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ABSTRACT: Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with
respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus
responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV,
respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of
view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS).
Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the
potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We
report here the first multicondition model based on quantitative structure−activity relationships and an artificial neural network
(mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-
ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model,
we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-
antiviral and anti-CS activities.

1. INTRODUCTION
Respiratory viruses represent infectious agents that can lead to
life-threatening medical conditions. The danger associated with
infections caused by respiratory viruses continues to be
demonstrated by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)1 as the virus responsible for
the current COVID-19 pandemic. In any case, although SARS-
CoV-1, SARS-CoV-2, and the influenza A virus (IAV) are
some of the most studied viral pathogens1−4 due to their
transmissibility and lethality worldwide, evolved strains of
other respiratory viruses such as the influenza B virus (IBV)
and the respiratory syncytial virus (RSV) have also the
potential to cause epidemics or pandemics.5,6 Two alarming
aspects associated with the infections caused by all the
respiratory viruses mentioned above deserve special attention.
On one side, the presence of at least two of these respiratory
viruses can involve coinfection,7−9 a poorly understood
phenomenon that can lead to an increment in morbidity and
mortality while also making antiviral drugs to became less
effective. On the other hand, most of these viruses can cause
the organ-damaging hyperinflammatory response known as the
cytokine storm (CS),10−12 where the proteins known as

caspase-1 and tumor necrosis factor-alpha (TNF-alpha) play a
determinant role. In this sense, caspase-1 is essential for the
maturation and/or release of two CS inflammatory pro-
teins13−15 named interleukin 1β (IL-1β) and interleukin 18
(IL-18) while TNF-alpha is a CS protein itself,16 triggering
several inflammation-related proteins such as caspase-117 and
the CS protein named interleukin 6 (IL-6).18 All these
elements, together with the fact that the current antiviral
therapies are very narrow in terms of mechanisms of action and
the number of targeted viruses, indicate the need of finding
new chemicals with the ability to act as pan-antivirals19 and to
simultaneously inhibit the CS proteins caspase-1 and TNF-
alpha.20

Nowadays, it is well-known that computational methods are
of paramount importance in modern drug development.21
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However, in the context of finding new chemicals with the
potential to treat viral infections, in silico approaches such as
quantitative structure−activity relationships (QSAR), 3D-
QSAR, molecular docking, molecular dynamics simulation,
virtual screening, and/or shape-based pharmacophore have
been applied to discover molecules with either antiviral
activity22−28 or inhibitory potency against CS-related pro-
teins,29−32 but never both biological profiles at the same time.
Also, such computational approaches have at least one or more
limitations, such as the use of small data sets of compounds
belonging to the same chemical family, the study of inhibitory
data based on only one biological target (a virus, a viral
protein, or a CS-related biomolecule), the reliance on only one
assay protocol, and the lack of sufficient physicochemical and
structural information, which can provide deeper insight when
searching for new molecular entities with the desired
bioactivities.

Because of the significance of computational drug discovery,
over the last 10 years, several research groups have emphasized
the development and application of the methodology known as
Perturbation Theory and Machine Learning (PTML)33

through which it has been possible to overcome all the
drawbacks of the in silico approaches mentioned above. Thus,
PTML models have been able to integrate chemical and
biological data at different levels of complexity in scientific
areas as diverse as antimicrobial research,34−38 oncology,39−42

neurosciences,43 immunology,44 and peptide/protein sci-
ence.45−47 In doing so, PTML models have been able to
predict multiple activities, toxicities, and/or pharmacokinetic
end points, while considering dissimilar biological targets (e.g.,

proteins, microorganisms, cells, rodents, etc.) and many assay
protocols. To date, there is no computational model reported
in the scientific literature able to guide the search for chemicals
with both pan-antiviral and anti-CS activities. Bearing in mind
all these ideas, we report here, for the first time, the theoretical
foundations of the PTML methodology in the context of both
pan-antiviral and anti-inflammatory therapies. Particularly, we
have created a multicondition QSAR model based on artificial
neural networks (mtc-QSAR-ANN) as a tool for the virtual
design and prediction of drug-like molecules with dual pan-
antiviral and anti-CS profiles.

2. RESULTS AND DISCUSSION
2.1. The Mtc-QSAR-ANN Model. In this work, we

developed an mtc-QSAR-ANN model able to consider 23
different experimental conditions (cj) when predicting the
inhibitory activity against either multiple respiratory viruses or
the CS proteins caspase-1 and TNF-alpha (Table 1). Each of
those experimental conditions cj is a combination of three
elements: the measure of inhibitory activity (ma), the
biological target on which the experiment was performed
(bt), and the assay information involving different test
protocols (ai). Notice that the mtc-QSAR-ANN model used
a classification approach, predicting molecules with BAi(cj) = 1
(active) or BAi(cj) = −1 (inactive), where BAi(cj) represented
the categorical variable of inhibitory activity. All the chemical
and biological data used in this work can be found in
Supporting Information (Tables S1 and S2).

