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Abstract

Tolerance intervals have been recommended for simultaneously validating both the accu-

racy and precision of an analytical procedure. However, statistical inferences for the corre-

sponding hypothesis testing are scarce. The aim of this study is to establish a whole

statistical inference for tolerance interval testing, including sample size determination,

power analysis, and calculation of p-value. More specifically, the proposed method consid-

ers the bounds of a tolerance interval as random variables so that a bivariate distribution

can be derived. Simulations confirm the theoretical properties of the method. Furthermore,

an example is used to illustrate the proposed method.

1. Introduction

When assessing whether an analytical procedure is suitable for its intended purpose, the

impacts of accuracy and precision are usually considered. “Accuracy” usually refers to the

expectation of the effect response from the product, whereas “precision” is the variability of

the effect response from the product. In practice, the two parameters are unknown and need

to be estimated. If the two parameters are validated separately, then multiple adjustments of

the controls of family-wise error rates for making the wrong decision are necessary. However,

an analytical procedure usually allows for a product to have a relatively small value of variation,

accommodating a relatively greater value of bias than a product with a greater value of varia-

tion. For these reasons, the United States Pharmacopeia (USP) guideline <1210> Statistical
Tools for Procedure Validation [1] recommends a two-sided tolerance interval as being useful

for establishing a single criterion to simultaneously validate both accuracy and precision; in

other words, an assessment is useful when assessing whether 100γ percent of a population, say

X, is located within a prespecified acceptable interval (cL, cU).

Tolerance interval approaches have been widely used in the area of sampling acceptance

criteria, however, the relationship between hypothesis testing and tolerance interval sampling

acceptance plan were scarcely discussed [3]. A hypothesis testing for assessing the drug effect

is usually required, and thus controlling the type I error rate and achieving the desired power

are important. Therefore, Novick et al. [2] and Dong et al. [3] suggested two one-sided toler-

ance interval tests to dose content uniformity tests, delivered dose uniformity tests, and disso-

lution tests. In their applications, the hypotheses H0L:Pr(X<cL)�P1 and H0U:Pr(X<cU)�P2
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were tested, respectively, where X is a random variable from a population with prespecified

constants cL, cU, P1, and P2. However, Novick et al. had pointed out that the use of two one-

sided tolerance intervals is correct for controlling of the type I error rate only if the variability

of the population is sufficient small. If so, the use of the tolerance interval test seems to be

meaninglessness since it is essentially equivalent to testing merely the population mean. More-

over, whether the variability of the population is small enough is usually unknown in practice.

In this study, a two-sided tolerance interval test is considered. As pointed out by Chiang

et al. [4], there must be two unknown parameters θL and θU leading to P(θL<X<θU)�γ. There-

fore, when being linked to the prespecified acceptable interval, one of the following four situa-

tions must be true: (i) cL�θL and θU�cU, which is what we expect; (ii) θL�cL and θU�cU,

which must indicate that the expectation of X has a negative bias from our expectation; (iii)

cL�θL and cU�θU, which must indicate that the expectation of X has a positive bias from our

expectation; and (iv) θL<cL and cU<θU, which must indicate that the variability of X exceeds

what we expected. Consequently, situations (ii) and (iii) represent a lack of accuracy, whereas

situation (iv) represents a lack of precision; these three situations should be rejected. There-

fore, it is indicated that the statistical hypotheses for testing θL and θU are as follows:

H0 : yL < cL or yU > cU versus Ha : cL � yL and yU � cU : ð1Þ

For these hypotheses, the accuracy and precision can be assessed simultaneously in a single

test without multiple adjustments of the type I error rates.

The corresponding test statistic for hypotheses (1) is exactly a two-sided tolerance interval

because, by definition, a 100(1−α)% confidence 100γ% content two-sided tolerance interval of

X satisfies the following equation:

PL;U ½PXðL < X < UjL;UÞ � g� ¼ 1 � a; ð2Þ

where L and U are called the lower and upper tolerance limits, respectively. A general intro-

duction and discussion of tolerance intervals can be found in the book by Krishnamoorthy

and Mathew [5]. Naturally, from Eq (2), L and U are estimators of θL and θU, respectively, with

a probability of 1−α. This indicates that P(L�θL or θU�U) = 1−α. Therefore, when the null

hypothesis is true, P(cL<L and U�cU) = α controls the type I error rate at α. Consequently, sta-

tistical quality is declared with significance level α if l>cL and u<cU, wherein l and u are obser-

vations of L and U, respectively.

