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Abstract

Background: Human infections with highly pathogenic avian influenza (HPAI) A (H5N1) viruses have occurred in 15
countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform
preventive and therapeutic interventions.

Methods: We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response
updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar),
including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used
bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed
and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for
mortality.

Findings: We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age
of subjects was 18 years (interquartile range 6–29 years) and 54% were female. HPAI H5N1 case-fatality proportion was 59%.
The final decision tree for mortality included age, country, per capita government health expenditure, and delay from
symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.76–
0.86).

Interpretation: A model defined by four clinical and demographic predictors successfully estimated the probability of
mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may
enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.
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Introduction

Since 1997, human and poultry outbreaks of highly pathogenic

avian influenza (HPAI) A (H5N1) have had devastating health,

economic, and social impact in 15 countries in Asia, Africa, and

the Middle East [1–6]. During the 2003–2004 HPAI H5N1

outbreak in Southeast Asia, for example, Vietnam culled 45

million birds at a cost of around US $118 million, and the Thai

poultry industry experienced devastating economic losses of US $3

billion [4,7].

Human cases of HPAI H5N1 virus infection with high mortality

continue to be detected sporadically in several countries [8]. HPAI

H5N1 patients may present with a wide range of clinical signs and

symptoms, often progressing to respiratory failure and requiring

invasive mechanical ventilation support [9,10]. Human infections

with HPAI H5N1 virus are associated with high mortality, but it is

still largely unknown which demographic and clinical factors place

an individual at higher risk of death. Studies from Hong Kong

(SAR, China) [11] and Indonesia [12] have found associations

between longer delays to hospitalization and increased HPAI

H5N1 disease severity and mortality, but comprehensive world-

wide analyses are not available. Therapeutic options include

supportive care and antivirals [13]; antivirals are most effective in

decreasing respiratory failure and mortality if treatment is started
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early [14,15]. However, limited prognostic information is available

to guide the use of scarce resources.

We aimed to statistically model individuals at highest risk of

mortality from HPAI H5N1 virus infection. We systemically

searched for all available data on human infections with HPAI

H5N1 viruses to create a database of cases reported since the

initial 1997 outbreak in Hong Kong (SAR, China). To model

demographic and clinical predictors of mortality in human

infection, we developed a decision tree using Classification and

Regression Tree (CART) methodology [16]. These findings may

help guide public health officials and policymakers in distributing

limited resources.

Methods

Search Strategy and Inclusion Criteria
We used World Health Organization (WHO) Global Alert and

Response (GAR) updates and performed systematic searches of

three databases (PubMed, Scopus, and Google Scholar) to compile

all confirmed and possible human cases of HPAI H5N1 virus

infection. We included all articles published between January 1,

1997 and April 19, 2013 with keywords ‘‘H5N1,’’ ‘‘human,’’ and

‘‘humans.’’ We excluded articles that described non-human cases

(animal or molecular studies), did not report individual case data,

did not include data on laboratory-confirmed HPAI H5N1 cases,

or described asymptomatic infections (e.g., seroprevalence studies).

We defined confirmed human H5N1 cases using the World

Health Organization guidelines, requiring isolation of HPAI

H5N1 virus, a positive result by reverse transcription polymerase

chain reaction (RT-PCR) testing of clinical specimens using H5-

specific primers and probes, an elevated H5-specific antibody titer

of $1:80 (or equivalent using the WHO protocol), or at least a

fourfold rise in H5N1 virus neutralization antibody titer in paired

sera [17]. We defined possible cases as those lacking laboratory

confirmation but having symptoms and known contact with a

confirmed human HPAI H5N1 case. This definition is more

restrictive than the WHO definition of suspected and probable

cases. The WHO definitions involve information on exposures,

such as to raw poultry meat or environments contaminated with

wild bird feces, that was not available to us in the literature. We

then created Abstraction Form S1 based on clinical and

demographic variables known to be relevant to influenza A

(H1N1)pdm09 and useful in clinical practice.