Table 1. Different Experimental Conditions under Which the Molecules of the Present Dataset Were Assayed

cja mab cutoff value (nM)c btd aie

c1 EC50 (nM) ≤3800 IAV (A-Puerto Rico-8-1934 (H1N1)) F (organism-based format)
c2 EC50 (nM) IAV (A-Puerto Rico-8-1934 (H1N1)) F (cell-based format)
c3 EC50 (nM) IAV (A-Puerto Rico-8-1934 (H1N1)) F (assay format)
c4 EC50 (nM) ≤10000 IBV F (organism-based format)
c5 EC50 (nM) IBV F (cell-based format)
c6 EC50 (nM) ≤300 RSV F (organism-based format)
c7 EC50 (nM) RSV F (cell-based format)
c8 EC50 (nM) ≤7500 SARS-CoV-1 F (organism-based format)
c9 EC50 (nM) ≤1200 SARS-CoV-2 F (organism-based format)
c10 IC50 (nM) ≤8600 IAV (A-Puerto Rico-8-1934 (H1N1)) F (organism-based format)
c11 IC50 (nM) IAV (A-Puerto Rico-8-1934 (H1N1)) F (cell-based format)
c12 IC50 (nM) ≤10000 IBV F (organism-based format)
c13 IC50 (nM) ≤3600 RSV F (organism-based format)
c14 IC50 (nM) ≤1080 SARS-CoV-1 F (organism-based format)
c15 IC50 (nM) ≤6070 SARS-CoV-2 F (organism-based format)
c16 IC50 (nM)p ≤1100 Caspase-1 B (assay format)
c17 IC50 (nM)p Caspase-1 B (single protein format)
c18 IC50 (nM)p Caspase-1 B (cell-based format)
c19 IC50 (nM)p ≤1635 TNF-alpha B (single protein format)
c20 IC50 (nM)p TNF-alpha F (assay format)
c21 IC50 (nM)p TNF-alpha B (assay format)
c22 IC50 (nM)p TNF-alpha B (cell-based format)
c23 IC50 (nM)p TNF-alpha F (cell-based format)

aCodes for the different experimental conditions cj, which are combinations of the elements ma (measures of activity), bt (biological targets), and
ai (assay information containing diverse experimental protocols). bMeasures of inhibitory activity. EC50 (nM) is the effective concentration leading
to a 50% reduction in the cytophaticity caused by a virus or inhibition of viral replication, IC50 (nM) is the concentration required for 50%
inhibition of the virus, and IC50 (nM)p is the concentration required for 50% inhibition of a protein associated with the cytokine storm. cValue of
activity from which a chemical was annotated as active [BAi(cj) = 1]. dTargets (respiratory viruses or proteins associated with the cytokine storm).
eAssay information related to the different test protocols. Each annotation combines the columns “assay type” (first letter) and “BioAssay
Ontology” (phrase between parentheses), which were extracted from the ChEMBL file containing inhibitory activity data.
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The best mtc-QSAR-ANN model found by us has the
notation MLP 15-68-2, which means that our model is based
on a multilayer perceptron network containing 15 nodes
equivalent to the 15 multicondition descriptors of the type
D[GTI]cj, which entered in the mtc-QSAR-ANN model
(Table 2). According to such a notation, 68 neurons were
used in the hidden layer containing a hyperbolic tangent
function while the number two indicates that the mtc-QSAR-
ANN model could predict the two aforementioned values of
BAi(cj) in the output layer by relying on a softmax function.

The mtc-QSAR-ANN model displayed a good global
performance, with accuracy (Acc) values of 85.14% and
80.19% in training and test sets, respectively. Other statistical
indices such as sensitivity [Sn(%)], specificity [Sp(%)], and
Matthews’ correlation coefficient (MCC)48 supported the good
statistical quality and predictive power of our mtc-QSAR-ANN
model (Table 3). For instance, [Sn(%)] and [Sp(%)] were
higher than 79%. Also, MCC values were relatively close to
one, which indicated a strong convergence between the

predicted and observed values of the categorical variable of
biological activity BAi(cj).

