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Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular
functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are
stably or transiently formed. These compartments are called “lipid rafts”. In gamete cells that lack gene transcription, distribution
of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella
movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early

embryogenesis.

1. Introduction

Fertilization is the process in which 2 different gamete cells, a
sperm and an oocyte, unite to produce a zygote. For fertiliza-
tion to be successful, these gamete cells must differentiate and
activate specific signaling pathways. For example, after sperm
has differentiated completely, various extracellular factors
such as epididymosomes and albumin alter the structure and
function of the plasma membrane of the sperm. In addition,
in terminally differentiated gamete cells, various sterols,
sphingolipids, glycolipids, and glycosylphosphatidylinositol-
(GPI-) anchored proteins are localized on cell membrane
microdomains that are called lipid rafts. Lipid raft compo-
nents are often examined by using detergent-resistant mem-
brane domains (DRMs), which enrich these components so
that their distributions and functions can be visualized on
the cell surface by using putative raft markers [1, 2]. Since
lipid rafts in gametes contain signaling proteins that regulate
intracellular functions and cell signaling, these domains are
important for sperm maturation, fertilization, and early

embryogenesis [3, 4]. In this paper, we discuss the role of
lipid rafts in reproductive biology.

2. Sperm Maturation and
Membrane Modification

Sperm are highly differentiated haploid cells with a head and
a tail (flagellum) [5]. The head consists of a nucleus, an
acrosome, and a small amount of cytoplasm, while the tail
consists of a motility apparatus, mitochondria, an axoneme,
and cytoskeletal structures. Although these structures are
necessary for sperm to swim and fertilize oocytes, these
structures are not functional after spermatogenesis until the
plasma membrane is modified during epididymal transit
(Figure 1(a)) [6]. In mammals, the sperm mature in the
epididymis; however, in other animals, sperms mature in the
spermiduct [7]. Previous studies have demonstrated that the
modifications of the sperm plasma membrane that occur
during epididymal transit include changes in its lipid and
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FIGURE 1: Schematic of lipid rafts in gamete formation, function, fertilization, and early embryogenesis. (a) Sperm mature, gaining motility
and fertilizing abilities, during epididymis transit. The extracellular factors, epididymosome and HE1, dynamically change the components
of the sperm plasma membrane. (GPI, glycosylphoshphatidylinositol; SM, sphingomyelin; PFA, polyunsaturated membranous fatty acids).
(b) Ejaculated sperm are temporally bound to SVS2 (decapacitation). SVS2 binds to GM1 of the sperm head in the uterus, resulting in the
inhibition of the fertilizing ability of sperm. Subsequently, the sperm that migrate to the oviduct undergo capacitation. Capacitation causes an
efflux of cholesterol and Gy, from the plasma membrane and an increase of membrane fluidity and protein tyrosine phosphorylation (PTP).
(c) Sperm recognize and adhere to UpIII/Uplb of Xenopus oocyte and fuse with CD9/CD81 of murine oocyte plasma membrane. These
molecules are enriched in lipid rafts, and oocytes treated with cyclodextrin prevent the sperm from fertilization. (d) In early embryogenesis,
SSEAs are colocalized with cholesterol and Gy plays an important role in the compaction of an embryo, leading to the decision of cell fate

and its pluripotency.

protein composition, modifications of surface proteins, and
increased total negative charge of the extracellular surface
(8,9].

Electron microscopy studies showed that the epididy-
mal lumen contained membranous vesicles that which
called epididymosomes [10-12]. These vesicles, which are
particularly rich in sphingomyelin (SM) and arachidonic
acids, are secreted via apocrine secretion. In addition, two-
dimensional gel electrophoresis and liquid chromatography-
quadrupole time-of-flight (LC-QToF) analyses show that
epididymosomes contain endoplasmin (heat shock protein
90 f1; Hsp90pB1), 70 kDa heat shock protein 5, chaperones,
and other exosomes [13-16]. In addition, integral membrane
proteins, such as GPI-anchored proteins, also are associated
with epididymosomes. Several GPI-anchored proteins in
epididymosomes have been found in the mature sperm of
various animals. For example, HE5 (CD52) is found in
human sperm [17], SPAM 1 and hyaluronidase are present
in mouse sperm [18-21], and P26h [22] and P25b [23] are
found in hamsters and bulls, respectively [24]. In addition,

epididymosomes localize to the sperm membrane during
epididymal transit and contribute to the formation of vari-
ous membrane structures such as lipid rafts in sperm [25].
Furthermore, in sperm membrane lipids, the percentage
composition of both SM and various polyunsaturated fatty
acids, which are mainly arachidonic, docosapentaenoic, and
docosahexaenoic acids, increases throughout the epididymal
tract [12].