We initially created a database of all cases published on the

WHO Global Alert and Response (GAR) website, which includes

only HPAI H5N1 cases reported from November 2003 to present.

Although clinical laboratory data were not provided for each case,

these were assumed to satisfy WHO reporting criteria. We then

attempted to match all cases identified through literature sources

to this database.

Data Extraction
Two independent investigators (RP, MM) evaluated each article

for inclusion; a third investigator (NK) resolved all disagreements.

We included articles in all languages. A professional translator

(YX) evaluated the numerous Chinese language articles. For

Japanese, Russian, French, and Spanish languages, we verified

inclusion with native-language speakers. For all other languages,

we used PDF OCR X Community Edition for file conversion into

text format (version 1.9.32, Burnaby, British Columbia) and a

web-based translator for translation into English [18].

We then extracted the predefined set of variables for each case

(Abstraction Form S1), systematically comparing demographic

variables to avoid duplication. One co-author (TU) reviewed

discrepancies between the WHO GAR publications and the

published medical literature; based on his familiarity with several

of these cases, we resolved discrepancies using data from the

literature.

Variables
Using our pre-defined Abstraction Form S1, we extracted our

primary outcome variable (mortality), demographic predictor

variables (age, sex, country, per capita government expenditure

on health [PCGEH], season, body mass index [BMI], and

comorbidities), infection-related predictor variables (contact with

poultry, delay from symptom onset to hospitalization, and whether

the case was part of a cluster of known cases), and hospitalization

predictor variables (laboratory data, pneumonia, acute respiratory

distress syndrome [ARDS], and mechanical ventilation). We

defined a case cluster as at least two geographically and temporally

proximal (epidemiologically-linked) confirmed human HPAI

H5N1 cases.

We obtained PCGEH at the average exchange rate (USD) for

each country and year through the World Health Organization

Global Health Observatory Data Repository [19]. Since data

beyond 2011 are unavailable, data from 2011 were carried

forward for later cases. Finally, we created a season variable based

on month (Summer: June–August; Fall: September–November;

Winter: December–February; Spring: March–May).

Statistical Analysis
We performed all statistical analyses using R software (Version

3.0.0, Vienna, Austria) and defined statistical significance by an

alpha level of 0.05. Our primary analytic goal was to develop a

parsimonious decision tree model with optimal predictive ability

for mortality following HPAI H5N1 virus infection. We first

assessed bivariate associations between each predictor variable and

mortality using logistic regression models. For continuous predic-

tors (age, delay from hospitalization to symptom onset, and

PCGEH), we visually assessed for the linearity assumption (Figure

S1).

All continuous predictor variables had potentially nonlinear

relationships with death, so we analyzed them both in continuous

and in categorical form. We divided age into four categories

similar to those associated with mortality from influenza A

(H1N1)pdm09: 0–4 years, .4–18 years, .18–25 years, and

.25 years [20]. PCGEH was split in quartiles. We created three

groups of countries because most countries had very few cases;

including these countries as individual predictors would cause

over-fitting and statistical instability [21]. We therefore defined

three categories of countries: Indonesia (n = 171), Egypt (n = 169),

and all others combined (‘‘Other’’). Fewer than 100 cases were

documented in each of the countries in the ‘‘Other’’ category.

As we performed initial analyses, we found that several

parameters were missing data. We therefore developed a decision

tree using CART methods [16]. CART models generally yield

comparable results to logistic regression models, but unlike logistic

regression, CART methods do not require missing data to be

deleted or imputed (minimizing possible bias), capture higher-

order interactions more easily, do not assume an underlying linear

model, and generate a graphical prediction tool that is easy for

practitioners to use and interpret [22,23].

