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Manganese-containing Prussian blue nanoparticles 
for imaging of pediatric brain tumors

Abstract: Pediatric brain tumors (PBTs) are a leading cause of death in children. For an 

improved prognosis in patients with PBTs, there is a critical need to develop molecularly-

specific imaging agents to monitor disease progression and response to treatment. In this 

paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular 

magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell 

nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ 

ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is 

comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging 

and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The 

surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial 

antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are 

protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and  

characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and 

fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in 

vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by 

measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using 

ex vivo fluorescence imaging.

Keywords: Prussian blue, nanoparticles, imaging, pediatric brain tumors, fluorescence, magnetic 

resonance imaging, manganese, multimodal

Introduction
Pediatric brain tumors (PBTs) are the most prevalent type of solid tumor in children 

and one of the leading causes of cancer-related death in the pediatric age group.1,2 The 

prognosis for children with aggressive PBTs such as glioblastoma multiforme, medullo-

blastoma, and diffuse intrinsic pontine glioma is poor, with virtually no long-term  

survivors.3–5 The reasons for the poor success in improving patient survival can  

be attributed to a historical lack of knowledge of the underlying biology of aggressive 

PBTs, and the lack of molecularly-specific imaging modalities to monitor disease 

progression and evaluate the response to treatment.6 

Over the past decade, technological progress made in the field of molecular biol-

ogy coupled with increased access to tissue samples from PBT patients (obtained via 

biopsy and/or autopsy) and the development of relevant animal models have improved 

our understanding of the underlying molecular biology of PBTs.3,6 However, thus 

far, there are no clinically approved, molecularly-specific imaging agents for PBTs, 

which can be primarily attributed to the challenges of working in the brain and cen-

tral nervous system, including crossing the blood–brain barrier and penetrating the  

brain parenchyma. In this paper, we describe a manganese-containing Prussian blue 
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(MnPB) nanoparticle for multimodal molecular magnetic 

resonance imaging (MRI) and fluorescence-based imaging 

of PBTs. 

Our rationale for pursuing nanoparticles is that they 

offer unique advantages that can be harnessed for molecular 

imaging of PBTs,7 including: small sizes (~10–200 nm) 

that enable the nanoparticles to easily penetrate body bar-

riers and extravasate across the leaky tumor vasculature of 

PBTs (via the enhanced permeability and retention effect, 

on account of the abnormal molecular and fluid transport 

dynamics of these tumors);8–10 high surface area-to-volume 

ratios that enable attachment of PBT-targeting ligands with 

high density; and the ability to be visualized via imag-

ing modalities such as MRI or fluorescence.11–14 There 

are numerous examples in the literature of nanoparticles 

being used for the imaging and treatment of a variety of 

cancers, including gold nanoparticles/nanorods/nanoshells, 

iron oxide nanoparticles, carbon nanotubes, dendrimers, 

polymer-based nanoparticles, and quantum dots.15–18 While a 

few of these nanoparticles are currently undergoing clinical 

evaluation,7,19–23 their use for molecular imaging of PBTs 

has been limited, thereby representing an opportunity for 

the field of nanomedicine. 

To generate nanoparticles suitable for imaging PBTs, 

we have synthesized MnPB nanoparticles with a core-shell 

design (Figure 1A). The Prussian blue nanoparticle core 

(iron [III] hexacyanoferrate [II]) has a permeable lattice  

structure and the ability to incorporate and retain metal 

ions for charge balance (Figure 1B). On account of this 

metal-binding ability, Prussian blue, a material approved by 

the US Food and Drug Administration and sold as Radio-

gardase™ (Heyltex Corporation, Katy, TX, USA),24 has 

been used by first responders in the event of a radiological 

emergency to sequester and promptly eliminate radioactive 

isotopes of cesium and thallium from the body.25,26 For the 

purpose of MRI, we can harness this metal-binding abil-

ity of Prussian blue to sequester paramagnetic Mn2+ ions 

within its lattice, thereby generating MRI contrast. We 

use manganese ions in the nanoparticles to mitigate safety 

concerns associated with gadolinium ions (Gd3+, typically 

used in commercial contrast agents) that have been linked 

to nephrogenic systemic fibrosis in patients with impaired 

renal function.27–30 

The Prussian blue nanoparticle core is coated with fluo-

rescently labeled avidin as previously described.31 The avidin 

coating biofunctionalizes the nanoparticle and serves as 

a platform for attaching biotinylated ligands for tumor 

targeting.32,33 The fluorescent avidin enables fluorescence 

imaging and detection of our nanoparticles. Our reason for 

selecting MRI and fluorescence as the molecular imaging 

modalities is on account of their complementary features. 

MRI offers superior spatial resolution and limitless penetra-

tion depths, while fluorescence imaging can be used to image 

phenomena with up to picomolar sensitivity.34 Further, MRI 

is the standard imaging modality for diagnosis and follow-up 

of PBTs,35 while fluorescence can be used to sensitively 

outline tumor margins, which is important when planning 

surgical resection of PBTs.36 To confer PBT molecular 

targeting capabilities, we utilize two different biotinylated 

ligands attached to the avidin-coated nanoparticles: a bioti-

nylated antibody targeting neuron-glial antigen 2, which is 

a cell surface chondroitin sulfate proteoglycan that has been 

observed to be overexpressed in numerous PBTs, includ-

ing glioblastoma multiforme and diffuse intrinsic pontine 

gliomas;37–39 and biotinylated transferrin, a glycoprotein that 

has been shown to specifically target a variety of tumors, 

Fe  
Fe Mn2+

K+

Manganese-containing Prussian blue
(MRI contrast agent)  

Fluorescent avidin
(fluorescence imaging)

Biotinylated PBT-
targeting ligand
(ANG2 or transferrin)

 

 

   

A

B

III
II

Figure 1 Manganese-containing Prussian blue nanoparticles for imaging of PBTs.
Notes: (A) schematic representation of manganese-containing Prussian blue 
nanoparticles comprised of an inorganic core that provides MrI contrast and a 
biofunctionalized shell consisting of fluorescently-labeled avidin and biotinylated 
PBT-targeting ligands. (B) schematic representation of the Prussian blue lattice (ball 
and stick) containing interstitial Mn2+ and K+ ions. 
Abbreviations: aNg2, anti-neuron-glial antigen 2; MrI, magnetic resonance imaging;  
PBT, pedi atric brain tumor.