Six genes, known as HE1—HEG, are expressed specifically
in the human epididymis [26-28]. Mutations in HEI cause
Niemann-Pick type C2 (NPC2) disease, a fatal neurovis-
ceral disorder that is characterized by the accumulation of
cholesterol in lysosomes [29]. HE1 is a small, soluble
glycoprotein with 132 amino acids that binds to cholesterol,
but not to cholesterol derivatives that have hydrophilic
substitutions on their isooctyl side chains [29-32]. Xu et
al. [33] determined the X-ray crystallographic structure of
bovine NPC2 protein complexed with cholesterol sulfate.
Together, these studies showed that HE1 binds to cholesterol
in vitro and may regulate the cholesterol content in sperm
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throughout the epididymal tract. However, other studies
have demonstrated that the ratio of total phospholipid to
total cholesterol does not change during epididymal transit
[12, 34]. Previously, we used filipin as a cytochemical probe
for membrane cholesterol in the sperm plasma membrane
during epididymal maturation (Figure 2). Our results show
that the filipin signal decreased at the post-acrosomal region
during epididymal transit. Similar pattern of filipin was
observed in boar sperm [35]. Previous studies have shown
that the rate of pregnancy in humans decreases as the amount
of time between a vasectomy and its reversal increases [36—
38]. In addition, sperm from men who have undergone
vasectomy reversal have higher levels of HEI, cholesterol, and
ganglioside Gy compared with sperm from fertile men who
have not had vasectomy [39]. These findings suggest that
HEI regulates the amount or localization of sperm lipid rafts
in the epididymis, which produces mature sperm.

Several studies have shown that modification of SM,
polyunsaturated fatty acids, cholesterol, and Gy changes
the fluidity of sperm membranes and the composition
of lipid rafts. For example, lipid diffusion in the plasma
membrane of mouse sperm increased significantly during
their transition from the caput epididymis to the cauda
epididymis [40]. Moreover, Nishio et al. [41] reported that
pheochromocytoma PC12 cells that overexpress Gy did
not exhibit any neurite formation, even after stimulation
with nerve growth factor (NGF). Furthermore, increased
expression of Gy reduces membrane fluidity, disorders
the lipid raft, and changes the intracellular localization
of NGF receptors and related signaling molecules [41].
Further studies are needed to elucidate the mechanisms and
molecules that promote sperm maturation in the epididymis.

3. Sperm Lipid Rafts and Fertility

After maturing in the epididymis, sperm are able to swim
and fertilize an oocyte (Figure 1(b)). In invertebrates that
reproduce by external fertilization, sperm are usually capable
of fertilization immediately after they become motile. In
contrast, in mammals that reproduce by internal fertiliza-
tion, sperm are unable to fertilize oocytes immediately after
they can swim. Instead, sperm acquire this ability after
moving to the uterus and remaining for an appropriate
period of time [42, 43]. The biochemical process that confers
this ability to sperm is called “capacitation.” During sperm
capacitation, protein tyrosine phosphorylation occurs along
with hyperactivated flagellar beating; further, the acrosome
reaction is induced, and the sperm penetrates the zona
pellucida (ZP) and finally binds and fuses with the oocyte.
In addition, the organization of membrane proteins and
lipids changes significantly [44-48]. In vitro, capacitation
requires a high concentration of albumin in culture medium
to decrease the sperm cholesterol/phospholipid ratio [49,
50]. Fluorescent and electron microscopic studies have
shown that a combination of bicarbonate and albumin
promotes membrane distribution and cholesterol efflux [35,
51, 52]. Albumin also decreases the amount of sialic acid,
ganglioside, and triglyceride in the sperm plasma membrane

[49]. In addition, methyl-S-cyclodextrin (MBCD) promotes
sperm capacitation in vitro, by decreasing the amount of
cholesterol in the plasma membrane and disrupting lipid
rafts; however, the critical concentration of MBCD should be
considered [53-56]. The strong MBCD treatment also reveals
some proteins that are involved in capacitation-dependent
processes and ZP binding [57]. The physiological relevance
of raft reordering in the sperm surface is to create protein
complexes involved in ZP binding [58, 59].

