khong, *Science* 1996, 271, 1693–1697.
- [8] T. Almeida Murphy, T. Pawlik, A. Weidinger, M. Hohne, R. Alcala, J. M. Spaeth, *Phys. Rev. Lett.* 1996, 77, 1075–1078.
- [9] S. C. Chuang, F. R. Clemente, S. I. Khan, K. N. Houk, Y. Rubin, Org. Lett. 2006, 8, 4525 – 4528.
- [10] Y. Rubin, Chem. Eur. J. 1997, 3, 1009-1016.
- [11] Y. Rubin, T. Jarrosson, G. W. Wang, M. D. Bartberger, K. N. Houk, G. Schick, M. Saunders, R. J. Cross, *Angew. Chem. Int. Ed.* 2001, 40, 1543–1546; *Angew. Chem.* 2001, 113, 1591–1594.
- [12] G. Schick, T. Jarrosson, Y. Rubin, Angew. Chem. Int. Ed. 1999, 38, 2360–2363; Angew. Chem. 1999, 111, 2508–2512.
- [13] K. Komatsu, M. Murata, Y. Murata, Science 2005, 307, 238-240.
- [14] Y. Murata, M. Murata, K. Komatsu, J. Am. Chem. Soc. 2003, 125, 7152 – 7153.
- [15] K. Kurotobi, Y. Murata, Science 2011, 333, 613-616.
- [16] A. Krachmalnicoff, M. H. Levitt, R. J. Whitby, *Chem. Commun.* 2014, 50, 13037 – 13040.
- [17] A. Krachmalnicoff, et al., Nat. Chem. 2016, 8, 953 957.
- [18] A. Krachmalnicoff, R. Bounds, S. Mamone, M. H. Levitt, M. Carravetta, R. J. Whitby, Chem. Commun. 2015, 51, 4993 4996.
- [19] M. H. Levitt, Philos. Trans. R. Soc. London Ser. A 2013, 371, 20120429.
- [20] C. Beduz, et al., Proc. Natl. Acad. Sci. USA 2012, 109, 12894– 12898.
- [21] S. Mamone, et al., J. Chem. Phys. 2009, 130, 081103.
- [22] S. Mamone, M. Jiménez-Ruiz, M. R. Johnson, S. Rols, A. J. Horsewill, *Phys. Chem. Chem. Phys.* **2016**, *18*, 29369 – 29380.
- [23] M. Z. Xu, F. Sebastianelli, B. R. Gibbons, Z. Bacic, R. Lawler, N. J. Turro, J. Chem. Phys. 2009, 130, 224306.
- [24] B. Meier, S. Mamone, M. Concistrè, J. Alonso-Valdesueiro, A. Krachmalnicoff, R. J. Whitby, *Nat. Commun.* 2015, 6, 8112.
- [25] T. Futagoishi, M. Murata, A. Wakamiya, T. Sasamori, Y. Murata, Org. Lett. 2013, 15, 2750–2753.
- [26] T. Futagoishi, M. Murata, A. Wakamiya, Y. Murata, Angew. Chem. Int. Ed. 2015, 54, 14791–14794; Angew. Chem. 2015, 127, 15004–15007.
- [27] T. Futagoishi, M. Murata, A. Wakamiya, Y. Murata, Angew. Chem. Int. Ed. 2017, 56, 2758–2762; Angew. Chem. 2017, 129, 2802–2806.
- [28] S. Bloodworth, et al., ChemPhysChem 2018, 19, 266-276.
- [29] S. Hasegawa, Y. Hashikawa, T. Kato, Y. Murata, Angew. Chem. Int. Ed. 2018, 57, 12804 – 12808; Angew. Chem. 2018, 130, 12986 – 12000