We also examined the local sensitivities and specificities,
which depended on specific elements. In the training set, in the
case of the measures of activity (ma), the sensitivity [Sn(%)]
ma and the specificity [Sp(%)]ma were higher than or equal to
79.52% and 83.78%, respectively. Both magnitudes exhibited
values above 72% in the test set. Considering the local
measures in the case of the biological targets (bt), [Sn(%)]bt
and [Sp(%)]bt had acceptable values in the range 62.86%−
92% for the whole data set. The only exception was the
biological target SARS-CoV-1, for which [Sn(%)]bt = 44.44%
was achieved in the test set. Last, in the case of the assay
information involving different experimental protocols (ai), the
[Sn(%)]ai and [Sp(%)]ai values were in the interval 75%−
100% in either training or test sets. Only [Sn(%)]ai for the
assay information denoted as “F (assay format)” was below this
range, with values of 53.49% and 38.46% for training and test
sets, respectively. We suggest that the incorrectly classified/
predicted chemicals are a consequence of the lack of
universality of our D[GTI]cj descriptors (also valid for any
molecular descriptor reported to date in the scientific
literature), as well as the complexity of the experimental data
involving different measures of activity (ma), multiple targets
(bt), and great variability of the assay information (ai). In any
case, from the analyses of both global and local statistical
indices, we can infer that our mtc-QSAR-ANN model has a
good statistical quality and predictive power. Detailed
information regarding the D[GTI]cj descriptors and the
classification results is available in Supporting Information
(Tables S3−S6).

In addition to analyzing the performance of the mtc-QSAR-
ANN model, we also assessed the reliability of its
classifications/predictions by determining the applicability
domain according to the descriptors’ space approach.49,50 In
doing so, we defined a local score of applicability domain
(LSAD) for each D[GTI]cj descriptor as well as a total score
(TSAD),50,51 which was the sum of the LSAD values. Because
our mtc-QSAR-ANN model contains 15 D[GTI]cj descriptors,

Table 2. Symbols and Codes of the D[GTI]cj Descriptors Present in the mtc-QSAR-ANN Model

symbologya codeb concept

D[Xv(C)6]ma DGTI01 deviation of the Kier−Hall (valence) connectivity index based only on cluster subgraphs of order 6
D[NXv(C)4]ma DGTI02 deviation of the normalized Kier−Hall (valence) connectivity index based only on cluster subgraphs of order 4
D[Xv(P)6]bt DGTI03 deviation of the Kier−Hall (valence) connectivity index based only on path subgraphs of order 6
D[NSM(Gas)1]bt DGTI04 deviation of the normalized spectral moment of order 1 based on bonds weighted by the Gasteiger−Marsili charges.
D[NSM(Gas)2]bt DGTI05 deviation of the normalized spectral moment of order 2 based on bonds weighted by the Gasteiger−Marsili charges.
D[NXv(PC)4]bt DGTI06 deviation of the normalized Kier−Hall (valence) connectivity index based only on path-cluster subgraphs of order 4
D[Ne(P)5]bt DGTI07 deviation of the normalized edge (bond) connectivity index based only on path subgraphs of order 5
D[NJ]bt DGTI08 deviation of the normalized Balaban index.
D[SM(Hyd)1]ai DGTI09 deviation of the spectral moment of order 1 based on bonds weighted by the hydrophobicity contributions.
D[3k(alpha)]ai DGTI10 deviation of Kier’s shape index based only on path subgraphs of order 3
D[J]ai DGTI11 deviation of the Balaban index.
D[NSM(Psa)6]ai DGTI12 deviation of the normalized spectral moment of order 6 based on bonds weighted by the polar surface area.
D[NSM(Mol)5]ai DGTI13 deviation of the normalized spectral moment of order 5 based on bonds weighted by the molar refractivity.
D[NXv(Ch)5]ai DGTI14 deviation of the normalized Kier−Hall (valence) connectivity index based only on chain subgraphs of order 5
D[NKFI]ai DGTI15 deviation of the normalized Kierflexibility index.

aThe D[GTI]cj descriptors with ending “ma” characterize both the molecular structure and the measures of inhibitory activity. Those D[GTI]cj
descriptors with the ending “bt” describe the chemical structure as well as the biological targets (respiratory viruses and proteins associated with the
cytokine storm). Finally, the D[GTI]cj descriptors with ending “ai” characterize the chemical structure and information related to different
experimental assay protocols. bFrom now on, for the sake of simplicity, the codes will be used instead of the original symbols to explain either the
statistical significance or the physicochemical interpretation of the D[GTI]cj descriptors.

Table 3. Statistical Performance of the mtc-QSAR-ANN
Model

symbolsa training set test set

NActive 1156 374
CCCActive 981 297
Sn (%) 84.86 79.41
NInactive 1435 469
CCCInactive 1225 379
Sp (%) 85.37 80.81
MCC 0.700 0.600

aNActive, number of molecules/cases labeled as active; NInactive, number
of molecules/cases annotated as inactive; CCCActive, number of
molecules/cases correctly classified as active; CCCInactive, number of
molecules/cases correctly classified as inactive; Sn (%), statistical
sensitivity (percentage of molecules/cases correctly classified as
active); Sp (%), statistical specificity (percentage of molecules/cases
correctly classified as inactive); MCC, Matthews’ correlation
coefficient.
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it was expected that only molecules/cases with TSAD = 15
would be those falling within the applicability domain. Of the
3434 molecules/cases in the data set, only four were outside
the applicability domain (TSAD = 14). Yet, the deletion of
these four outliers did not improve the performance of the
mtc-QSAR-ANN model (Supporting Information Table S7).