On the other hand, the sample size determination for a tolerance interval is traditionally

used to achieve a desired width for the interval [6, 7]. In doing so, only the control of precision

is considered in the traditional sample size determination for a tolerance interval. Now, if

hypothesis testing and the tolerance interval sampling acceptance plan are linked, determining

sample size for a desired power of the tolerance interval test is equivalent to providing a suffi-

ciently large probability of the tolerance interval falling within a prespecified acceptance inter-

val; that is, accuracy and precision are taken into consideration simultaneously in the sample

size determination. Therefore, evaluating the required sample size for a two-sided tolerance

interval test is also an important aim of this study.

The rest of this paper is arranged as follows. In Section 2, the tolerance interval proposed by

Howe [8] and recommended by the USP guideline is described. Then, a power function is

derived from the asymptotic distribution for the lower and upper tolerance limits. The sample

size can then be set to reach the required level of power. The p-value of the tolerance interval

test is derived by a similar procedure. In Section 3, the proposed method is illustrated by an

example drawn from the USP guideline. The good properties of the method are confirmed by
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simulations in Section 4. We study the required sample size as a function of the parameters on

sample size in this section. The last section provides final remarks and discussion.

2. Tolerance interval testing

2.1. Statistical assumption and interval estimation

Let Xi be the reportable response for i = 1,. . .,n. Suppose that these responses are independent

and identically distributed normal variables such that

Xi � Nðm; s2Þ for i ¼ 1; . . . ; n; ð3Þ

where N(μ,σ2) is the normal distribution with mean μ and variance σ2. Denote the sample

means and sample variances, respectively, as X ¼
Xn

i¼1
Xi=n and

S2 ¼
Xn

i¼1
ðXi � XÞ2=ðn � 1Þ. A two-sided 100(1−α)% confidence 100γ% content tolerance

interval can then be constructed as follows:

½L;U� ¼ ½X � kS�: ð4Þ

Here k, which represents the tolerance factor, does not have a closed-form solution and must

be evaluated by numerical methods. The exact tabulated values of k can be found in [9]. How-

ever, an approximation suggested by Howe [8] works well in practical situations if exact values

are not available and, therefore, is used in the USP guideline [1] as follows:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2
ð1þgÞ=2ðn � 1Þ

w2
a;n� 1

1þ
1

n

� �s

; ð5Þ

where z(1+γ)/2 is a standard normal percentile with area (1+γ)/2 to the left and w2
a;n� 1

is a chi-

squared percentile with area α to the left and n−1 degrees of freedom. Consequently, the accu-

racy and precision can be validated simultaneously with a significance level α if [L,U] is con-

tained in (cL,cU).

Obviously, appropriately setting the acceptable limits cL and cU is the key point for the cor-

rect assessment of accuracy and precision. In doing so, cL and cU are recommended to be at

least the expected values of μ±3σ since it is well-known that 99.73% of X is included within this

range. If γ is not large, for example, 90%, then the acceptance limits may be changed to μ±2σ;

that is, 95.45% of X should be included.

2.2. Sample size determination

According to the rejection rule of the two-sided tolerance interval testing, the power function

is written as

pðθÞ ¼ Pf½L;U� � ðcL; cUÞjθg; ð6Þ

where θ denotes a vector of parameters μ and σ. Since the lower and upper bounds themselves

are random variables, Eq (6) can be rewritten as

pðθÞ ¼ PfL > cL;U < cU jθg: ð7Þ

To calculate this probability, we need to find the joint distribution of L and U. From (3), L and

U are represented as the combination of the sample mean X and length kS. It is clear that X fol-

lows a normal distribution with mean μ and variance σ2/n. Also, since (n−1)S2/σ2 follows a

chi-square distribution with degrees of freedom n−1, we have that
ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