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2583

Prussian blue nanoparticles for imaging pediatric brain tumors

including PBTs, and to assist various cargo in crossing the 

blood–brain barrier.40–42

Here we describe the synthesis, biofunctionalization, 

and characterization of the MnPB nanoparticles. We also 

evaluate the suitability of these nanoparticles for MRI and 

fluorescence-based imaging of PBTs in vitro using cells 

derived from brain tumors of a genetically engineered mouse 

model of PBT. Finally, we evaluate the imaging capabili-

ties of our nanoparticles by studying their organ and brain 

biodistribution in an orthotopic mouse model of PBT using 

ex vivo fluorescence imaging.

Materials and methods
Materials 
All synthetic procedures were conducted using ultrapure 

water obtained from a Milli-Q system (Millipore Corpora-

tion, Billerica, MA, USA) with resistivity 18 MΩ cm. All 

chemicals and reagents were purchased from Fisher-Acros 

(Thermo Fisher Scientific, Waltham, MA, USA) or Sigma-

Aldrich (St Louis, MO, USA), and used as supplied.

synthesis of MnPB nanoparticles 
Synthesis of the MnPB nanoparticles was carried out at ambi-

ent temperature by addition of a solution containing 0.0049 g 

FeCl
2
⋅4H

2
O (2.5×10-2 mmol) in 5 mL of Milli-Q water to a 

solution containing 0.0049 g MnCl
2
⋅4H

2
O (2.5×10-2 mmol) 

in 10 mL of Milli-Q water with vigorous stirring. This step 

was followed by immediate addition of a solution contain-

ing 0.0092 g of K
3
Fe(CN)

6
 (2.8×10-2 mmol) in 5 mL of  Milli-Q 

water. After stirring for a further 15 minutes, the resulting 

nanoparticle precipitate was collected by centrifuging, rinsed 

with copious amounts of Milli-Q water, and redispersed in 

Milli-Q water. Energy-dispersive X-ray spectroscopy of the 

blue powder obtained using the synthesis scheme yielded the  

formula: K
0.6

Mn
0.7

FeIII
4
[FeII(CN)

6
]

3.5
·3H

2
O. 

Physical characterization  
of MnPB nanoparticles
Transmission electron microscopy (TEM) of the MnPB 

nanoparticles was performed using a JEM-2100 FEG high-

resolution instrument (JEOL, Ltd, Tokyo, Japan) at 200 kV. 

Energy-dispersive X-ray spectroscopy was performed using 

an Inca 250 (Oxford Instruments, Abingdon, UK) coupled 

to the high-resolution TEM. Three scans of different parts 

of the MnPB sample were performed and averaged to obtain 

the relative percentages of iron, potassium, and manganese  

(Supplementary materials). X-ray diffraction patterns of the 

MnPB nanoparticles were measured on a D8 Advance powder 

diffractometer using CuKα radiation, and Topas software 

(Bruker AXS GmbH, Karlsruhe, Germany) was utilized for peak 

fitting via a fundamental parameters approach. Fourier trans-

form infrared (FTIR) spectra of the MnPB nanoparticles were 

recorded on an FTIR spectrometer (Thermo Nicolet Nexus 670, 

Thermo Fisher Scientific) using MnPB nanoparticle powders 

pressed against a ZnSe-attenuated total reflectance anvil.

Measurements of magnetic resonance 
relaxation times and data analysis  
of MnPB nanoparticles
All magnetic resonance measurements were performed 

in a horizontal 3 T clinical magnet (GE Healthcare, Little 

Chalfont, UK). The sample-containing phantom was placed 

adjacent to a block containing 2% agar (150 cm3) and secured 

at the center of an eight-channel HD brain coil (GE Health-

care). The MRI scanner was interfaced with the built-in 

GE Healthcare software. The magnetic resonance data 

were analyzed using ImageJ (National Institutes of Health, 

Bethesda, MD, USA). For each sample, the signal intensity 

of the acquired images was averaged over the area of the  

sample. The magnetic resonance images for MnPB nanopar-

ticles were acquired using clinical GE Healthcare sequences 

(T1 Cube, echo train 24; repetition time 600 msec; echo  

time 11.0 msec for T1-weighted, initial flip angle 120° and 

minimum flip angle 25°; and T2 Cube, echo train 100; repeti-

tion time 2,500 msec; echo time 79.6 msec for T2-weighted). 

The concentrations of Prussian blue and MnPB measured  

were 8.500, 4.250, 2.120, 1.062, 0.531, 0.265, 0.132, 0.066,  

0.033, 0.016, 0.008, and 0.004 mg/mL.

coating MnPB nanoparticles  
with fluorescent avidin
A 0.9 mL suspension of MnPB in Milli-Q water (180 µg/mL) 

and 0.1 mL of filtered Alexa Fluor 488-labeled avidin solution 

(A488, 1 mg/mL; Life Technologies, Carlsbad, CA, USA) or 

Avidin-Texas Red (ATxRd, 1 mg/mL; Life Technologies) 

were mixed by vortexing. The mixture was protected from 

light and contacted on an orbital shaker for at least 3 hours 

at 4°C. After contacting MnPB with fluorescent avidin, the 

unbound avidin was rinsed by centrifugation for 5 minutes 

at 20,000× g three times. In between each centrifugation, 

the supernatant was discarded and the particles (ie, MnPB-

A488 or MnPB-ATxRd) resuspended by brief sonication 

in 0.5 mL of Milli-Q water. After the last centrifugation, the 

particles were resuspended in Milli-Q water. 
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attaching biotinylated ligands  
onto avidin-coated MnPB
A 0.9 mL dispersion of avidin-coated MnPB nanoparticles in 