CART procedures build a decision tree by selecting locally

optimal splits that minimize ‘‘impurity’’ on the outcome measure

of the two child nodes. Low impurity on the outcome measure

indicates that the classifier performs well at separating observations

with one outcome (e.g., death) from observations with another

outcome (e.g., survival). For example, if sex is a strong risk factor

Predictors of Mortality from H5N1 Virus Infection
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for mortality, then mortality will be similar within each sex and

different between sexes. All possible binary splits are considered for

both continuous and categorical variables. The initial split is

chosen as the single best classifier on the outcome measure; then,

within each child node, the splitting procedure is recursively

repeated until no further splits are possible. All observations,

including those with missing data, are included in model-building:

at each split, the impurity index is simply calculated over only

those observations not missing the relevant predictor variable. To

avoid over-fitting, the initial large tree is pruned based on a cost-

complexity index, which captures the tradeoff between better fit

and added complexity due to each additional node in the tree [21].

The optimal final tree, defined as the tree with the lowest expected

misclassification, is selected using cross-validation [16].

We assessed model performance using a receiver operating

characteristic (ROC) curve and corresponding area under the

curve (AUC) [23]. We constructed bootstrapped confidence

intervals for the sensitivity and specificity thresholds of the ROC

curve and for the AUC. To replicate the results of the CART

model, we developed corresponding prognostic models using

complete-case logistic regression (Table S1) and multiply-imputed

logistic regression (Table S2).

Results

Report Identification and Eligibility
Our search identified 3,227 potentially relevant articles

published since 1997 (Figure 1). After removing 1,540 duplicate

articles and 7 unavailable articles, two investigators (RP, MM)

independently reviewed the remaining 1,680 articles. The review

process yielded 163 articles meeting inclusion criteria, comprising

617 unique cases. Nearly all studies meeting inclusion criteria were

case reports, so we did not assess methodological quality criteria.

Data Quality
The quality of data reporting on HPAI H5N1 cases was

inconsistent. Several variables had missing data, most with

homogeneity among the non-missing values; these were not

included in the analysis (Figure 2). In other words, BMI, presence

of comorbidities, whether the case was part of a cluster, laboratory

data, presence of pneumonia, ARDS, and use of mechanical

ventilation were mentioned almost exclusively for cases in which

the parameter was present rather than absent. For example, only

10 case reports noted that a case had not received mechanical

ventilation, 63 noted that a case had received ventilation, and the

remaining 544 offered no information. In light of this limitation of

the case-reporting process, we narrowed the scope of our

prognostic model to include only demographic and infection

variables, as post-admission hospital variables were usually

unavailable. We removed these variables from analysis because

we would have limited statistical power to assess their effects, and

infrequently recorded homogenous variables may have little

clinical utility (see Figure 2 for details on excluded variables).

The eight variables used in analysis had 9% missing observations.

Participant Characteristics
Demographic and clinical characteristics of the 617 cases are

presented in Table 1. Overall mortality was 59%. Cases occurred

in 15 countries, with 55% reported from Indonesia and Egypt

combined (n = 171 and n = 169, respectively). 140 cases occurred

within epidemiologically- and geographically-linked clusters, 13

occurred sporadically, and cluster status was unknown for the

remaining 464. Cases tended to be young adults (median age 18

years; IQR 6–29). There was a marginal predominance of females

(54% female, chi-square = 3.75, df = 1, p = 0.05). For all demo-

graphic parameters reported in the WHO GAR case summary

(year, country, and mortality) [8], distributions for our literature-

based dataset and the WHO summary were nearly identical

(Table 1). We find little indication, therefore, of reporting or

selection bias in our sample.

Bivariate Associations with Mortality
In bivariate logistic regression models, risk factors for mortality

were longer delay to hospitalization, infection not in Egypt, older

age, lower PCGEH, likely contact with poultry, female sex, and

illness onset during summer months (Table 2).

Decision Tree Model for Mortality
The decision tree, trained on all 607 cases with observed

mortality, evaluated seven candidate predictor variables: age,

PCGEH, country group, delay from symptom onset to hospital-

ization, sex, contact with poultry, and season. The variables are

listed here in descending order of variable importance in the

decision tree, a measure based on split quality. The first four were

used as splitting variables in the final, pruned tree (Figure 3).