S=s follows a chi
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distribution with degrees of freedom n−1. This implies that the sample standard deviation S
converges to a normal random variable with mean

mS ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðn � 1Þ

p
Gðn=2Þ=Gððn � 1Þ=2Þ

and variance

s2

S ¼ s
2f1 � 2G2ðn=2Þ=G2ððn � 1Þ=2Þg:

Here Γ is the gamma function. Consequently, L ¼ X � kS and U ¼ X þ kS follow a bivariate

normal distribution asymptotically with a mean vector [μ−kμS,μ+kμS]’ and covariance

matrix

s2=nþ k2s2
S s2=n � k2s2

S

s2=n � k2s2
S s2=nþ k2s2

S

" #

:

More details for the derivations of the asymptotic bivariate normal distribution are provided

in S1 Appendix. Based on the above asymptotic distribution, the probability in (6) can be re-

expressed as

pðθÞ ¼ Fr
� tL þ m � kmSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=nþ k2s2

S

p ;
tU � m � kmSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=nþ k2s2

S

p jθ

 !

; ð8Þ

where Fρ(z−L,zU|θ) denotes the cumulative distribution function of the standard bivariate

normal distribution for the standardized random variables −L and U with the following cor-

relation:

r ¼ ð� s2=nþ k2s2

SÞ=ðs
2=nþ k2s2

SÞ:

For a pair of parameters, the required sample size is determined by insisting that the power

exceeds a set value. S2 Appendix provides an SAS code for sample size determination that is

based on the SAS nonlinear problem (NLP) procedure. This SAS code allows users to specify

the design parameters of the content level, confidence level, desired level of power, alterna-

tive mean and variance, and accepted reference values.

Since the asymptotic distribution of the lower and upper tolerance bounds has been

derived, it can be applied to calculate the p-value of the tolerance interval test. Specifically,

given observations of L and U –say l and u, respectively–the p-value is

p� value ¼ max
θ2H0

Fr
� lþ m � kmSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=nþ k2s2

S

p ;
u � m � kmSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=nþ k2s2

S

p jθ

 !

: ð9Þ

Note that, under the normality assumption, there are infinite sets of means and standard devi-

ations satisfying the null hypothesis (1). Hence, a Lagrange multiplier method is used to evalu-

ate the maximum p-value; we therefore provide another SAS code in S3 Appendix.

3. Example

The example of high-performance liquid chromatography mentioned in the USP document

[1] is used to illustrate the proposed study. The unit of measurement for each reportable value

is the mass fraction of drug substance expressed in units of mg/g and does not change as the

level of concentration varies. The sample mean and sample standard deviation are 992.81 and

4.44, respectively, with a sample size of 9. For a content level of 90% and a confidence level of
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90%, the Howe approximation of k is

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:642ð9 � 1Þ

3:49
1þ

1

9

� �s

¼ 2:63:

It follows that the 90% confidence, 90% content tolerance interval is

½992:81� 2:63� 4:44� ¼ ½981:2; 1004:5�:

Suppose the criterion is designed to ensure that the difference between a reference accuracy of

1,000 and the acceptable limits are less than 2%; specifically, the tolerance interval falls between

980 and 1,020. In this example, it is obvious that accuracy and precision are both validated. In

addition, the p-value is 0.0218, which is much less than the nominal level of 10%.

If the mean and standard deviation are used to design a new test with the same acceptable

range, the proposed sample size determination indicates that, for a content level of 90% and a

confidence level of 90%, merely 4 subjects are required to meet a power of 80%. In fact, the theo-

retical power, via the use of the proposed method, is 92.96%. If the acceptable range is reduced

to [990, 1010], the proposed sample size determination indicates that for a content level of 90%

and a confidence level of 90%, 43 subjects are required to meet a power of 80%. More specifi-

cally, when the sample size is 43, the lower and upper tolerance limits follow a bivariate normal

distribution asymptotically with the mean vector [998.58, 1001,42]’ and covariance matrix

19:71 � 6:23

� 6:23 19:71

" #

:

This results in a power of 0.8059 for the tolerance interval test.

