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Abstract: Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors
including environmental and genetic ones participate in BC development. Metastasis of BC cells
into neighboring and distant tissues significantly reduces overall survival of patients with this
life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved
in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory
effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT
is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of
BC cells. MiRNAs are endogenous non-coding RNAs with 19–24 nucleotides capable of regulating
different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce
and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as
transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in
detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as

Biomolecules 2020, 10, 1159; doi:10.3390/biom10081159 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0001-6605-822X
https://orcid.org/0000-0003-4312-5076
https://orcid.org/0000-0002-5899-4744
https://orcid.org/0000-0003-2790-7617
https://orcid.org/0000-0002-6341-9007
https://orcid.org/0000-0002-3754-5712
https://orcid.org/0000-0003-0391-1769
http://dx.doi.org/10.3390/biom10081159
http://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/2218-273X/10/8/1159?type=check_update&version=2


Biomolecules 2020, 10, 1159 2 of 26

lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here
to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them
to develop effective therapeutics.

Keywords: bladder cancer; metastasis; epithelial-to-mesenchymal transition (EMT); microRNA
(miRNA); cancer therapy

1. Introduction

Bladder cancer (BC) is among the most common cancers worldwide (11th most common diagnosed
cancer) and its global incidence rate is higher in males compared to females (9 per 100,000 persons for
males and 2.2 per 100,000 persons for females) [1,2]. According to estimates, incidence rate of BC is
higher in European countries compared to the average worldwide incidence rate (19.1 for males and 4
for females) [3]. It seems that incidence and mortality of BC are different in various countries based on
the risk factors, diagnostic tools and treatment availability as well as data collection strategies [4,5].
BC has a higher incidence rate in Southern and Western Europe and North America, as well in certain
countries in Northern Africa or Western Asia [6].

Although etiology of BC is not completely understood, a number of factors are considered as risk
factors for BC development. The most well-known risk factor is tobacco smoking which is responsible
for development of 50% of BC cases [7]. Occupational exposure to agents such as aromatic amines,
polycyclic aromatic hydrocarbons and chlorinated hydrocarbons can be considered as other factors
involved in BC development. Genetic mutations are also involved in BC development by enhancing
susceptibility into other risk factors [8–10]. Radiation exposure and chlorinating drinking water have
been also reported to account for BC development [11,12].

BC is a heterogeneous group of tumors with up to 40 histological subgroups. Fortunately, novel
therapeutics are evolving for BC therapy beyond chemotherapy, which includes immunotherapy
and molecular targeted agents. Most of BC cases are urothelial carcinomas, and 10% of them
are non-urothelial carcinomas [3,13]. For each of the aforementioned types of BC, there are
different subtypes. For instance, urothelial carcinomas are divided into different subtypes based on
histopathological profile such as conventional urothelial carcinoma, variant urothelial carcinoma and
so on. The advantageous of this subtyping is of importance for precision therapy, and providing
effective and separate diagnosis and treatment [14].

Although different subtypes have been developed for BC and much effort has been conducted for
using chemotherapy and radiotherapy in BC therapy, the cure of BC patients remains one of the big
challenges for scientists. Partly, this difficulty in treating BC is due to poor understanding of molecular
profile of BC. In spite of experiments for revealing genetic factors and molecular pathways involved in
BC progression and malignancy, there is still a long way, since cancer cells use dynamic and flexible
molecular pathways for ensuring their proliferation and invasion. A group of these molecular signaling
pathways involved in proliferation and migration of BC cells, and enhance their viability known as
oncogenic pathways such as Wnt [15], STAT3 [16], Nrf2 [17], PI3K/Akt [18], ZEB [19], and oncogenic
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [20,21]. Another group of molecular
pathways include those which inhibit growth and metastasis of BC cells such as PTEN [22], AMPK [23],
and onco-suppressor miRNAs and lncRNAs [24,25]. These molecular pathways have been extensively
studied in BC cells and there are excellent reviews about them.