Milli-Q water (180 µg/mL) and 0.1 mL of filtered, biotiny-

lated anti-neuron-glial antigen 2 (ANG2; Millipore Corpora-

tion, Billerica, MA, USA), biotinylated eotaxin-3 antibody 

(AbC; PeproTech Inc) or biotinylated human transferrin 

(Rockland Immunochemicals, Inc., Gilbertsville, PA, USA) 

were mixed. The mixture was protected from light and con-

tacted on an orbital shaker for at least 3 hours at 4°C. After 

reaction, the unbound biotinylated ligands were removed 

by rinsing and the resulting biofunctionalized particles (ie, 

MnPB-A488-ANG2, MnPB-A488-AbC, or MnPB-ATxRd-

transferrin) were resuspended in Milli-Q water as described 

previously. The names and components of the nanoparticles 

used in this study are summarized in Table S1. 

Nanoparticle size, charge,  
and temporal stability
The sizes and zeta potentials of the suspensions of MnPB, 

avidin-coated MnPB, and biotinylated ligand-modified 

avidin-coated MnPB nanoparticles (10 µg/mL) were deter-

mined using a Zetasizer Nano ZS (Malvern Instruments, 

Malvern, UK). The temporal stability of the nanoparticles 

was determined in Milli-Q water and Dulbecco’s Modified 

Eagle’s Medium (Life Technologies).

cells used for study
Adherent mouse brainstem glioma (BSG) D10 cells and 

nonadherent mouse neurospheres were derived from a 

genetically engineered mouse model of BSG as described 

previously.43 BSG D10 cells were cultured in Dulbecco’s 

Modified Eagle’s Medium containing high glucose supple-

mented with 10% fetal bovine serum (Life Technologies) 

and 100 units/mL of penicillin plus 100 µg/mL of strepto-

mycin (Life Technologies). The cultures were maintained 

at 5% CO
2
 and 37°C. The mouse neurospheres were cultured 

in mouse Neurocult medium (Stem Cell Technologies,  

Vancouver, BC, Canada) supplemented with 10% mouse cell 

proliferation supplement (Stem Cell Technologies), glutamine,  

penicillin-streptomycin, heparin 2 µg/mL, recombinant 

mouse epidermal growth factor 20 ng/mL, and recombinant 

mouse fibroblast growth factor 10 ng/mL.

Molecular MrI-based detection  
of PBT cells
BSG D10 cells were grown in T75 flasks until ~80% conflu-

ence. The cells were blocked with 1% bovine serum albumin 

before addition of the nanoparticles. After the blocking step, 

the cells were incubated with MnPB-A488, MnPB-A488-

AbC, or MnPB-A488-ANG2 for a further hour. The cells 

were rinsed three times with 10 mL of phosphate-buffered 

saline to remove any nonspecifically bound nanopar-

ticles, trypsinized, and collected in a microcentrifuge tube  

at 2,100 rpm for 5 minutes. Finally, the cells were fixed 

with 10% formaldehyde in neutral buffer. After discarding 

the supernatant, each cell pellet was redispersed in 200 µL 

of Milli-Q water and pipetted into individual microcentri-

fuge tubes. A solution of 0.2 mL agarose (1%) was added to 

each tube and the tube contents were mixed thoroughly. The 

phantom comprised of sample-containing microcentrifuge 

tubes was placed next to a 2% solid agar block (150 cm3),  

secured, and measured as described previously. For each of 

the sequences, images were acquired at the identical coro-

nal 0.5 mm thick slice, positioned at mid-height of the tubes. 

A T1 spin echo sequence was used for T1-weighted images 

(repetition time 650 msec; echo time 11 msec; echo train 1; 

matrix size 320×256, field of view 10×10 cm2, flip angle 90°). 

T2-weighted images were acquired with a T2 fast relaxation 

fast spin echo sequence (repetition time 3,000 msec; echo 

time 101 msec; echo train 28; matrix size 384×288, field of 

view 10×10 cm2). For easier reading, the original gray scale 

images were converted into a color scale image. Normalized 

intensity was derived after subtracting the signal contribution 

from the agarose solution.

Fluorescence-based detection  
of PBT cells
BSG D10 cells were seeded on poly-L-lysine and laminin-coated  

chamber slides and grown under the culture conditions 

specified above. The cells were rinsed with phosphate-

buffered saline, fixed in 10% formaldehyde in neutral 

buffer solution for 15 minutes, and permeabilized in 0.1% 

Triton X-100 for a further 10 minutes. The cells were 

then blocked in 1% bovine serum albumin for one hour, 

followed by incubation with MnPB-A488, MnPB-A488-

AbC, or MnPB-A488-ANG2 nanoparticles for one addi-

tional hour. The cells were then rinsed three times with 

phosphate-buffered saline and immunostained for GFAP 

using anti-GFAP antibody (Abcam, Cambridge, UK) and 

Alexa-647-labeled secondary antibody (Life Technolo-

gies). For visualizing nuclei, the cells were briefly stained 

with 4′,6-diamidino-2-phenylindole (Life Technologies) and 

imaged using a laser scanning confocal microscope (Zeiss, 

Oberkochen, Germany) and ZEN 2009 software. Flow 

cytometry analysis of MnPB-A488, MnPB-A488-AbC, and  
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MnPB-A488-ANG2  nanoparticle specificity for BSG 