Last, we would like to emphasize that although the present
mtc-QSAR-ANN model is based on a single neural network,
when performing virtual screening, it can behave as a
consensus tool. Notice that the previous analysis of the local
measures [Sn(%)]ma, [Sp(%)]ma, [Sn(%)]bt, [Sp(%)]bt,
[Sn(%)]ai, and [Sp(%)]ai demonstrates that our mtc-QSAR-
ANN model can predict the activity of any molecule against a
defined target by considering several experimental conditions
(see Table 1). Therefore, if for a given molecule, we combine
the results and the reliability (the latter provided by the
applicability domain) of such predictions against a specific
target under different experimental conditions, it will be
possible to obtain a consensus idea on the activity or inactivity
of that molecule against the target under study.
2.2. Physicochemical and Structural Interpretation of

the Molecular Descriptors. Before using our mtc-QSAR-
ANN model as a tool to design new molecules, we interpreted
the different D[GTI]cj descriptors from a physicochemical and
structural point of view. In doing so, for each D[GTI]cj
descriptor present in the mtc-QSAR-ANN model, we
calculated two mean values, one for the chemicals annotated
and correctly classified as active and the other for those
molecules considered and accurately classified as inactive
(Table 4).50,51 Such calculations were carried out by
considering only the molecules in the training set. The
comparison of the two mean values permitted us to gain
insight into how the value of each D[GTI]cj descriptor should
be varied (increased or diminished) to increase both the pan-
antiviral and anti-CS activities.

We also relied on the use of a graphic containing the
sensitivity values (SVs) of the D[GTI]cj descriptors, which
indicated their degrees of importance in the mtc-QSAR-ANN
model (Figure 1). The D[GTI]cj descriptors with the largest
SVs are the most influential, and therefore, they represent the
most important physicochemical properties and structural
features that a molecule should have to enhance its pan-
antiviral and anti-CS activities.

We have five D[GTI]cj descriptors derived from the atom-
based connectivity indices, and therefore, they characterize the
molecular accessibility of the chemicals,52,53 i.e., the ability of
certain regions/fragments/functional groups of the chemicals
to interact with the different biological targets (or components
of them). These D[GTI]cj descriptors are DGTI01, DGTI02,
DGTI03, DGTI06, and DGTI14. Thus, to modify the
molecular accessibility in the way of increasing the pan-
antiviral and anti-CS activities, the following physicochemical
and structural requirements are needed. First, the number of
functional groups of the type G−JL3 should be avoided. In
such functional groups, G, J, and L are non-hydrogen atoms,
and the three L atoms can be either equal or different. In G−
JL3, when G is attached to at least two non-hydrogen atoms
besides J (e.g., the trifluoromethyl attached to a benzene ring),
the information on the diminution of the molecular
accessibility is provided by the decrease of the values of
DGTI01 and DGTI02. If the atom G is attached to only one
non-hydrogen atom besides J (the same trifluoromethyl group
attached to carbon from a methylene group), then, the
information will be described only by the diminution of
DGTI02 (its value is also reduced by increasing the total
number of non-hydrogen atoms in a molecule). We would like
to highlight that if for some reason, the functional groups G−
JL3 are present in a molecule, then G, J, and L should be
preferably noncarbon atoms such as oxygen or nitrogen. The
descriptors DGTI01 and DGTI02 rank 12th and 13th among
the most important D[GTI]cj descriptors in the mtc-QSAR-
ANN model, respectively.

In addition, we have DGTI03 (the ninth most important
descriptor), which indicates the increase in the number of
linear fragments containing six bonds (hexane-like skeletons).
In such fragments, atoms such as S and P, as well as aliphatic
portions and aromatic atoms, are also highly beneficial. In this
sense, Figure 2 depicts a series of generic molecular fragments
whose presence can positively favor the variation of the values
of the D[GTI]cj descriptors, including DGTI03.

In the case of DGTI06 and DGTI14, they measure the
diminution of the molecular accessibility in regions containing
methylbutane-like skeletons and five-membered rings, respec-
tively. This means that to increase the pan-antiviral and anti-
CS activities, the number of those fragments must be reduced
as much as possible; in the case where they are present, those
fragments should preferably contain noncarbon atoms. The
values of DGTI06 and DGTI14 can also be diminished by
augmenting the number of non-hydrogen atoms in a molecule.
We would like to notice that DGTI06 and DGTI14 are the
second and fifth most influential D[GTI]cj descriptors in the
mtc-QSAR-ANN model, respectively.