One of the issues in treatment of patients with BC is the high metastatic capability of BC cells
that negatively affects overall survival of patients with this life-threatening disorder, and remarkably
reduces efficacy of chemotherapy and radiotherapy, since cancer cells migrate in neighboring and
distant tissues, providing problems with their effective eradication [26–28]. Several molecular pathways
such as ZEB1 [19], EZH2 [29], PI3K/Akt [30], and so on have been identified as potential factors involved
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in metastasis and invasion of BC cells. Epithelial-to-mesenchymal transition (EMT) is one of the most
important molecular pathways that enhanced migratory ability of cancer cells [31,32]. Interestingly,
EMT has been recognized as a potential downstream target of miRNAs in cancer cells [33–37]. In the
present review, we focus on metastatic BC cells, and the role of miRNA/EMT axis. This review
will provide a comprehensive discussion about the role of miRNA/EMT in malignant behavior and
strategies to target this axis in BC cells.

2. EMT Mechanism

The first definition of EMT is transformation of epithelial cells into mesenchymal ones that have
migratory features and can be accompanied by downregulation of epithelial markers such as E-cadherin,
and upregulation of mesenchymal markers such as N-cadherin and vimentin [38,39]. Epithelial cells
have cell-cell junctions, apico-basal polarity and low potential in migration. The epithelial cells are
detected via their cell surface markers including E cadherin (as the most important and well-known
factor), cytokeratins, occluding and claudins [40–43]. However, these properties are reversed in
mesenchymal cells during EMT. Mesenchymal cells have front-rear polarity and potential in migration.
There are surface markers by which mesenchymal cells are recognized, including N-cadherin, fibronectin
and vimentin [44–48]. The EMT process was first observed during embryonic development. It was
found that EMT is a vital mechanism for mesoderm formation and neural crest delamination. Based
on dynamic property of cell identity, different mechanisms may be involved in ensuring this feature
and EMT is one of them. During EMT activation, cells lose their identity and morphology to become a
new one with mesenchymal characteristics [49,50]. It is worth mentioning that EMT is a reversible
mechanism and its converse route is known as mesenchymal-to-epithelial transition (MET) [51].

A variety of transcriptional and epigenetic factors can contribute to regulation of EMT and MET.
Although EMT is vital for physiological conditions such as organismal development, tissue healing
and homeostasis, cancer cells hijack EMT to ensure their migration [52–56]. In order to occupy and
colonize in distant tissues, cancer cells use EMT mechanism to promote their migratory ability [57–60].
It has been noted that EMT mechanism not only ensures invasion of cancer cells, but also is involved in
reducing sensitivity of cancer cells into apoptosis and stimulation of chemoresistance [61,62]. EMT is
not a binary state procedure and has a dynamic spectrum in which cells can have both epithelial
and mesenchymal features [63–68]. Moreover, the cells undergoing EMT have more tumor-initiating
potential and are resistant to apoptosis [69,70]. Furthermore, cancer cells are required to alter their
metabolism in order to meet their energy needs and synthesize biomolecules such as proteins, lipids,
and nucleic acids [71,72]. The most important change in metabolism of cancer cells is shifting from
oxidative phosphorylation into glycolysis to meet their needs into adenosine triphosphate (ATP). This is
known as Warbrug effect [73]. There is a close relationship between EMT and glucose metabolism in
which glycolysis, tricarboxylic acid cycle (TCA) cycle, lipid and amino acid metabolism participate in
EMT induction and stimulating invasion and migration of cancer cells [74,75].