Cholera toxin subunit B (CTB), which binds to ganglio-
side Gyp with a high affinity, has been widely used as a
reporter of the distribution of lipid rafts and to study the
CTB-binding pattern of sperm in both in vitro and in vivo
conditions. We, along with several other research groups,
also have developed methods to investigate the distribution
of Gy in fixed sperm. These studies have revealed that Gy,
expression is significantly altered during sperm capacitation
and the acrosome reaction [60-62]. In contrast, the CTB-
binding pattern of sperm is variable and depends on their
fixation conditions [63]. In living sperm, Selvaraj et al.
[64] demonstrated that the cyclodextrin treatment does not
change the distribution of Gy in mouse or bovine sperm.
However, the use of specific fixation conditions induced
stimulus-specific patterns of Gy distribution. Specifically,
in mouse sperm, Gy was broadly localized from the
postacrosomal region to throughout the sperm head. Shadan
et al. [61] showed that the distribution of Gy in boar
sperm changes sequentially, from the tail to the head, during
MBCD-mediated capacitation. One of our previous studies
also demonstrated the CTB- binding pattern in murine
sperm in physiological conditions [62]. Briefly, ejaculated
sperm were collected from the female mice when the sperm
were first detected in their oviducts (approximately 3 hours
after copulation). Their reproductive tracts were divided
into 4 parts, namely, the oviduct, uterine region near the
oviduct, uterine region near the cervix, and vagina. While
the sperm migrated from the uterus to the oviduct, CTB
fluorescence was lost from the postacrosomal region. In
addition, Gy; interacted with seminal vesicle secretion 2
(SVS2), which is secreted from seminal vesicles and inhibits
sperm capacitation. Since SVS2 is a highly basic protein, this
interaction depends on its charge. In addition, CTB also
inhibited sperm capacitation. Increasing evidence suggests
that sperm capacitation is regulated by the distribution of
G or its charge on the sperm plasma membrane. However,
staining pattern by CTB is not consistent with that by
other probes, such as lysenin and antibody against Thy-
1.2 [65, 66]. Lysenin and the antibody have high affinities
for sphingomyelin and GPI-anchored protein enriched in
the DRM fractions, respectively [65]. Further investigation
is needed to elucidate the localization of lipid rafts more
precisely.

Some lipid rafts are found in cell surface invaginations
called caveolae. These invaginations are formed from lipid
rafts by polymerization of caveolins, which are palmitoylated
integral membrane proteins that bind to cholesterol with
high affinity [67, 68]. Previous studies have demonstrated
that caveolin-1 and -2 are enriched in the Triton X-100-
insoluble membrane fraction of mature sperm and localize
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FIGURE 2: Distribution of cholesterol during sperm maturation in murine epididymis. (a) Sperm collected from caput epididymis reveal
filipin signal on the whole head. After epididymal transit (cauda epididymis), the signal is not detected in the postacrosomal region (PA).
Scale bar = 5 ym. (b) Densitometric analysis shows a significant decrease of filipin signal at the postacrosomal region. AA, apical acrosome;

ES, equatorial segment; PA, postacrosomal.

to the acrosomal membrane [69, 70]. Since these caveolins
disappear after the completion of the acrosome reaction,
they are thought to regulate the acrosome reaction. However,
caveolin-1-and -2-null mice are fertile, and the distribution
of Gy in caveolin-1-deficient mouse sperm is comparable
to that in wild-type mouse sperm [63, 71, 72]. These findings
suggest that caveolae are not required for the presence of lipid
rafts in the acrosomal membrane and fertilization of mouse
sperm. However, several other studies indicate that lipid rafts
in the apical ridge head area of sperm have affinity for the ZP
[57, 59]. Since the ZP is involved in the acrosome reaction,
the function of lipid rafts in this reaction is still controversial.