Our mtc-QSAR-ANN model also contains five D[GTI]cj
descriptors (DGTI04, DGTI05, DGTI09, DGTI12, and
DGTI13) based on the spectral moments of the bond
adjacency matrix,54−59 which means that they characterize
how much any given physicochemical property is concentrated
in different regions of a molecule. From one side, the favorable

Table 4. Tendencies of Variation of the D[GTI]cj
Descriptors in the mtc-QSAR-ANN Model

class-based meansa

descriptors active inactive tendencyb

DGTI01 1.4391 × 10−2 5.9700 × 10−2 decrease
DGTI02 2.8440 × 10−2 3.1588 × 10−2 decrease
DGTI03 1.6610 × 10−3 −5.2028 × 10−2 increase
DGTI04 −3.1118 × 10−2 1.2448 × 10−1 decrease
DGTI05 1.0951 × 10−2 −1.2250 × 10−1 increase
DGTI06 1.1698 × 10−2 1.0999 × 10−1 decrease
DGTI07 −2.9689 × 10−2 −3.8392 × 10−2 increase
DGTI08 1.3665 × 10−2 1.3667 × 10−1 decrease
DGTI09 −2.4072 × 10−2 8.7241 × 10−2 decrease
DGTI10 4.9842 × 10−3 −2.3010 × 10−2 increase
DGTI11 1.6154 × 10−2 4.7476 × 10−2 decrease
DGTI12 1.3308 × 10−2 −1.1988 × 10−3 increase
DGTI13 1.4227 × 10−3 9.9303 × 10−2 decrease
DGTI14 8.0425 × 10−3 2.4919 × 10−2 decrease
DGTI15 8.4249 × 10−3 4.8861 × 10−2 decrease

aThese are the averages calculated for each D[GTI]cj descriptor by
considering chemicals (from the training set) belonging to a defined
class (active or inactive). bVariation of the value of a D[GTI]cj
descriptor that should be expected to increase the inhibitory activity
against the respiratory viruses and the proteins associated with the
cytokine storm.
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diminution of the value of DGTI04 (ranked 11th in terms of
significance) is equivalent to increasing the number of
electronegative atoms (mainly N, O, S, F, and Cl) of a
molecule. The presence of these same atoms favorably
increases the value of DGTI05 but these electronegative
atoms should exist in fragments formed by two bonds (without
counting bond multiplicity). We would like to highlight that
DGTI05 is the most influential D[GTI]cj descriptor in the mtc-
QSAR-ANN model and the presence of fragments such as
amide, ester, urea, carbamate, and trifluoromethyl, hetero-
aromatic rings such as pyrimidine and pyridazine, and benzene
rings substituted with fluorine atoms or polar groups (amine,
amide, hydroxyl, urea, carbamate, etc.) can desirably increase
the value of DGTI05. On the other hand, DGTI09 (the
seventh most important) accounts for the global hydro-
phobicity of a molecule, and thus, most of the fragments
favoring DGTI05 will also be suitable for DGTI09 (except for
ester, trifluoromethyl, and fluorobenzene as well as alkyl
groups), including benzene rings where a hydrogen atom has

been replaced by nitrogen or oxygen. We also have DGTI12,
which describes the augmentation of the polar surface area in
fragments containing six bonds or less. In particular, the value
of DGTI12 (ranking 14th in terms of significance) can be
increased through the presence of any functional group
containing the elements N, O, S, and/or P (e.g., amine,
amide, ester, carbamate, urea, sulfonamide, sulfoxide, sulfone,
and phosphate) and the aforementioned heteroaromatic rings.
For the case of DGTI13 (being the least important descriptor),
its decrease is equivalent to the presence of low-refractivity
atoms such as N, O, and F. Consequently, the presence of
functional groups such as amide, primary and secondary
amines, and pyrido[4,3-b]pyrazines (with a nitrogen or oxygen
atom replacing hydrogen at positions 3 and 7) is encouraged.
However, because DGTI13 encompasses fragments having five
bonds or less (with emphasis on four-bond fragments),
functional groups with high-refractivity atoms (S, P, and
halogens except for fluor) should be avoided, mainly,
sulfonamides, sulfones, and phosphates (or any phosphorus-

Figure 1. Sensitivity values as measures of the importance of the D[GTI]cj descriptors present in the mtc-QSAR-ANN model.

Figure 2. Different molecular fragments whose presence favorably affects the values of the D[GTI]cj descriptors. The symbols have the following
meanings: A = O or S; X = C or N; Y1 = O, −CH2− or −NH−; Y2 and Y3 can be any atom; Y4 = O or −NH−; Z1 and Z2 can be F or any
functional group whose electronegative atom (can be only O or N) is the one attached to the aromatic ring.
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based group where phosphorus is attached to other four non-
hydrogen atoms). If a functional group containing a high-
refractivity atom is present, that group should be in the
periphery of a molecule.