A number of published articles have investigated the role of molecular pathways in regulation
of EMT in cancer cells [41,76]. Due to space limitations, it is impossible to discuss all the molecular
pathways involved in EMT regulation in cancer cells. However, we briefly discuss upstream mediators
of EMT in cancer cells. Increasing evidence demonstrates that tumorigenesis and EMT can be regulated
by transcription factor STAT3 in cancer cells [77,78]. In a recently published article, it was found that
phosphorylation of STAT3 at tyrosine705 is associated with an increase in metastasis and migration
of cancer cells via EMT induction. Moreover, STAT3-mediated EMT stimulation mediates resistance
of cancer cells into cisplatin chemotherapy [79]. In fact, relationship between STAT3 and EMT not
only is beneficial for invasion of cancer cells, but can also trigger chemoresistance. In addition to
STAT3, other molecular factors have been identified as regulators of EMT. It has been reported that
non-muscle myosin IIA (NMIIA) can participate in regulation of EMT in cancer cells. NMIIA can play
an important role in controlling cell cytokinesis and migration. NMIIA triggers Wnt/β-catenin signaling
pathway, which in turn, stimulates EMT, leading to enhance metastasis and invasion of cancer cells [80].
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EMT induction is mediated via upregulation of N-cadherin and downregulation of E-cadherin [81].
LncRNAs are also able to regulate EMT in cancer cells. LncRNA FLVCR1-AS1 can also elevate migration
and metastasis of ovarian cancer cells via EMT induction [82]. These studies are in agreement with
the fact that different molecular pathways contribute to EMT regulation. These pathways have been
examined in different cancers and their further targeting can pave the way for effective suppression of
cancer metastasis [83–86].

3. MicroRNAs and Their Role in Cancer Metastasis

MiRs are single stranded non-coding RNAs with a length of 19–24 nucleotides [86,87]. They can
negatively affect expression of target gene via binding into 3/-untranslated region (3/-UTR) [88].
MiRs have been reported to be involved in regulation of various biological mechanisms such as
differentiation, apoptosis, angiogenesis, proliferation, etc. and an impairment in their expression can
provide conditions for development of diverse malignancies [89–93]. Accumulating data demonstrates
that miRs are potential upstream regulators of EMT in cancer cells. The modulatory effect of miRs on
EMT can regulate the processes of metastasis and invasion of cancer cells. For example, MiR-451a is
considered an onco-suppressor miR in hepatocellular carcinoma cells. This miR is able to suppress
metastasis of hepatocellular carcinoma cells, and thereby interfere with migration of cancer cells by
promoting inhibition of EMT [33]. Transforming growth factor-beta (TGF-β) is involved in cancer
progression via EMT induction [94]. TGF-β-mediated EMT can also be targeted by miRs. It has
been reported that miR-455-3p can restrict migration of cancer cells via down-regulation of TGF-β,
and subsequent inhibition of EMT [95]. In addition to onco-suppressor miRs, there are miRs that can
significantly increase migratory capability of cancer cells such as miR-HCC2. It has been reported
that miR-HCC2 can increase the migration and metastasis of cancer cells via EMT induction [96].
In EMT induction, oncogene miRs may also affect upstream mediators of EMT. For instance, it has been
documented that miR-499a-5p facilitates metastasis of lung cancer cells via upregulation of mammalian
target of rapamycin (mTOR), and subsequent stimulation of EMT [35].

4. MicroRNAs Inhibit EMT in Bladder Cancer Cells

In the previous sections, we described EMT mechanism and its regulation by different molecular
pathways with an emphasis on miRNAs. In this section, we specifically discuss the role of
onco-suppressor miRNAs in inhibition of EMT in BC cells. Interestingly, expression analysis has
revealed that onco-suppressor miRNAs undergo downregulation in BC cells and tissues. This occurs
to ensure proliferation and migration of BC cells and is correlated with poor prognosis of patients with
BC. miRNA-124-3p is an onco-suppressor miRNA and it appears that enhancing expression of this
miRNA can disrupt migration of BC cells. In addition, miRNA-124-3p can inhibit EMT via E-cadherin
upregulation and N-cadherin downregulation. Moreover, EMT inhibition by miRNA-124-3p relies
on affecting integrin α3 (ITGA3). Increasing evidence demonstrates that ITGA3 is able to promote
migration of cancer cells, and it is a downstream target of miRNAs [97,98]. In case of BC, miRNA-124-3p
can target ITGA3 to suppress EMT, leading to a decrease in migration of BC cells [89]. Another study
also emphasized the role of ITGA3 in metastasis of BC cells, and inhibitory effect of miRNA-328-3p on
ITGA2 in suppressing BC migration [99].