4. Oocyte Lipid Rafts and Fertility

In general, sex hormones stimulate the continuation of the
first meiotic division of oocytes. However, in some animals,
this occurs after the oocyte is released from an inhibitory
environment. In both vertebrates and invertebrates, the first
meiotic division of oocytes is asymmetric, which results
in the formation of a relatively large oocyte and small
polar bodies. During meiotic arrest, oocytes are fertilized by
sperm, and then the second meiotic division is completed.

The activation of oocytes upon fertilization is a Ca*'-
dependent process in all animals [73, 74]. Furthermore,
intracellular Ca?" ([Ca?*];) is a key regulator of many cellular
functions [75]. In oocytes, increased [Ca?*]; stimulates the
continuation of the second meiotic division and formation
of the second polar body, followed by formation of male
and female pronuclei [47, 75]. The signaling pathway
that regulates this increase in [Ca®*]; is highly conserved
among species [76]. In this pathway, phospholipase C-
(PLC-) dependent production of inositol 1,4,5-triphosphate
(IP;) triggers the increase in [Ca?"];, which propagates
from the endoplasmic reticulum. In contrast, the binding of
sperm to the oocyte plasma membrane is species specific.
Currently, there are 2 hypotheses about how a sperm binds
and activates an oocyte, namely, a transmembrane receptor
mechanism that involves G proteins and a soluble sperm
factor mechanism [77]. Xenopus oocytes have a G protein-
coupled sperm receptor that activates PLC on the plasma
membrane (Figure 1(c)). In addition, lipid-raft-associated
proteins, such as uroplakin III (xUPIII) and its tetraspanin-
binding partner uroplakin Ib (UPIb), are involved in the
sperm-oocyte membrane interaction and subsequent oocyte
activation. Specifically, xUPIII is cleaved by sperm protease
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Figure 3: Distribution and function of CD9 and CD81 in murine oocyte. (a) The distribution of CD9 (green) is distinct from that of
CD381 (red). CD9 localizes over the entire surface membrane, except for the MII plate, whereas CD81 shows patches with a low frequency.
Scale bar = 10 ym. (b) Cell surface-bound sperm shows colocalization of CD9 and CD81 with sperm nuclei (blue). Scale bar = 10 ym. (c)
Pretreatment of an oocyte with cyclodextrin (CD) prevents sperm from fusing and fertilizing the oocyte. The same phenomenon is observed

in the treatment of filipin.

and promotes oocyte activation via Src tyrosine kinase and
PLCy signaling [76, 78, 79]. xUPIII and UPIb form a com-
plex on the oocyte plasma membrane and colocalize with
Gwmi [80]. In addition, CD9, a tetraspanin that is involved
in the sperm-oocyte fusion in mice, is found in the DRM
fraction of Xenopus oocytes; however, CD9 does not interact
with xUPIII or UPIb [80]. These findings suggest that the
mechanism of sperm-oocyte fusion in Xenopus is different

from that in mouse, although lipid rafts are involved in this
process in both species.

Furthermore, 2 plasma membrane proteins, CD9 and
CD81, are important molecules in murine sperm-oocyte
fusion [81, 82]. CD9 and CD81 belong to the tetraspanin
superfamily and form a complex with integrin a3f1; more-
over, CD63 that forms a complex with CD9 and CD81
localize- along with phosphatidylinositol 4-kinase within



lipid raft-like microdomains in A431 and HT1080 cell lines
[83]. Female CD9 knockout mice are infertile; although they
produce oocytes that mature normally, these oocytes cannot
fuse with sperm [81]. CD81, which has a similar structure
and function as CD9, also is involved in gamete fusion.
However, the effects of deleting CD81 are less dramatic than
those of deleting CD9 [82, 84]. The expression level of CD9
is not affected by a deficiency of CD81 in murine oocytes and
vice versa. Both CD9 and CD81 are localized on the surface
of murine oocytes (Figure 3(a)). However, their distributions
were completely different. As previously described [85],
CD9 was expressed on the oocyte microvilli. Whereas CD81
was distributed in microdomain-like structures between
microvilli that expressed CD9. However, both CD9 and
CD81 were concentrated at the sperm attachment site
(Figure 3(b)). Cyclodextrin, a lipid-raft disruptor, inhibited
sperm-oocyte fusion and decreased the percentage of two-
cell formation in a dose-dependent manner (Figure 3(c)).
Similarly, filipin had the same effect on the oocyte plasma
membrane. As a result, it is likely that CD9 and CDS81 are
important for coordinating the sperm-oocyte fusion process
in mice.