D10 was performed as described previously.26

Biodistribution of nanoparticles  
in a mouse model of PBT
The mouse studies were conducted in accordance with the 

protocols approved by the Children’s National Medical 

Center’s Institutional Animal Care and Use Committee 

(292-12-05, March 2013, and 01335, March 2014). The 

orthotopic mouse model of PBT was developed by inject-

ing 2-day-old BALB/c mice (The Jackson Laboratory, 

Bar Harbor, ME, USA) with neurospheres derived from a 

genetically engineered mouse model of BSG.43 The injected 

mice developed PBTs by 21 days post-injection. To  evaluate 

the brain and organ biodistribution of the nanoparticles,  

we injected MnPB-ATxRd-transferrin into the tail veins of 

mice with PBT. As controls, we utilized PBT mice that did 

not undergo nanoparticle injections. The mice were humanely 

euthanized at various time points (one, 3, 6, and 24 hours 

post-injection; controls were sacrificed at 3 hours) using car-

bon dioxide and cervical dislocation in accordance with the  

approved protocol. Organs, including the brain, liver, kidney, 

spleen, and heart, were extracted from the experimental and 

control mice, and fixed using 10% formaldehyde in neutral 

buffer. The fluorescence intensities of the various organs 

were measured using an IVIS Spectrum preclinical in vivo 

imaging system (PerkinElmer, Boston, MA, USA). Mouse 

brains that had a positive fluorescence signal were fixed 

in 10% formaldehyde in neutral buffer. Sagittal sections of 

the brains were stained with hematoxylin and eosin to detect 

the presence of tumor (hypercellularity).

statistical analysis
The mean ± standard deviation value for each group is pre-

sented in this study. Statistical significance between groups 

was analyzed using Student’s t-tests and one-way analysis 

of variance. A P-value 0.05 was considered to be statisti-

cally significant.

Results
synthesis and characterization  
of MnPB nanoparticles
The MnPB nanoparticles were prepared using a single-pot, 

aqueous phase synthesis by addition of iron (II) chloride to 

a mixture containing manganese chloride and potassium 

hexacyanoferrate (III). The resulting MnPB nanoparticles 

had a mean size of 33±7 nm, measured using high-resolution 

TEM (Figures 2A and S1), and the nanoparticle lattice 

 parameters corresponded to Prussian blue measured by 

selected area electron diffraction patterns (Figure S2). FTIR 

spectral measurements of the MnPB nanoparticles yielded a 

broad band at 2,070 cm-1, corresponding to the FeII–CN–FeIII 

cyanide stretch energy that was also obtained in the spectrum 

of Prussian blue (without manganese; Figure 2B). The FTIR 

spectrum for MnPB did not display a band at 2,149 cm-1 char-

acteristic of MnII–NC–FeIII.44

We determined the chemical composition of the MnPB 

nanoparticles using energy-dispersive X-ray spectroscopy and 

elemental analysis (Figure S3 and Table S2). These analyses 

derived the formula K
0.6

Mn
0.7

FeIII
4
[FeII(CN)

6
]

3.5
·3 H

2
O for 

MnPB with an average of 0.7 atoms of manganese per unit 

cell. X-ray diffraction studies of MnPB and Prussian blue 

nanoparticle powders yielded several groups of peaks that 

corresponded to Prussian blue lattices (space group Fm-3m; 

No. 225), confirming the presence of a single phase in both types 

of nanoparticle constituted by Prussian blue. No mixed phase 

peaks were detected, suggesting that both MnPB and Prussian 

blue were made up of the Prussian blue lattice (Figure S4).

We serially diluted Prussian blue and MnPB nano-

particles to determine their longitudinal and transverse 
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Figure 2 Properties of the MnPB nanoparticles.
Notes: (A) representative transmission electron microscopy image of MnPB 
nanoparticles. (B) Fourier transform infrared spectra of Prussian blue without 
interstitial manganese (solid line) and MnPB (dashed line) in the cyanide stretching 
region (1,900 cm-1 to 2,200 cm-1). 
Abbreviation: MnPB, manganese-containing Prussian blue.
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relaxivities (r
1
 and r

2
 values, respectively) at a magnetic 

field strength of 3 T (Figures 3 and S5). Relaxivity mea-

surements with MnPB yielded an r
1
 value of 15.8 mM-1 s-1  

and an r
2
 value of 143 mM-1 s-1. Similar measurements car-

ried out with Prussian blue (without manganese) yielded  

an r
1
 value of 7.9 mM-1 s-1 and an r

2
 value of 14.4 mM-1 s-1. 

The r
1
 and r

2
 values for MnPB and Prussian blue are shown 

in Table 1.

sizing, stability, and reproducibility  
of biofunctionalized MnPB nanoparticles
Our syntheses consistently yielded nanoparticles with a 

~5%–10% variation in size between batches. Using light 

scattering techniques, we observed a change in the zeta 

potential (from -38 mV to -15 mV to -24 mV) and an 

increase in the hydrodynamic diameter of the MnPB nano-

particles (from 126±25 nm to 159±30 nm to 240±48 nm; 

Figure 4A) with the addition of the individual components 

of the biofunctional shell, ie, from MnPB (without modi-

fications) to MnPB-A488 (MnPB coated with A488) and 

MnPB-A488-ANG2 (MnPB-A488 coated with biotinylated 

antibody ANG2). The resulting biofunctionalized nanopar-

ticles were stable in both water and Dulbecco’s Modified 

Eagle’s Medium (Figure 4B) for 4 days (110 hours) 

after synthesis. The error bars in Figure 4B represent  

the instrument error in measuring the hydrodynamic dia-

meters of the nanoparticles. We evaluated the safety of the 

MnPB-A488-ANG2  nanoparticles as a molecular imaging 

agent by conducting cytotoxicity studies. These studies indi-

cated negligible cytotoxicity at nanoparticle concentrations 

of 1.25×10-7 mg/cell at 24 and 48 hours (Figure S6). 