The first node splits on age, with higher mortality in patients at

least 4.5 years of age. In the second level of the tree, young

children (,4.5 years) in high-PCGEH settings ($32.65 USD) are

predicted to survive, with the lowest mortality (4%) of all groups.

Young children in low-PCGEH settings (,32.65 USD) are

predicted to die (57% mortality).

Older patients ($4.5 years) are further partitioned by country.

Older cases in Indonesia are predicted to die, with the highest

mortality (84%) of all groups. Older cases not in Indonesia are

classified by one final split based on delay to hospitalization: cases

with a short delay to hospitalization (,2.5 days) are predicted to

survive (33% mortality), while cases hospitalized later after illness

onset ($2.5 days) are predicted to die (65% mortality).

Model Performance
We assessed the decision tree’s performance with an ROC curve

and corresponding AUC (Figure 4). Tested on all cases without

missing data on mortality or any of the seven candidate model

variables (n = 301), the AUC was 0.81 (95% CI: 0.76–0.86),

indicating very good discrimination. Performance remained strong

(AUC = 0.75; 95% CI: 0.71–0.78) when the model was instead

tested on all cases with observed outcome but potentially missing

any subset of the predictors (n = 607). The latter is a more difficult

prediction task, requiring surrogate splitting based on the missing

predictors. In surrogate splitting, the value of the missing predictor

is estimated using the other predictors. This estimated value is then

used as usual to classify the observation.

Sensitivity Analysis
We also performed complete-case logistic regression and

multiply-imputed logistic regression including all predictor vari-

ables that were candidates for inclusion in the CART model. All

models yielded similar results (Tables S1 and S2).

Discussion

We investigated factors associated with increased mortality

following HPAI H5N1 virus infection to guide public health

messages, resource distribution, and triage of infected individuals.

We conducted a systematic search of all available literature

describing human cases of HPAI H5N1 virus infection and

developed a prognostic decision tree. We find that age, health

expenditure, delay from symptom onset to hospitalization, and

Predictors of Mortality from H5N1 Virus Infection
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country are significant predictors of mortality. Additionally, we

find that data reporting is incomplete and poorly standardized.

Our finding that HPAI H5N1 mortality is lowest in young

children aged 0 to 4.5 years is different from established patterns

observed for seasonal influenza in which mortality is high in

infants and young children [24,25]. Cultural influences may

contribute to lower mortality from HPAI H5N1 in young children:

in Egypt, for example, parents tend to seek medical care for ill

children promptly, and pediatric cases tend to receive earlier

hospitalization and treatment with oseltamivir [26]. For seasonal

influenza, elderly persons are at the highest risk of mortality of all

age groups [27]. However, we could not determine if HPAI H5N1

in humans parallels this pattern because the literature contained

only four case reports in individuals aged 65 years or older. The

rarity of HPAI H5N1 cases among elderly may reflect less frequent

exposure to poultry or other, unknown factors.

Not surprisingly, we found that reduced national healthcare

expenditure is associated with higher mortality from HPAI H5N1.

This relationship is common with many diseases at a country-

specific level. We were unable to delineate the complete

Figure 1. Literature search strategy. *: Total number of excluded articles is less than the sum of articles excluded by each criterion because most
articles failed multiple criteria.
doi:10.1371/journal.pone.0091630.g001
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mechanisms responsible for this finding, but healthcare quality

may be a mediator. Maternal mortality, generally considered a

sensitive indicator of overall quality and accessibility of healthcare,

is widely discrepant across affected countries in our study. For

example, maternal mortality per 100,000 live births is 55 in China,

95 in Vietnam, and 440 in Cambodia [28].

We also find that a longer delay from HPAI H5N1 illness onset

to hospitalization is associated with higher mortality, a finding

previously reported in smaller, geographically restricted datasets

[11,12,26,29]. The reason for this is unclear but may be related to

delayed administration of antiviral treatment, associated in

observational analyses with higher mortality [12,14,15]. Ferrets

experimentally inoculated with HPAI H5N1 viruses and treated

early with oseltamivir had significantly reduced clinical symptoms

and mortality [30,31]. We did not have access to detailed data on

antiviral treatment; however, our results support public health

messages in countries with endemic HPAI H5N1 or periodic

poultry outbreaks recommending prompt antiviral treatment and

H5N1 testing for symptomatic persons with a recent history of

poultry contact.