4.1. MicroRNAs and PI3K/Akt/EMT Axis

PI3K/Akt signaling pathway can act as an inducer of metastasis in several malignancies including
BC cells [100–102]. Anti-tumor agents such as leupaxin can suppress invasion of BC cells via PI3K/Akt
downregulation [103]. miRNA-328-3p is considered as an onco-suppressor factor in BC cells. It has
been found that miRNA-328-3p inhibits EMT via PI3K/Akt downregulation [99]. miRNAs are also
able to affect downstream targets of PI3K/Akt signaling pathway in BC cells. B cell-specific Moloney
murine leukemia virus integration site 1 (BMI1) is suggested to undergo upregulation in different
cancers. BMI1 overexpression ensures tumor sphere formation of cancer cells, and its stability is a
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positive factor for tumorigenesis [104,105]. MiR-15 as an onco-suppressor factor has been reported to
inhibit EMT in BC cells. It appears that miRNA-15 inhibits PI3K/Akt signaling pathway to suppress
BMI1 expression, leading to EMT inhibition and decreased invasion of BC cells [106].

4.2. MicroRNAs and CARMA3/EMT Axis

An extensive amount of research has focused on various factors involved in metastasis of BC cells
and a considerable role of EMT in malignant behavior and metastasis of these malignant cells has
been established [107,108]. Interestingly, CARD-containing MAGUK 3 (CARMA3) is a scaffold with
capability of stimulation of nuclear factor-kappa B (NF-κB) signaling pathway and enhancing tumor
growth [109–112]. downregulation of CARMA3 is of interest in suppressing metastasis of BC cells,
since CARMA3 is able to induce matrix metalloproteinase-2 (MMP-2), MMP-9 and c-Myc expression
that are involved in the migration of BC cells. Besides, CARMA3 can reduce the levels of E-cadherin,
whereas it increases β-catenin levels [113]. Moreover, miRNA-24 has gained much attention as a
therapeutic target in BC therapy and it has been noted that that miRNA-24 can down-regulates the
expression of CARMA3 to suppress EMT via increasing E-cadherin levels, and decreasing N-cadherin,
vimentin and MMP-9 levels [114].

4.3. MicroRNAs and Wnt/EMT Axis

The Wnt/β-catenin signaling pathway has been under attention in recent years due to its role in
tumorigenesis [115–119]. The tumor-promoting role of Wnt signaling pathway has been investigated
in different cancers, including BC [120,121]. It has been found that Wnt signaling can act as an
upstream mediator of EMT, so that after activation of Wnt signaling pathway by certain ligands of Wnt
family, GSK-3β activity can be inhibited to facilitate the nuclear translocation of β-catenin. Thereafter,
various downstream targets with stimulatory effect on proliferation and migration of cancer cells are
activated [122–125]. EMT is a downstream effectt of Wnt activation in cancer progression [86,126].
miRNAs are able to regulate Wnt/EMT axis in BC cells. miRNA-3619-5p as an onco-suppressor factor
in BC cells, is able to inhibit metastasis of BC cells. Moreover, examination of molecular pathways
shows that miRNA-3619-5p can inhibit Wnt signaling pathway via suppressing nuclear translocation
of β-catenin. As a consequence, a decrease occurs in EMT and mesenchymal markers causing an
inhibition in invasion of BC cells [127]. Moreover, it has been demonstrated that Wnt7a is capable of
induction of Wnt signaling pathway that in turn, enhances β-catenin levels to stimulate EMT, leading
to increased migration and invasion of BC cells. miRNA-370-3p can suppress Wnt-mediated EMT via
inhibition of EMT [115], thus making it an important therapeutic target for BC therapy.