In vitro molecular MrI-based  
detection of PBT cells
To evaluate MnPB-A488-ANG2 nanoparticles as molecu-

larly-targeted MRI agents for detecting PBT cells, we con-

tacted BSG D10 cells with MnPB-A488-ANG2 (n=6), with 

MnPB-A488-AbC (n=3), and with MnPB-A488 (n=3); we 

then scanned the sample-containing phantoms, and obtained 

T1-weighted and T2-weighted images (Figure 5). The MnPB-

A488-ANG2 nanoparticles bound to the BSG D10 cells and 

generated hyperintensity (augmentation of the signal) in 

Table 1 Magnetic resonance measurements of relaxivity of MnPB 
nanoparticles

Contrast  
agent

Chemical composition Relaxivity (mM-1 s-1)

r1 r2

MnPB K0.6Mn0.7FeIII
4[FeII(cN)6]3.5⋅3h2O 15.8 143.0

Prussian blue K2.8FeIII
4[FeII(cN)6]3.7⋅2h2O 7.9 14.4

Note: Magnetic resonance measurements of relaxivity were performed at  
127 mhz (3 T). 
Abbreviation: MnPB, manganese-containing Prussian blue.
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Prussian blue  
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Figure 3 T1W and T2W magnetic resonance images of Prussian blue and MnPB 
at 3 T. 
Abbreviations: T1W, T1-weighted; T2W, T2-weighted; MnPB, manganese-containing  
Prussian blue.

1                      10                   100

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 c
ou

nt
s

Hydrodynamic diameter (nm)

 MnPB

 MnPB-A488

 MnPB-A488-ANG2

A 

B 

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800
 MnPB-A488-ANG2 in DMEM

 MnPB in DMEM

 MnPB-A488-ANG2 in water
 MnPB in water

H
yd

ro
dy

na
m

ic
 d

ia
m

et
er

 (n
m

)

Time (hours)
Figure 4 size and stability of biofunctionalized MnPB nanoparticles.
Notes: (A) size distribution of MnPB-a488-aNg2 after each functionalization step. 
hydrodynamic size distributions of the MnPB nanoparticles, MnPB nanoparticles 
coated with avidin-Alexa Fluor 488 (MnPB-A488), and MnPB-A488 modified with 
biotinylated anti-neuron-glial antigen 2 (MnPB-a488-aNg2), respectively. (B) Tem-
poral stability of MnPB nanoparticles and MnPB-a488-aNg2 in Milli-Q water and 
Dulbecco’s Modified Eagle’s Medium for up to 4 days post synthesis. 
Abbreviations: MnPB, manganese-containing Prussian blue; a488, avidin-alexa 
Fluor 488; aNg2, anti-neuron-glial antigen 2 antibody; DMeM, Dulbecco’s Modified 
eagle’s Medium.
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the T1-weighted images and hypointensity (attenuation of 

the signal) in the T2-weighted images (Figure 5A). Control 

(MnPB-A488-AbC [control antibody] and MnPB-A488 [no 

antibody]) nanoparticles exhibited negligible binding to BSG 

D10 and the observed changes in magnetic resonance signal 

intensity were modest (Figure 5A). Quantitative analysis 

of the T1-weighted images showed that the MnPB-A488-

ANG2 nanoparticles bound to BSG D10 and were distinctly 

detected (signal intensity of 94 au). The controls (MnPB- 

A488-AbC and MnPB-A488) showed background contrast 

levels, ie, a signal intensity of ~10 au (Figure 5B). Signal 

intensity quantification of the T2-weighted images confirmed 

that MnPB-A488-ANG2 nanoparticles specifically bound 

to BSG D10 as it generated hypointensity (signal intensity 

of 41 au). The controls (MnPB-A488-AbC and MnPB-A488) 

did not display significant attenuation of the signal (107 and 75, 

respectively; Figure 5B). These results demonstrated the feasi-

bility of detecting PBT cells using our biofunctionalized MnPB 

nanoparticles in both T1-weighted and T2-weighted images.

In vitro fluorescence-based  
detection of PBT cells 
To investigate our nanoparticles as fluorescence imaging 

agents, we added fixed amounts of MnPB-A488-ANG2 (con-

taining ANG2 antibody), MnPB-A488-AbC (with control 

antibody AbC), and MnPB-A488 (no antibody) to BSG 

D10 cells. Confocal fluorescence microscopy demonstrated 

that the MnPB-A488-ANG2 specifically targeted BSG 

D10 cells (Figure 6). Control (MnPB-A488-AbC and MnPB-

A488) nanoparticles showed negligible binding to BSG 

D10 (negligible green fluorescence; Figure 6A and 6B). 

We quantitatively measured the binding of MnPB-A488-

ANG2 to BSG D10 using flow cytometry. We separately added 

MnPB-A488-ANG2 and controls (MnPB-A488-AbC and 

MnPB-A488) to cultures of BSG D10 and measured the dis-

tribution of the cell populations that were fluorescently labeled 

(denoted as Alexa Fluor 488-positive; Figures 7A and S7).  

The MnPB-A488-ANG2 nanoparticles specifically bound 

to the BSG D10 cells (81%±4% Alexa Fluor 488-positive;  
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Figure 5 Molecular MrI-based detection of PBT cells using biofunctionalized 
Prussian blue nanoparticles. (A) T1-weighted and T2-weighted contrast enhancement 
in phantoms comprised of a fixed number of BSG D10 treated with MnPB-A488-
aNg2 (n=6), MnPB-a488-abc (n=3), or MnPB-a488 (no antibody, triplicate). (B) 
Normalized fluorescence signal intensity (au) for BSG D10 treated with ANG2, 
AbC, and no antibody-modified MnPB-A488. **P0.05. 
Abbreviations: MnPB, manganese-containing Prussian blue; a488, avidin-alexa 
Fluor 488; aNg2, anti-neuron-glial antigen 2; abc, eotaxin antibody; Bsg, brainstem 
glioma; T1W, T1-weighted; T2W, T2-weighted; PBT, pediatric brain tumor; au, 
arbitrary units; ab, antibody; MrI, magnetic resonance imaging.
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Figure 6 Fluorescence-based detection of PBT cells using biofunctionalized Prussian blue nanoparticles.
Notes: Fluorescent image of Bsg D10 treated with control nanoparticles, ie, (A) MnPB-a488 and (B) MnPB-a488-abc, and experimental nanoparticles, ie, (C) MnPB-a488-
ANG2. The green fluorescence comes from A488 on the constructs. Scale bars represent 20 µm. 
Abbreviations: Bsg, brainstem glioma; MnPB, manganese-containing Prussian blue; a488, avidin-alexa Fluor 488; aNg2, anti-neuron-glial antigen 2; abc, eotaxin antibody; 
PBT, pediatric brain tumor.
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Figure 7B) compared with MnPB-A488-AbC (23%±2%  