Consistent with WHO cumulative case counts and previously

published analyses [32], we found that Indonesian cases have very

high mortality (82%). This may be secondary to a combination of

unknown factors, as well as several of the other risk factors we

Figure 2. Variable summary and patterns of missing data. *: Variable was excluded from modeling. Each row represents one of 617 human
cases; each column represents a variable abstracted from the literature. The color of each cell indicates whether the corresponding variable was
missing (dark green) or observed (light green) for the given case.
doi:10.1371/journal.pone.0091630.g002
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Table 1. Demographic and clinical characteristics of study sample.

Characteristic Literature search (n = 617)
Reported WHO HPAI H5N1 cases as of Oct 31,
2013 [8,48–50] (n = 644)

Year

1997 24 (4%) not reported

1998 4 (0.6%) not reported

2003 7 (1%) 4 (0.6%)

2004 53 (9%) 46 (7%)

2005 75 (12%) 98 (15%)

2006 116 (19%) 115 (18%)

2007 90 (15%) 88 (14%)

2008 45 (7%) 44 (7%)

2009 53 (9%) 73 (11%)

2010 48 (8%) 48 (7%)

2011 62 (10%) 62 (10%)

2012 29 (5%) 32 (5%)

2013 10 (2%) 34 (5%)

Missing 1 (0.1%)

Country

Indonesia 171 (28%) 194 (30%)

Egypt 169 (27%) 173 (27%)

Vietnam 96 (16%) 125 (19%)

China 50 (8%) 45 (7%)

Cambodia 36 (6%) 44 (7%)

Hong Kong (SAR, China) 29 (5%) not reported

Thailand 27 (4%) 25 (4%)

Turkey 11 (2%) 12 (2%)

Azerbaijan 9 (1%) 8 (1%)

Bangladesh 6 (1%) 7 (1%)

Pakistan 5 (0.8%) 3 (0.5%)

Iraq 3 (0.5%) 3 (0.5%)

Laos 2 (0 3%) 2 (0.3%)

Djibouti 1 (0.2%) 1 (0.2%)

Myanmar 1 (0.2%) 1 (0.2%)

Nigeria 1 (0.2%) 1 (0.2%)

PCGEH (USD) 24.8 (13.7–49.0) not reported

Sex

Female 331 (54%) not reported

Male 283 (46%)

Missing 3 (0.5%)

Age (yrs) 18 (6–29) not reported

Missing 9 (1%)

Season

Summer 64 (10%) not reported

Fall 85 (14%)

Winter 285 (46%)

Spring 177 (29%)

Missing 6 (1%)

Delay to hospitalization from symptom onset (days) 4 (2–6) not reported

Missing 242 (39%)

Contact with poultry

Yes 356 (58%) not reported

Predictors of Mortality from H5N1 Virus Infection
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identified occurring more frequently in Indonesian cases. Such

confounding cannot be adequately resolved with either CART or

standard multiple regression procedures [33]. As noted above,

Indonesia has limited healthcare resources (demonstrated by 380

maternal deaths per 100,000 live births in Indonesia compared to

55 and 170, respectively, in China and Egypt [28]). Additionally,

physician density per 1,000 population is much lower in Indonesia

(0.13) than in Egypt (0.54) and China (1.64), the other two

countries with the highest number of HPAI H5N1 cases [28].

HPAI H5N1 cases may be recognized late in the clinical course

and therefore treated with antivirals relatively late; previous

analyses of Indonesian cases found a median time from symptom

Table 1. Cont.