4. Simulation and numerical study

The purpose of this simulation is to investigate whether the proposed sample size determina-

tion can reach the targeted level of statistical power under several combinations of design

parameters. As in the USP example, we set, without loss of generality, μ from 0 to 1 in incre-

ments of 0.5 and σ from 3 to 4 in increments of 0.5. The acceptable region (cL,cU) = (−c,c) with

c ranging from 10 to 12 in increments of 1. The confidence level and content level are α = 0.1

and γ = 0.1, respectively. Consequently, there are 27 sets of parameters for the simulation. One

million random samples of a size determined by the proposed method are generated from the

normality assumption in (1) for each set ofparameter components. The empirical power is the

proportion of the 1,000,000 two-sided tolerance intervals that are contained in the criterion

(−c,c). The coverage probability is simultaneously verified, and the empirical result is the pro-

portion of the 1,000,000 lower and upper tolerance limits, say l� and u�, satisfying F(u�)−F
(l�)>90%, where F(.) is the marginal cumulative distribution function of (1).

The simulation results are presented in Table 1. There are several points we wish to make.

First, for the 27 different sets of parameters, all of the empirical powers are greater than the

desired level of 80%, which demonstrates that the proposed sample size determination can

provide sufficient power under various sets of parameters for validating both accuracy and

precision simultaneously based on the two-sided tolerance interval. Moreover, the asymptotic

and empirical powers are quite consistent since all of the absolute differences between the two

values are less than or equal to 0.0027. In addition, the simulation study shows that the resul-

tant power is stable even when the sample size is very small. For example, the minimum sam-

ple size is 7 for μ = 0, σ = 3, and c = 12; the difference between the asymptotic and empirical

powers is merely -0.0027. Finally, the empirical coverage probabilities are approximately 90%.
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Next, the impacts of the magnitudes of the mean, standard deviation, and criterion on sam-

ple size determination are explored in Fig 1. The figure demonstrates that the required sample

size increases as the mean and standard deviation increase and decreases as the criterion

increases. Note that here, a non-zero mean indicates a bias of accuracy. The relation between

the sample size and parameters is, therefore, intuitively correct because the increases in bias

and variability must increase the number of samples required to achieve the targeted level of

power. On the other hand, the increase in the acceptable margin facilitates the validation of

accuracy and precision; hence, the required sample size decreases.

5. Discussion and final remarks

Tolerance intervals have been recommended, for example, by the abovementioned USP docu-

ment, to simultaneously assess accuracy and precision. This study provides a connection

between two-sided hypothesis testing and a two-sided tolerance interval-based assessment.

Simulations show that the proposed approach provides sufficient and consistent results com-

pared with the theoretical values on various combinations of parameters even when the sample

size is small.

Table 1. Sample size and quantile determination at a confidence level of 90%, a content level of 90%, and a desired power of 80%.