Alexa Fluor 488-positive; Figure 7B) and MnPB-A488  

(22%±3% Alexa Fluor 488-positive; Figure 7B) where the 

nanoparticles showed background levels of binding to BSG 

D10 cells. Taken together, these results demonstrated the ability 

of our nanoparticles (with antibody ANG2) to molecularly tar-

get BSG D10 cells effectively using fluorescence imaging.

ex vivo nanoparticle  
biodistribution studies
In order to investigate the feasibility of our nanoparticles 

as imaging agents in vivo, we conducted preliminary fluo-

rescence biodistribution studies. Mice with PBTs were 

intravenously administered MnPB-ATxRd-transferrin 

nanoparticles. We made two changes to the nanoparticle 

design: we chose transferrin as the targeting ligand on the 

nanoparticles since our mice with PBTs were observed to 

overexpress the transferrin receptor compared with neuron-

glial antigen 2 (from our unpublished proteomic analysis 

of mice PBTs); and we selected Texas Red as the imaging 

fluorophore because tissue penetration depths are increased 

and tissue autofluorescence is decreased as the selected 

imaging fluorophore wavelengths are red-shifted toward near 

infrared wavelengths. Following intravenous injection, the 

mice organs, ie, brain, liver, kidney, spleen and heart, were 

harvested at different time points (between one and 24 hours) 

and their fluorescence measured. 

Fluorescence measurements of the brains of the mice 

detected the nanoparticles in the brain between one hour 

and 3 hours, with the fluorescent signal reaching a maxi-

mum at one hour (Figure 8A). Little to no fluorescence 

was detected after 3 hours and in the control mouse brain 

(without nanoparticle injection). Fluorescence organ biodis-

tribution measurements showed that the nanoparticles were 

cleared via the liver, kidney, and spleen (Figure 8B and 8C). 

Mouse brains that were positive for fluorescent signal were 

analyzed by histology. Sagittal sections of the brain stained 

by hematoxylin and eosin revealed a hypercellular region 

located within the fluorescently active brain segment local-

ized in the ventricular and periventricular regions of the 

mouse brain (Figure 9). These results indicated the feasibil-

ity of utilizing our nanoparticles for fluorescence imaging 

of PBTs in vivo. 

Discussion
Here we have described the synthesis of novel MnPB 

nanoparticles by utilizing the cation-incorporating prop-

erty (for charge neutrality) of Prussian blue nanoparticles. 

Comprehensive physical and chemical characterization 

(Figures 2 and S1–S4) of these nanoparticles using TEM, 

energy-dispersive X-ray spectroscopy, powder X-ray diffrac-

tion, and FTIR confirmed that they have a structure virtually 

identical to that of Prussian blue nanoparticles, indicating that 

the Mn2+ ions were not modifying the Prussian blue lattice 

structure and likely occupying the lattice tetragonal sites 

(interstitial vacancies). MnPB nanoparticles possess MRI 

Figure 7 Flow cytometric analysis of the specificity of biofunctionalized MnPB 
nanoparticles for PBT cells.
Notes: (A) representative histograms of cell count plotted against alexa Fluor 
488 detection levels for Bsg D10 cells treated with MnPB-a488 (no antibody, red 
line), MnPB-a488-abc (blue line), and MnPB-a488-aNg2 (black line), and stained 
with 7-aaD. (B) Percentage Alexa Fluor 488-positive cells (fluorescence intensity 
cutoff  50) cells for Bsg D10 treated with MnPB-a488-aNg2, MnPB-a488-abc, 
or MnPB-A488. **P0.05. 
Abbreviations: Bsg, brainstem glioma; 7-aaD, 7-aminoactinomycin D; MnPB, 
manganese-containing Prussian blue; a488, avidin-alexa Fluor 488; aNg2, anti-
neuron-glial antigen 2; PBT, pediatric brain tumor; au, arbitrary units.

Alexa Fluor 488
100

100

200

300

400

101 102 103 104

**
**

0
10
20
30
40
50
60
70
80
90

100

MnP
B-A

48
8-A

NG2

MnP
B-A

48
8-A

bC

MnP
B-A

48
8

N
or

m
al

iz
ed

 c
el

l c
ou

nt
 (a

u)
Pe

rc
en

ta
ge

 o
f A

le
xa

 F
lu

or
 4

88
 

po
si

tiv
e 

ce
lls

B

A
MnPB-A488-ANG2
MnPB-A488-AbC
MnPB-A488

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2014:9 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2589