5. Lipid Rafts in Early Development

After fertilization, the zygote divides into a blastocyst that can
be implanted into the uterus in mammals. At the 8-cell stage,
a murine embryo undergoes compaction to form polarized
morulae (Figure 1(d)). This process involves substantial
changes in cellular organization. Consequently, positional
and functional differences occur among the blastocyst cells
[86]. FILIA-MATER complexes localize asymmetrically in
the apical cytocortex of 2-cell embryos due to their absence
near cell-cell contact [87]. Although this asymmetry is
reversible when the blastomeres of 2- and 4-cell embryos
are separated, FILIA-MATER complexes are detected at
the apical subcortex of “outer” but not “inner” cells of
morulae. These findings indicate that the plasticity of the
localization of FILIA-MATER complexes may reflect the cell
fate determination of preimplantation mouse embryos. The
outer cells of the morulae become the mural trophectoderm
while the inner cells form the inner cell mass (ICM) of
the blastocyst. Originally, embryonic stem (ES) cells were
isolated from the ICM of the blastocyst and were shown
to be pluripotent and self-renewing. The studies about
FILIA-MATER complexes and ES cells suggest that cell-cell
adhesion that results from compaction may be responsible
for pluripotency.

Many cell-surface antigens that are markers of pluripo-
tency have been identified in the ICM, ES cells, and embry-
onic carcinoma cells. The most common marker of murine
ES cells is stage-specific embryonic antigen (SSEA)-1. The
expression of this antigen changes dramatically in preim-
plantation mouse embryos. Specifically, SSEA-1 is highly
expressed in the morula stage, suppressed after compaction,
and then expressed only in the ICM of the blastocyst [88].
The Lewis® epitope of SSEA-1 (Galfl — 4(Fucal — 3)-
GlcNAcfl — 3Gal) also is found on glycosphingolipids
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and glycoproteins [89-91]. Mouse blastomeres and embry-
onic carcinoma cells identify each other and aggregate by
recognizing this epitope [92, 93]. Similarly, SSEA-3 and -4
are common markers of human pluripotent stem cells and
are highly expressed before the morula stage but decline
afterwards [94]. The SSEA-3 and -4 epitopes are unique
globo-series glycosphingolipids, namely, R-3GalNAcfl —
3Galal — 4R’ and NeuAca2 — 3Galpl — 3-GalNAcB1 —
3Galal — 4R, respectively [95-97]. The SSEA-4 epitope
is found in the lipid rafts of ACHN, a human renal
cancer cell line [98]. In viable murine embryos, an anti-
SSEA-4 antibody detects SSEA-4 over the entire membrane
surface, with some accumulation at the interface between
blastomeres [99]. A similar pattern of localization also was
also observed with CTB staining [100]. Because other SSEAs
are homologous to glycosphingolipids and share similar
chemical properties, they are also likely to be enriched
in lipid-rafts. SSEA-1 is colocalized with adhesion-related
proteins, such as CD9, ICAM-1, and PECAM-1, in the
contact regions of murine embryos and ES cells [101]. These
proteins also are lipid raft-associated proteins [102—104] that
are distributed in a way similar to SSEA-4. Collectively, these
findings suggest that SSEA-1, -3, -4 are localized in lipid rafts,
are involved in cell-cell adhesion, and may contribute to the
pluripotency of mouse ES cells.

In addition to cell adhesion, lipid rafts play an important
role in cytokinesis [105], which is a complex process
that involves dynamic cortical rearrangement. Surprisingly,
clathrin mutations that affect endocytosis cause defects
in cytokinesis in many organisms [106, 107]. Feng et al.
[108] showed that clathrin and caveolae are localized at the
cleavage furrow in zebrafish blastomeres. In embryos, MBCD
inhibits endocytosis and prevents normal cytokinesis. Gan-
glioside Gy, cholesterol, and tyrosine-phosphorylated pro-
teins also have been found in the cleavage furrow and plane of
sea urchin embryos [109]. In these embryos, DRMs contain
Src and PLCy, which are tyrosine phosphorylated at the site
of cytokinesis. Furthermore, activation of these enzymes is
required for furrow progression. These studies suggest that
caveolae and lipid rafts contribute to cytokinesis in early
developmental embryos.
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