4.4. MicroRNAs and EMT-Inducing Transcription Factors

TGF-β is another signaling pathway that plays a vital role in cancer malignancy [128]. Briefly,
TGF-β induces the formation of Smad complex that can translocate into the nucleus and affect
target genes [129,130]. TGF-β can promote migration and metastasis of cancer cells via EMT
induction [131,132]. In BC cells, TGF-β1 induces nuclear translocation of Smad2, which in turn,
stimulates EMT and can enhance BC migration. miRNA-132 inhibits TGF-β1/Smad2/EMT axis in
suppressing BC invasion [133]. In addition to TGF-β, ZEB1 can also induce EMT. Both TGF-β and ZEB1
belong to EMT-inducing transcription factors (EMT-TFs). Similar to TGF-β, ZEB1 is able to stimulate
EMT in promoting invasion and metastasis of cancer cells [134,135]. In BC cells, miRNAs are able to
affect ZEB1 expression. For instance, miRNA-23b interferes with migration of BC cells into distant
tissues by EMT inhibition via downregulation of ZEB1 [136]. Twist1 is another member of EMT-TFs.
Twist1 is an enhancer of EMT in cancer cells and has been linked with invasion and migration [137,138].
miRNA-203 has demonstrated onco-suppressor role in BC cells by causing a downregulation of Twist1.
Decreased expression of Twist1 is associated with a diminution in EMT and limited migration of BC
cells [139]. Slug can also be affected by miRNAs in BC cells, which is able to induce EMT, and its activity
can be regulated by MAPK [140,141]. MAPK/Slug/EMT axis is of importance in BC cells, and miRNAs
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have demonstrated great potential in its regulation. On the contrary, miRNA-22 as an onco-suppressor
is able to inhibit MAPK signaling pathway [142,143]. A recently published study has examined the
effect of miRNA-22 on MAPK/Slug/EMT axis in BC cells. It was found that miRNA-22 can bind to
3/UTR of MAPK to inhibit its activity. Consequently, MAPK-induced Slug expression can be reduced
and a decrease occurs in the levels of vimentin, as a marker of mesenchymal cells. These effects result in
inhibition of EMT in BC cells. Furthermore, miRNA-22 can suppress Snail in causing EMT inhibition in
BC cells [144]. These studies are in agreement with the fact that miRNAs are able to target EMT-TFs in
suppressing metastasis of BC cells. In addition, because of substantial capability of miRNAs in forming
feedback loops among divesre oncogenic molecular pathways, it appears that anti-tumor agents or
genetic tools applied for targeting aforementioned signaling pathways may not be effective enough to
overcome cancer metastasis and EMT [145–148]. In fact, eradication of BC cells, and suppressing their
migration may depend on using a combination of anti-tumor agents (poly-chemotherapy) capable of
targeting various molecular pathways or using genetic tools for silencing various downstream targets
of miRNAs that are involved in regulating EMT (Table 1, Figure 1).

Table 1. MicroRNAs inhibit EMT in BC cells.

MicroRNA Downstream
Target Cell Line Major Outcomes Refs

miRNA-370 SOX12

Immortalized bladder cell line
SV-HUC-1 (ATCC®

CRL-9520™) and the human BC
cell lines 5637 (ATCC® HTB-9™)

and J82 (ATCC® HTB-1™)

miRNA-370 inhibits EMT via SOX12
downregulation, leading to a

decreased metastasis of cancer cells
[149]

miRNA-34a CD44
Human bladder cancer cell lines

(5637, T24, HT-1376, J82,
SCABER and EJ)

Suppressing EMT via CD44 inhibition [150]

miRNA-613 SphK1

Bladder cancer cell lines (J82,
T24, UMUC3 and 5637) and a

normal bladder cell
line (SV-HUC-1)

Inhibition of SphK1 and reduced
metastasis and EMT [151]

miRNA-186 NSBP1

Human bladder cancer cell lines
(J82, HT1376, RT4, T24 and

TCCSUP) and immortalized
human bladder epithelium

(HCV29) cells

downregulation of NSBP1 and
suppressed metastasis of cancer cells [152]

miRNA-125a-5p FUT4

Bladder cancer cell lines (J82,
T24, 5637 and BIU-87) and
im-mortalized bladder cell

line (SV-HUC-1)

miRNA-125a-5p inhibits invasion and
EMT in BC cells via FUT4

downregulation
[153]

miRNA-203a SIX4
SV-HUC-1 human uro-epithelial
cells and the bladder cancer cell

lines T24, EJ, J8 and 5637

There is a negative relationship
between miRNA-203a and SIX4.
This miRNA inhibits EMT via