The last five D[GTI]cj descriptors contain structural
information which is different from the D[GTI]cj descriptors
already discussed (see Figure 2). For instance, DGTI07 is
based on the edge-connectivity index and, as such, is a measure
of the molecular volume of a chemical.60−62 Specifically,
DGTI07 (ranked the tenth most influential) indicates the
increment of the number of linear fragments containing five
bonds (pentane-like skeletons). We have also DGTI08 and
DGTI11, which are derived from the Balaban index,63 and
therefore, they are indicators of the shape of a molecule. The
diminution of the values of DGTI08 and DGTI11 converges
with the decrease of the number of ramifications in the
molecules and the increase in the number of rings. From a
structural point of view, the only difference between DGTI08
and DGTI11 is that the former is size-independent. In the mtc-
QSAR-ANN model, DGTI08 and DGTI11 are the sixth and
fourth most significant D[GTI]cj descriptors, respectively. In
the case of DGTI10 (the eighth most important), its increase
describes the shape of the molecules64 by augmenting the
number of linear fragments (propane-like skeletons). Last, we
have DGTI15, which is the third most influential among all the
D[GTI]cj descriptors in the mtc-QSAR-ANN model and a
measure of the flexibility of the molecules.65 In the context of

the present work, the diminution of the value of DGTI15 is
expected, particularly by increasing the number of fused rings.

Bearing in mind all the ideas mentioned when explaining the
different D[GTI]cj descriptors, their joint interpretation can be
summarized in the following manner. Electronegative atoms
should be distributed through the entire molecular structure of
a chemical, with an emphasis on functional groups based on
nitrogen and oxygen (a sulfoxide group is allowed mainly in
the periphery of a molecule as a replacement of an amide
group). Ramifications should be avoided, and if present, they
should preferably appear in one of the extremes of any
molecule. The use of two fused ring systems separated by a
linker containing four or five atoms (with at least two of them
being aliphatic carbons) is the most important aspect. In this
sense, each fused ring system should be formed by two
heteroaromatic rings or a combination of a benzene ring with
an aliphatic portion. Benzene rings, when present in the
molecules, should present substitutions in multiple positions,
with nitrogen, oxygen, and/or fluorine as the preferred atoms
to substitute the hydrogen atoms.
2.3. Virtual Design of New Chemical with Pan-

Antiviral and Anti-CS Profiles. By strictly following the
joint interpretation of the 15 D[GTI]cj descriptors present in
the mtc-QSAR-ANN model, we designed eight structurally
related molecules (Figure 3). In doing so, we connected and/
or fused some key molecular fragments,66 i.e., those whose
presence was suggested as desirable for the favorable variation
of the values of most of the D[GTI]cj descriptors. Such

Figure 3. New molecules designed by assembling several fragments according to the physicochemical and structural interpretation of the D[GTI]cj
descriptors.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03363
ACS Omega 2022, 7, 32119−32130

32124

https://pubs.acs.org/doi/10.1021/acsomega.2c03363?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03363?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03363?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03363?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03363?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


fragments included fused ring systems, as well as amide,
sulfoxide, carbamate, and urea groups. We also decorated the
designed molecules with certain atoms/functional groups such
as fluor and hydroxymethyl (both in the periphery of the
molecule), as well as nitrogen atoms from secondary amines.

The designed molecules were predicted by our mtc-QSAR-
ANN model to confirm that the virtual design was correctly
performed. Such predictions are depicted in Table 5. The
experimental conditions from c1 to c15 involve the predicted
antiviral activities against the different viral strains while those
in the intervals c16−c18 and c19−c23 are based on the
inhibitory potencies against caspase-1 and TNF-alpha,
respectively. All the data regarding the eight designed
molecules can be found in detail in the Supporting Information
(Tables S8−S11).

The numbers in Table 5 reflect the probabilities (predicted
by the mtc-QSAR-ANN model) of the designed molecules to
be considered active. Because most of the probability values

are higher than 50%, we can infer that the designed molecules
seem to have pan-antiviral activity while also inhibiting the CS-
related proteins caspase-1 and TNF-alpha. From a phys-
icochemical and structural point of view, we can say that
fragments such as the two systems of fused rings (each of them
with one polar part and one hydrophobic region), the presence
and location of the two fluorine atoms, and even the
hydroxymethyl group (from DP-001 to DP-004) positively
account for the dual pan-antiviral and anti-CS profiles of all the
designed molecules. In any case, notice that DP-006, DP-007,
and DP-008 are the most desirable molecules since they were
predicted as active in a larger number of experimental
conditions cj and with the highest probabilities in most of
these conditions. This indicates that the nitrogen atom from a
secondary amine is necessary as well as the seemingly more
correct placement of the amide and sulfoxide groups. Also, the
carbamate group is slightly preferred over the urea moiety. We
would like to emphasize that because the eight designed