Characteristic Literature search (n = 617)
Reported WHO HPAI H5N1 cases as of Oct 31,
2013 [8,48–50] (n = 644)

Likely yes 62 (10%)

No 20 (3%)

Missing 179 (29%)

Mortality

Death 362 (59%) 382 (59%)

Survival 245 (40%) 262 (41%)

Missing 10 (2%)

Data are frequency (%) or median (first quartile – third quartile).
Percentages are calculated including missing observations.
PCGEH = per capita government expenditure on health.
doi:10.1371/journal.pone.0091630.t001

Table 2. Bivariate associations of candidate predictor variables with mortality.

Variable
Survived
(n = 245) Died (n = 362)

Odds ratio
(95% CI)

p value
coefficient p value model c-statistic

Delay to hospitalization 3 (1–5) 5 (3–6) 1.31 (1.20, 1.45) ,0.0001 ,0.0001 0.70

Country Egypt 108 (64%) 61 (36%) Ref Ref

Indonesia 30 (18%) 141 (82%) 8.32 [5.08, 13.95] ,0.0001 ,0.0001 0.69

Other 107 (40%) 160 (60%) 2.65 [1.78, 3.96] ,0.0001

Age group 0–4 89 (74%) 32 (26%) 0.14 [0.07, 0.25] ,0.0001

.4–18 64 (33%) 128 (67%) 0.75 [0.42, 1.32] 0.33 ,0.0001 0.65

.18–25 23 (27%) 61 (73%) Ref Ref

.25 66 (33%) 136 (67%) 0.78 [0.44, 1.35] 0.38

Age 9.5 (3–27) 20 (12–30) 1.03 [1.02, 1.04] ,0.0001 ,0.0001 0.64

PCGEH group ,13.7 62 (41%) 89 (59%) Ref Ref

.13.7–24.8 31 (20%) 122 (80%) 2.74 [1.66, 4.61] 0.0001 ,0.0001 0.63

.24.8–49.0 84 (52%) 77 (48%) 0.64 [0.41, 0.998] 0.05

.49.0 68 (48%) 74 (52%) 0.76 [0.48, 1.20] 0.24

Contact with poultry No 10 (53%) 9 (47%) Ref Ref

Yes 174 (49%) 182 (51%) 1.16 [0.46, 2.99] 0.75 ,0.0001 0.59

Likely yes 8 (13%) 54 (87%) 7.50 [2.38, 25.15] 0.0007

PCGEH 35.1 (13.7–49.1) 23.2 (16.4–38.0) 0.994 [0.989, 0.998] 0.007 0.004 0.59

Sex Male 134 (55%) 147 (45%) Ref 0.0007 0.0007 0.57

Female 110 (41%) 213 (59%) 1.77 [1.27, 2.45]

Season Summer 17 (27%) 47 (73%) Ref Ref

Fall 37 (44%) 48 (56%) 0.47 [0.23, 0.94] 0.03 0.02 0.57

Winter 106 (38%) 174 (62%) 0.59 [0.32, 1.07] 0.09

Spring 84 (47%) 93 (53%) 0.40 [0.21, 0.74] 0.004

Data are presented as medians (IQR) or frequencies (%). Variables are ordered roughly by statistical significance. Row percentages are calculated excluding missing data.
P-values were calculated using Wald’s z-test for logistic regression coefficients and the likelihood-ratio test for regression models.
PCGEH = per capita government expenditure on health.
doi:10.1371/journal.pone.0091630.t002
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onset to treatment with oseltamivir of 7 days [12,32]. Our findings

again support prioritizing public health messages urging early

medical attention in case of influenza signs and symptoms,

especially for individuals in Indonesia.

We were surprised to find inconsistent case reporting in the

literature. While the WHO maintains summary data on worldwide

cases of HPAI H5N1, this aggregation provides minimal

individual-level demographic and clinical characteristics [8]. The

detailed WHO Clinical Case Summary Form for reporting human

HPAI H5N1 cases [34] is rarely used in practice [35].