Prussian blue nanoparticles for imaging pediatric brain tumors

contrast-enhancing capabilities (both negative and positive), 

which was confirmed by generation of positive contrast on 

a T1-weighted image sequence and negative contrast on 

a T2-weighted image sequence at 3 T (Figures 3 and S4, 

Table 1). Compared with Gd3+-containing commercial con-

trast agents, which are typically used solely as positive con-

trast agents, the magnetic measurement data established the 

efficiency of the MnPB nanoparticles as MRI contrast agents 

useful in both T1-weighted and T2-weighted sequences, 

thus confirming MnPB nanoparticles as versatile contrast 

agents in new imaging applications involving  combinations 
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Figure 8 Ex vivo fluorescence imaging of biodistribution of the nanoparticles in an 
orthotopic mouse model of PBT.
Notes: (A) Fluorescent signal observed in the brains of four separate mice with PBT 
(1–24 hours) injected intravenously (via tail vein) with transferrin-coated Prussian blue 
nanoparticles (MnPB-aTxrd-Tf). a control mouse with PBT was not injected with 
nanoparticles. (B) Representative ex vivo fluorescence imaging of organ biodistribution 
of the nanoparticles at 3 hours post-injection. (C) histograms quantifying the observed 
fluorescence biodistribution of the nanoparticles 3 hours post-injection. ROIs for 
intensity measurements are indicated by white dashed lines in (B). 
Abbreviations: PBT, pediatric brain tumor; MnPB, manganese-containing Prussian 
blue; aTxrd, Texas red-labeled avidin; Tf, transferrin; rOI, region of interest;  
au, arbitrary units.
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B

Figure 9 Histological analysis of fluorescence-positive regions of mice brains with 
PBTs.
Notes: (A) sagittal slice of mouse brain stained with hematoxylin and eosin.  
(B) Inset showing a fluorescence image of the brain, with arrow indicating the viewing 
direction of the sagittal section in (A). (C, D) Progressive zooms of the hematoxylin 
and eosin-stained sagittal brain sections containing a hypercellular ventricular and 
periventricular region within the fluorescence-positive region. 
Abbreviation: PBT, pediatric brain tumor.

of both T1-weighted and T2-weighted sequences. Prelimi-

nary studies confirm the feasibility of utilizing MnPB as 

MRI contrast agents in both T1-weighted and T2-weighted 

sequences (Figure S8).

The surface of the MnPB nanoparticles was negatively 

charged (zeta potential -38 mV), which electrostatically 

stabilized the nanoparticle suspension, thereby eliminating 

the need for stabilizing surfactants.45,46 To biofunctionalize 

the nanoparticles for molecular targeting of PBTs, the MnPB 

nanoparticles were first coated with a layer of fluorescent 

avidin (A488 or ATxRd). Avidin, which is a highly posi-

tively charged glycoprotein at physiological pH (isoelectric  

point ~10.5), was coated on the surface of the negatively  

charged MnPB nanoparticles using electrostatic self-

assembly.15,17 The surfaces of the fluorescent avidin-coated 

MnPB  nanoparticles were modified with the PBT-targeting 

or control ligands (ANG2, transferrin, or AbC) via an 

avidin- biotin interaction, which is one of the most robust, 
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 noncovalent interactions identified (K
d
 =10-15 M), and is 

capable of  sustaining extremes of temperature, pH, and 

harsh chemical conditions.15,33,47,48 The biofunctionalized 

nanoparticles demonstrated temporal stability (over 4 days), 

both in water and in Dulbecco’s Modified Eagle’s Medium 

(Figure 4), and negligible cytotoxicity (at concentrations 

1.25×10-7 mg/cell; Figure S6) to PBT cells (BSG D10), 

indicating their safety for use as molecular imaging agents. 

The nanoparticles were able to specifically detect PBT 

cells (BSG D10) using MRI in both T1-weighted and 

T2-weighted sequences by generating specific positive 

and negative contrast, respectively, relative to the controls 

that exhibited background contrast (Figure 5). The nano-

particles also demonstrated specific fluorescence-based 

detection of PBT cells (Figures 6 and 7, and S7). These  

results validated the utility of our nanoparticles as multimodal 

imaging agents for PBTs. 

Preliminary biodistribution studies using ex vivo fluores-

cence imaging in a mouse model of PBT indicated that the 

nanoparticles were cleared via the liver, kidney, and spleen 

(Figure 8). Longer circulation times and lower immunogenic-

ity of our nanoparticles for future in vivo imaging studies will 

require modifications of the current design, including coating 

of the nanoparticles with the “stealth” polymer, polyethylene 

glycol (PEGylation),18,49,50 which is currently being investi-

gated. Ex vivo brain fluorescence biodistribution studies also 

demonstrated that the fluorescent signal of our nanoparticles 

was detected in the brain between one hour and 3 hours. His-

tological analysis of the fluorescent region within the mouse 

brain confirmed the presence of a hypercellular region in the 

ventricular and periventricular regions overlapping the region 

of the brain exhibiting a fluorescent signal (Figure 9). The 

increased fluorescence signal in the brain was possibly due 

to an increased transient presence of our nanoparticles in the 

hypercellular region within the brain (Figure 9). For future in 

vivo imaging of PBTs, the design of our nanoparticles will be 

modified to incorporate ligands (by varying type of ligand, 

ligand surface density) that cross the blood–brain barrier, 

penetrate the brain parenchyma, and assist uptake within 

PBTs.51,52 These studies are currently in progress. 

Conclusion
In this paper, we describe the synthesis and characterization 

of novel, biofunctionalized MnPB nanoparticles for imaging 

PBTs. These nanoparticles exhibited fluorescence as well as 

superior and versatile MRI contrast enhancement  capabilities. 

We demonstrated these nanoparticles to be multimodal 

imaging agents using MRI and fluorescence-based  detection 

of PBT cells in vitro. Preliminary ex vivo fluorescence 

imaging provided a proof-of-concept demonstration of our 

 nanoparticles as imaging agents and suggests the potential of 

these nanoparticles as agents for multimodal and molecular 

imaging of PBTs in vivo.
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Table S1 Names and components of nanoparticles described in text

Construct name Core Fluorophore in avidin layer Targeting ligand

MnPB MnPB None None
MnPB-a488 MnPB alexa Fluor 488 None
MnPB-aTxrd MnPB Texas red None
MnPB-a488-aNg2 MnPB alexa Fluor 488 anti-neuron-glial antigen 2
MnPB-a488-abc MnPB alexa Fluor 488 eotaxin-3 antibody 
MnPB-aTxrd-Tf MnPB Texas red human transferrin 

Abbreviation: MnPB, manganese-containing Prussian blue particles.