Table 5. Summary of the Predictions Performed by the mtc-QSAR-ANN Model for the Designed Molecules

cja,b DP-001 DP-002 DP-003 DP-004 DP-005 DP-006 DP-007 DP-008

c1 52.88 60.88 24.08 29.62 71.47 86.00 70.60 71.84
c2 88.40 91.62 71.30 78.93 96.18 99.06 95.29 93.36
c3 90.56 91.98 73.59 78.25 94.58 95.56 89.16 89.46
c4 75.59 78.16 98.34 98.56 88.62 86.73 96.56 96.56
c5 95.54 96.10 98.93 99.09 98.04 98.28 99.23 99.20
c6 65.55 71.68 61.22 68.75 63.53 82.51 79.92 74.79
c7 87.66 84.65 89.23 86.12 76.52 63.78 51.61 57.04
c8 12.44 17.24 9.92 14.98 33.60 76.73 83.15 78.64
c9 80.37 80.37 88.57 90.72 90.01 95.24 98.51 98.41
c10 70.77 77.26 43.63 50.75 84.86 92.18 82.03 83.10
c11 88.97 92.17 73.60 80.72 96.22 98.95 93.86 91.29
c12 62.41 67.01 97.46 97.89 82.87 81.14 94.97 94.70
c13 42.66 50.53 55.69 64.14 46.43 71.93 75.12 68.21
c14 18.20 25.63 17.83 26.53 49.93 86.47 90.15 86.64
c15 80.27 81.67 91.00 93.23 92.40 96.54 98.81 98.63
c16 9.93 5.63 41.45 24.99 8.38 11.35 60.80 73.98
c17 98.31 98.08 96.43 96.55 99.04 99.03 97.20 97.20
c18 88.70 89.80 89.77 91.90 94.64 95.43 96.21 95.50
c19 59.44 66.91 18.14 22.38 60.12 74.77 28.50 23.29
c20 44.64 42.04 46.34 44.05 48.14 54.20 55.20 54.41
c21 0.43 0.31 7.54 4.32 0.07 0.10 4.16 7.26
c22 54.11 55.17 61.31 61.79 62.25 73.36 71.89 70.13
c23 92.53 90.32 82.20 77.51 86.73 75.53 50.58 58.71

aThis refers to the different experimental conditions as reported in Table 1. bThe numbers in this table are the predicted values of probability for
each molecule to be considered active. In the Supporting Information (Table S10), these probability values appear in a column named Prob.
(%)Act.

Table 6. Physicochemical Properties Suggesting the Druglikeness of the Designed Molecules

IDa HD HA MW M log P A log P AMR NAT NRB TPSA

DP-001 3 9 448.51 1.247 1.614 112.72 52 6 133.17
DP-002 3 9 448.51 1.247 1.614 112.72 52 6 133.17
DP-003 4 10 429.44 0.914 1.548 106.65 51 6 125.99
DP-004 4 10 429.44 0.914 1.548 106.65 51 6 125.99
DP-005 4 10 450.51 1.137 1.330 112.99 51 5 127.77
DP-006 3 10 451.49 1.137 1.977 111.04 50 6 124.97
DP-007 4 10 430.45 1.762 1.904 108.41 51 6 108.56
DP-008 4 10 430.45 1.762 1.904 108.41 51 6 108.56

aIn the table, the abbreviations have the following meanings: the number of atoms behaving as hydrogen bond donors (HD), the number of atoms
acting as hydrogen bond acceptors (HA), the molecular weight (MW), the logarithm of Moriguchi’s octanol/water partition coefficient (M log P),
the logarithm of Ghose−Crippen’s octanol/water partition coefficient (A log P), Ghose−Crippen’s molar refractivity (AMR), the number of atoms
(NAT), the number of rotatable bonds (NRB), and the topological polar surface area (PSA).
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molecules were predicted by the mtc-QSAR-ANN model
against the 23 experimental conditions for cj, 184 predictions
in total were performed; in all the predictions, the designed
molecules fell within the applicability domain of the mtc-
QSAR-ANN model.

We also examined the druglikeness of the designed
molecules by calculating a series of physicochemical proper-
ties67 that are depicted in Table 6. The purpose here was to
determine whether these molecules simultaneously complied
with Lipinski’s rule of five,68 Ghose’s filter,69 and Veber’s
recommendations.70 The values of the physicochemical
properties of the designed molecules were in agreement with
the corresponding cutoff values of the physicochemical
properties established by the three aforementioned approaches,
confirming their adequate druglikeness.

Last, intending to assess the novelty of the designed
molecules, we performed a search in prestigious external
databases such as ChEMBL71 and ZINC.72 The idea was to
investigate in these databases the existence of chemicals that
could structurally resemble our designed molecules. By
applying a similarity cutoff value of 85%, we did not find any
molecule similar to ours.