Communications

- [30] T. Futagoishi, T. Aharen, T. Kato, A. Kato, T. Ihara, T. Tada, M. Murata, A. Wakamiya, H. Kageyama, Y. Kanemitsu, Y. Murata, Angew. Chem. Int. Ed. 2017, 56, 4261–4265; Angew. Chem. 2017, 129, 4325–4329.
- [31] S. Mamone, et al., J. Chem. Phys. 2014, 140, 194306.
- [32] B. Meier, K. Kouřil, C. Bengs, H. Kouřilova, T. C. Barker, S. J. Elliott, S. Alom, R. J. Whitby, M. H. Levitt, *Phys. Rev. Lett.* 2018, 120, 266001.
- [33] N. J. Turro, A. A. Martí, J. Y.-C. Chen, S. Jockusch, R. G. Lawler, M. Ruzzi, E. Sartori, S. C. Chuang, K. Komatsu, Y. Murata, J. Am. Chem. Soc. 2008, 130, 10506 – 10507.
- [34] P. Cacciani, J. Cosleou, M. Khelkhal, P. Cermak, C. Puzzarini, J. Phys. Chem. A 2016, 120, 173–182.
- [35] T. Sugimoto, K. Yamakawa, I. Arakawa, J. Chem. Phys. 2015, 143, 224305.
- [36] K. E. Whitener, R. J. Cross, M. Saunders, S. Iwamatsu, S. Murata, N. Mizorogi, S. Nagase, J. Am. Chem. Soc. 2009, 131, 6338–6339.
- [37] W. Adam, J. Bialas, L. Hadjiarapoglou, Chem. Ber. 1991, 124, 2377–2377.
- [38] Y. Morinaka, F. Tanabe, M. Murata, Y. Murata, K. Komatsu, *Chem. Commun.* **2010**, *46*, 4532–4534.
- [39] M. Murata, S. Maeda, Y. Morinaka, Y. Murata, K. Komatsu, J. Am. Chem. Soc. 2008, 130, 15800 – 15801.
- [40] M. Murata, Y. Murata, K. Komatsu, J. Am. Chem. Soc. 2006, 128, 8024–8033.
- [41] T. Futagoishi, M. Murata, A. Wakamiya, Y. Murata, Chem. Commun. 2017, 53, 1712-1714.

- [42] E. E. Maroto, J. Mateos, M. García-Borràs, S. Osuna, S. Filippone, M. A. Herranz, Y. Murata, M. Solà, N. Martín, J. Am. Chem. Soc. 2015, 137, 1190–1197.
- [43] S. Vidal, M. Izquierdo, S. Alom, M. García-Borràs, S. Filippone, S. Osuna, M. Solà, R. J. Whitby, N. Martín, *Chem. Commun.* 2017, 53, 10993 – 10996.
- [44] M. M. Olmstead, D. A. Costa, K. Maitra, B. C. Noll, S. L. Phillips, P. M. van Calcar, A. L. Balch, J. Am. Chem. Soc. 1999, 121, 7090 – 7097.
- [45] H. M. Lee, M. M. Olmstead, T. Suetsuna, H. Shimotani, N. Dragoe, R. J. Cross, K. Kitazawa, A. L. Balch, *Chem. Commun.* 2002, 1352–1353.
- [46] A. Antušek, K. Jackowski, M. Jaszuński, W. Makulski, M. Wilczek, Chem. Phys. Lett. 2005, 411, 111–116.
- [47] B. Bennett, W. T. Raynes, Mol. Phys. 1987, 61, 1423-1430.
- [48] G. A. Morris, R. Freeman, J. Am. Chem. Soc. 1979, 101, 760 762.
- [49] R. G. Lawler, Nanostruct. Sci. Technol. 2017, 229-263.
- [50] C. Bengs, M. H. Levitt, Magn. Reson. Chem. 2018, 56, 374-414.
- [51] C. J. Jameson, A. K. Jameson, N. C. Smith, J. K. Hwang, T. N. Zia, J. Phys. Chem. 1991, 95, 1092–1098.
- [52] A. Kumar, R. C. R. Grace, P. K. Madhu, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 37, 191–319.

Manuscript received: January 24, 2019 Accepted manuscript online: February 18, 2019 Version of record online: March 12, 2019