Supplementary materials
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Figure S1 size of manganese-containing Prussian blue nanoparticles.
Notes: (A) Transmission electron micrograph of an oversized agglomerate consisting of over 500 nanoparticles (scale bar 1 µm) used for selected area electron diffraction. 
(B) histogram showing the size distribution of 198 nanoparticles with a mean nanoparticle size of 33±7 nm. The size analysis was performed with ImageJ software by manually 
measuring the size of the individual nanoparticles from the transmission electron microscopy images of well dispersed, individual nanoparticles.
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Figure S2 Selected area electron diffraction pattern of a manganese-containing Prussian blue nanoparticle with 200, 220, and 400 reflections identified as the lattice 
corresponding to Prussian blue.
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Figure S3 composition of manganese-containing Prussian blue nanoparticles.
Notes: (A) energy-dispersive X-ray spectrum corresponding to the region of interest shown in (B), which is a representative transmission electron micrograph of the 
nanoparticles. The purple line indicates the limits of a typical region of interest analyzed by energy-dispersive X-ray spectroscopy. The composition was derived by built-in 
software (Inca; Oxford Instruments, Abingdon, UK) from the attribution of the electronic energy profile for Fe, K, and Mn.

Table S2 summary of relative percentages of potassium, iron, and 
manganese from three distinct energy-dispersive X-ray spectroscopic 
scans of manganese-containing Prussian blue particles

Potassium (%) Iron (%) Manganese (%)

spectrum 1 9.03 79.86 7.86
spectrum 2 8.53 85.73 7.32
spectrum 3 8.77 84.05 8.87
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Figure S4 room temperature X-ray diffractogram of a sample of MnPB and PB with 
peaks at around 17, 24, and 35 degrees, corresponding to the 200, 220, and 400 
diffraction planes, respectively.
Notes: X-ray diffraction from a sample of particles showed several groups of 
peaks corresponding to the 200, 220, and 400 diffraction planes at 17.43, 24.67, 
and 35.24 degrees, respectively, for MnPB and 17.51, 24.68, and 35.29 degrees, 
respectively, for PB. These diffraction peaks were indexed to Prussian blue 
lattices using the space group Fm-3m (No. 225) and confirmed the presence of 
one phase constituted by Prussian blue. Using the (400) reflections fitted to a 
gaussian function, the lattice parameters for each compound were calculated.  
We found the following lattice constants: MnPB (a =10.19 Å) and PB (a =10.17 Å).  
No peaks corresponding to a mixed phase (such as manganese) with different 
lattice parameters were detected, suggesting that both MnPB and PB are made up 
of the Prussian blue lattice.
Abbreviations: PB, Prussian blue particles without interstitial gadolinium; MnPB, 
manganese-containing Prussian blue.

Figure S5 Inverse of relaxation times (1/T1=r1 and 1/T2=r2) plotted against 
concentrations of the main paramagnetic ion.
Note: r1 and r2 values are derived from the linear fitting of these plots.
Abbreviations: PB, Prussian blue particles without interstitial gadolinium; MnPB, 
manganese-containing Prussian blue.
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Figure S6 cytotoxicity studies of biofunctionalized MnPB nanoparticles. Viability (survival percentage) of Bsg D10 coincubated with varying concentrations of MnPB-a488-
aNg2 determined by (A) Trevigen® XTT assay and (B) Trypan blue exclusion assay.
Notes: **P0.05. We seeded 10,000 and 50,000 Bsg D10 cells for the XTT and Trypan blue exclusion assays, respectively, before adding varying concentrations of MnPB-
a488-aNg2 to the cells (studies were performed in triplicate). The cells were coincubated with the nanoparticles for 48 hours at 37°c and 5% cO2. The cell viability assays 
indicated minimal cytotoxicity at nanoparticle concentrations lower than 1.25×10-7 mg/cell after 24 and 48 hours using both assays.
Abbreviations: Bsg, brainstem glioma; MnPB, manganese-containing Prussian blue; aNg2, anti-neuron-glial antigen 2.
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Figure S7 (Continued).
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Figure S7 Flow cytometric analysis of nanoparticle specificity for BSG D10 cells.
Notes: For clarity, the axes legends have been omitted. The side light scattering is displayed on the x-axis (abscissa) and the forward light scattering on the y-axis (ordinate). 
Flow cytometric analysis of the Bsg D10 treated with (A) MnPB-aV488, (B) MnPB-aV488-abc, and (C) MnPB-A488-ANG2 demonstrated specific targeting of BSG D10 
cells using the targeted MnPB-a488-aNg2 nanoparticles.
Abbreviations: Bsg, brainstem glioma; MnPB, manganese-containing Prussian blue; aNg2, anti-neuron-glial antigen 2.

 

Control 

MnPB (10 µL) 

MnPB (20 µL) 

T1                    T2 

Figure S8 Magnetic resonance images of mouse brains injected ex vivo with two concentrations of MnPB and with saline (control).
Notes: Mouse brains preserved in 10% formaldehyde in neutral buffer were injected with 10 µl or 20 µl of a dispersion of 8.5 mg/ml MnPB or 20 µl of saline. The brains 
were superficially rinsed with Milli-Q water and embedded in 0.5% agarose prior to imaging. Magnetic resonance images were acquired using clinical GE Healthcare sequences 
(T1 FlaIr: echo train 7; repetition time 2,300 msec; echo time 24.4 msec; matrix size 512×224, field of view 16×16 cm2; and T2 FrFse: echo train 21; repetition time 3,500 
msec; echo time 104 msec; matrix size 20×224; field of view 16×16 cm2).
Abbreviation: MnPB, manganese-containing Prussian blue.
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