3. CONCLUSION
Computational methods have the potential to accelerate the
discovery of therapeutic chemicals in the context of antiviral
research. However, given the complexity of the infections
caused by respiratory viruses, such methods should go beyond
the single task of performing virtual screening by considering

only one viral target. The mtc-QSAR-ANN model developed
by us is a confirmation that chemical and biological data can be
successfully integrated, allowing the simultaneous prediction of
pan-antiviral activity against different respiratory viruses and
inhibitory potency against CS-related proteins. We have also
demonstrated the importance of the physicochemical and
structural interpretations of the molecular descriptors, which
enabled the use of the mtc-QSAR-ANN model as a tool to
design novel molecules with virtually dual pan-antiviral and
anti-CS profiles. The methodology underpinning the creation
and application of our mtc-QSAR-ANN model opens
encouraging opportunities for the in silico design of chemicals
with the desired properties.

4. MATERIALS AND METHODS
The development and application of our mtc-QSAR-ANN
model are illustrated in Figure 4. All the chemical and
biological data used in this work were retrieved from version
29 of the ChEMBL database.71,73 The curation of our data set
was carried out according to certain previously reported
guidelines.35,40,66,74

By using the software named MODESLAB v1.5,75 we
calculated (using the SMILES codes stored in a txt file) the
following topology-based molecular descriptors (TI): atom
connectivity indices, bond-based connectivity indices, spectral
moments of the bond adjacency matrix, Kier’s shape
descriptors, and Kier’s flexibility index and other classical
topological indices. Other steps such as the calculation of a set
of size-independent descriptors (NTI), the application of the

Figure 4. Development and use of an mtc-QSAR-ANN model. The D[GTI]cj descriptors were calculated by applying the Box-Jenkins approach;
such calculations were carried out in Microsoft Excel. Before finding the mtc-QSAR-ANN model, the data set was randomly split into training and
test sets, which accounted for 75% and 25% of the data set, respectively. The abbreviation “INTP” signifies the physicochemical and structural
interpretations of the D[GTI]cj descriptors.
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Box−Jenkins approach to obtain the multicondition descrip-
tors D[GTI]cj, the split of the data set of the training and test
sets, the selection of the most adequate D[GTI]cj descriptors,
and the creation of the mtc-QSAR-ANN model were
performed by strictly following a recent work.76 Therefore,
we will mention here only specific aspects.

When calculating the D[GTI]cj descriptors,76 the a priori
probabilities ps(cj) were defined according to the following
mathematical formalism:

=ps cj
n cj
N cj

( )
( )
( )T

A

(1)

In eq 1, nA(cj) and NT(cj) are the numbers of chemicals/
cases annotated as active and the total number of cases,
respectively. Both numbers (calculated by considering only
chemicals/cases in the training set) depend on a specific
element of the experimental condition cj. For instance, if cj =
ma, then, ps(ma), nA(ma), and NT(ma) correspond to the a
priori probability, the number of active chemicals/cases, and
the total number of chemicals/cases, all of them by considering
only the element named measure of activity (ma). The same
equation was applied separately to the elements named
biological target (bt) and assay information (ai).

When selecting the most appropriate D[GTI]cj descriptors
using the software IMMAN v1.0,77 we computed Jeffreys’s
information index (100 bins) to rank them according to their
potential discriminatory power. Then, we performed a
correlation analysis, keeping only those D[GTI]cj descriptors
with pairwise correlation values in the interval −0.7 < PCC <
+0.7 (PCC was for the Pearson’s correlation coefficient). To
find the best mtc-QSAR-ANN model, we employed the ANN
package of the software STATISTICA v13.5.0.17.78 In doing
so, we utilized a customized configuration [strategy for creating
predictive models: automated network search; network types,
MLP; minimum hidden units (neurons), 15; maximum hidden
units (neurons), 70; networks to train, 3000; networks to
retain, 50; activation functions for the hidden layer, logistic and
hyperbolic tangent; activation function for the output layer,
logistic, hyperbolic tangent, and softmax (the latter was
implicitly used by default)]. The options regarding weight
decay and initialization were left inactivated. We considered
only those MLP networks with the number of epochs equal to
or less than 400. In the end, the best MLP network (most
suitable mtc-QSAR-ANN model) was the one exhibiting the
highest values of the local measures [Sn (%)]ma, [Sp (%)]ma,
[Sn (%)]bt, [Sp (%)]bt, [Sn (%)]ai, and [Sp (%)]ai. We would
like to emphasize that our choice of using ANN via MLP as the
machine learning algorithm with the aforementioned config-
uration is based on our previous experience in the creation and
application of PTML models with good statistical quality and
predictive power.34,66,76,79
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