Additionally, reporting and surveillance practices can differ greatly

by country and locality [35,36]. Relevant clinical factors such as

the presence of co-morbidities and use of mechanical ventilation

are mentioned almost exclusively for cases in which the parameter

was present rather than absent, and important demographic

factors, such as place of residence (urban vs. rural), are rarely

noted [37].

Reporting bias may exist; practitioners may consider a diagnosis

of HPAI H5N1 only for more severe cases, limiting reports of

subclinical or asymptomatic infections in the medical literature.

Controversy exists over the extent to which such a bias may inflate

HPAI H5N1 mortality estimates. A meta-analysis reported an

average seroprevalence of HPAI H5N1 virus antibodies of 1 to

2%, potentially translating into a substantial number of unreport-

ed cases worldwide [38]; however, others have criticized these

Figure 3. Classification tree for mortality following highly pathogenic avian influenza H5N1 virus infection. Model was trained on all
n = 607 cases with observed mortality. The following variables were candidates for inclusion: age, PCGEH, country, delay to hospitalization, sex,
season, contact with poultry.
doi:10.1371/journal.pone.0091630.g003

Figure 4. ROC curve for pruned CART tree. ROC curve represents
performance of CART model on all cases without missing observations
on any model variables (n = 301). Error bars represent bootstrapped
95% confidence intervals for sensitivity-specificity thresholds.
doi:10.1371/journal.pone.0091630.g004
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findings for the use of non-representative, high-risk populations

[39]. One review included 29 serologic studies and found no clear

serological evidence of ‘‘mild’’ HPAI H5N1 virus infections [40].

However, some studies have reported serologic evidence of rare,

sporadic asymptomatic or clinically mild HPAI H5N1 virus

infection [41–43]. Although more research is required, large

numbers of mild, unreported HPAI H5N1 cases appear unlikely.

Potential methodological limitations include variability in

surveillance and clinical care, lack of data on antiviral treatment,

and time from illness onset to start of antiviral treatment.

Additionally, time from onset to hospitalization may not equal

time to oseltamivir treatment onset. We noted a high proportion of

unreported variables. Complete-case analysis can cause bias and

imprecision in regression coefficient estimates, particularly if data

are not missing at random. Nevertheless, we performed three

analytic techniques with fundamentally different approaches to

handling missing data, and they all yielded similar results. Like all

classification trees, our model demonstrates some statistical

instability [21]. This arises due to the hierarchical nature of node

splitting, whereby small changes in the training data can change

the splits and resulting tree. Since statistical methods to improve

stability, such as bagging, generally have the disadvantage of

obscuring the classification procedure from interpretation [21], we

opted to optimize interpretability and stability with a conserva-

tively pruned decision tree. Additionally, we were unable to assess

the role of host genetic factors, which have been postulated to

increase the risk of severe influenza disease [44–47].

From a policy standpoint, improved recognition of disease

(albeit rare) and early delivery of healthcare, especially antiviral

treatment, could result in reduced hospitalization costs, decreased

morbidity, and lower mortality from HPAI H5N1 virus infection.

To facilitate analyses, the idiosyncratic case reporting process our

study detected could be greatly improved by widespread adoption

of a standardized data collection form, such as an online database.

Currently, the WHO receives case report data from officials at

Ministries of Health, which collect case report data from local

hospitals. A convenient and efficient mode of data collection may

enable improved communication at both reporting junctures.

We have established a predictive classification tree model to

estimate human HPAI H5N1 mortality based on readily available

clinical and demographic predictors: age, delay from symptom

onset to hospitalization, country, and PCGEH. Our resulting

publicly accessible online algorithm (http://flubusters.stanford.

edu) may allow public health officials and clinicians to triage

patients and distribute limited resources. To our knowledge, our

work is the most complete literature search and analysis of

worldwide human cases of HPAI H5N1. Contingent on improved

data collection, future research should investigate the predictive

ability of clinical and demographic characteristics not currently

available in the case literature. Improved reporting and predictive

strategies are essential, particularly in light of recent research [45–

47] that suggests only a few virus mutations may increase the risk

of human-to-human HPAI H5N1 virus transmission.
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