Total sample Coverage Power

μ σ c size Probability Asymptotic Empirical Difference

0.0 3.0 10 10 0.8974 0.8401 0.8391 -0.0010

11 8 0.8982 0.8377 0.8369 -0.0008

12 7 0.8982 0.8592 0.8565 -0.0027

0.0 3.5 10 15 0.8975 0.8196 0.8201 0.0005

11 11 0.8978 0.8090 0.8100 0.0010

12 9 0.8972 0.8200 0.8204 0.0003

0.0 4.0 10 25 0.8982 0.8133 0.8141 0.0008

11 17 0.8976 0.8155 0.8158 0.0003

12 13 0.8972 0.8259 0.8267 0.0007

0.5 3.0 10 10 0.8972 0.8236 0.8241 0.0004

11 8 0.8976 0.8255 0.8254 -0.0001

12 7 0.8988 0.8500 0.8485 -0.0014

0.5 3.5 10 16 0.8968 0.8281 0.8284 0.0003

11 12 0.8973 0.8383 0.8372 -0.0011

12 9 0.8974 0.8089 0.8101 0.0012

0.5 4.0 10 27 0.8979 0.8151 0.8161 0.0009

11 18 0.8967 0.8222 0.8220 -0.0001

12 13 0.8970 0.8122 0.8129 0.0007

1.0 3.0 10 11 0.8979 0.8243 0.8243 -0.0001

11 9 0.8978 0.8530 0.8508 -0.0021

12 7 0.8982 0.8231 0.8233 0.0001

1.0 3.5 10 18 0.8973 0.8175 0.8182 0.0007

11 13 0.8972 0.8327 0.8322 -0.0005

12 10 0.8976 0.8324 0.8325 0.0001

1.0 4.0 10 33 0.8977 0.8050 0.8059 0.0010

11 20 0.8975 0.8111 0.8116 0.0005

12 14 0.8965 0.8081 0.8091 0.0010

https://doi.org/10.1371/journal.pone.0246642.t001
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Though, we do not test the magnitude of the proportion γ. How large it is required for the

proposed test is still of interest. Intuitively, a higher γ leads to a wider interval. However, the

width seems to be unimportant when applying a tolerance interval as a test statistic since we

can always set an appropriate acceptance interval for the test. On the other hand, under normal

assumptions, an increase in γ results in the precision becoming more important in the assess-

ment. Therefore, the issue may lie in how to balance the importance between accuracy and

precision in our assessment.

Currently, the calculation of the exact tolerance factor is not prohibitive. For example, the

k.factor() function in the tolerance package [10] for R calculates the exact k-factor. However, it

Fig 1. Sample size determination with a confidence level of 90%, a content level of 90%, and a desired power of 80%. The terms “mu” and

“sd” denote μ and σ respectively.

https://doi.org/10.1371/journal.pone.0246642.g001
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is known that the tolerance factor is a function of the sample size, while the required sample

size is unknown for achieving a desired power and must be evaluated by the proposed sample

size determination formula. Hence, an approximation of the tolerance factor with a closed-

form can simplify the calculation. There are several approximations for the tolerance factor;

for example, Krishnamoorthy and Mathew [7] suggested the use of the squared root of

ðn � 1Þw2
n� 1;g;1=n=w

2
n� 1;1� a

, where w2
n� 1;g;1=n is the 100γth quantile of a noncentral chi-square dis-

tribution with a noncentral parameter of 1/n. Via an additional simulation with the same set-

tings, we find that this approximation would overestimate the coverage probability (by

approximately 92%) and requires a slightly larger sample size (1 to 3) to achieve the desired

power than Howe’s approximation. On the other hand, although Howe’s approximation

underestimates the coverage probability, the difference between Howe’s result and the desired

coverage probability is small and can be omitted. As a result, we recommend using Howe’s

approximation in the tolerance interval testing.

For testing H0:μ�kL or μ�kU versus Ha:kL<μ<kU with prespecified constants kL and kU, we

can separate the test into two one-sided tests, where each side controls the type I error rate of

α, and the overall type I error rate is still α. This is true because it is impossible for μ to be

smaller than kL and larger than kU simultaneously. In contrast, for the proposed tolerance

interval test, both the lower and upper acceptance margins might be exceeded simultaneously

because of a large variability. As pointed out in the introduction, if necessary, we know that

the tolerance interval test has to divide into two one-sided tests for positive bias and negative

bias, respectively, and one two-sided test for variability. If so, whether each of the two one-

sided tests with a significance level of α controls the overall type I error rate of α is in question.

On the other hand, a two-sided tolerance interval with 100(1−α)% confidence itself has natu-

rally controlled the type I error rate of α for the test. Therefore, it is unnecessary to separate

the main test into three tests.

We, in fact, do not investigate the control of the type I error rate in the simulation. Alterna-

tively, the preservation of the coverage probability is verified in the simulation study. The rea-

son is that there are three scenarios fitting the null hypothesis, and this leads to difficulty in

designing and analysing the simulation study. Second, as mentioned previously, by using a tol-

erance interval with 100(1−α)% confidence as the test statistic, the type I error rate can natu-

rally be controlled for its corresponding test. As a result, if the coverage probability is satisfied,

then the type I error rate can be controlled.
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