SIX4 downregulation

[154]

miRNA-22 E2F3 Human bladder cancer cell lines
(5637 and T24)

Preventing expression of E2F3 and
suppressed BC metastasis and EMT [155]

miRNA-454-3p
miRNA-374b-5p ZEB2 SV-HUC, TCC, 253J, 5637, J82,

T24, EJ, HEK-293T cells
Suppressing EMT via ZEB2

downregulation [156]

miRNA-451 - T24, 5637 and J28 bladder cancer
cell lines

Inhibiting EMT via E-cadherin
upregulation, and N-cadherin and

vimentin downregulation
[157]

miRNA-199a-5p CCR7
Human bladder cancer T24 cell
line and human normal bladder

epithelial cell line SV-HUC-1

Interfering with metastasis of cancer
cells by downregulation of CCR7,
and subsequent inhibition of EMT

[158]

miRNA-7-5p Gli3

TCC, 253J, 5637, T24, EJ,
J82 (BCa cell lines) and SV-HUC

(human bladder epithelium
immortalized cell)

miRNA-7-5p reduces expression of
Gli3 as a member of Hedgehog

signaling pathway to suppress EMT
[159]

miRNA-200 - UMUC series of urothelial
carcinomas and 253J BV cells

miRNA-200 enhances E-cadherin
levels, and reduces ZEB1 and ZEB2
levels to inhibit EMT, leading to a

diminution in metastasis and
enhanced sensitivity
into chemotherapy

[160]
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Table 1. Cont.

MicroRNA Downstream
Target Cell Line Major Outcomes Refs

miRNA-200c BMI1
E2F3

Human bladder cancer cell lines
(UMUC-3 and T24)

Suppressing EMT and increasing
E-cadherin levels via inhibition of

BMI1 and E2F3
[161]

miRNA-485-5p HMGA2

Human bladder cancer cell lines
(SW780, T24, HT1376 and

HT5637) and human bladder
epithelial cell lines HU609 and

HEK293 cell

Disrupting invasion of cancer cells by
EMT inhibition via

HMGA2 downregulation
[162]

miRNA-429 ZEB1/2
β-catenin Human UCC cell lines, T24

Enhancing E-cadherin level via
ZEB1/2 downregulation and

subsequent inhibition of EMT
Suppressing nuclear translocation of
β-catenin and its interaction with

TCF/LEF1, resulting in EMT inhibition

[163]

miRNA-381-3p CCNA2 T24, UM-UC3, and 5637 human
BCa cell lines

Inhibition of EMT via
CCNA2 downregulation [164]
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4.5. miRNA-200 Family and EMT

A well-known family of miRNAs that are capable of EMT regulation in different cancers is
miRNA-200 family [165,166]. The EMT inhibition by miRNA-200 is a gateway for enhancing efficacy
of chemotherapy [167]. ZEB proteins that can act as critical enhancers of EMT are often downregulated
by miRNA-200 to suppress cancer migration (EMT) [168]. Noteworthy, two studies have evaluated
role of miRNA-200 in affecting BC metastasis via EMT regulation. These studies are in accordance
with our aforementioned discussions and show that EMT regulation by miRNA-200 leads to enhanced
efficacy of chemotherapy and migration inhibition. EMT induction by ZEB proteins (ZEB1 and ZEB2)
is a factor involved in resistance of BC cells into chemotherapy. Stable expression of miRNA-200 leads
to inhibition of ZEB1 and ZEB2 that can lead to an increased levels of E-cadherin, thus causing a
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reduced migratory ability of BC cells [160]. This study highlights the fact that cancer may acquire
chemoresistance, when they demonstrate malignant behaviors such as invasion. Therefore, EMT acts
as a critical factor in cancer metastasis, and signaling pathways regulating this mechanism need to be
identified in detail, and miRNAs are possibly one of them. Another study investigated the relationship
between miRNA-200 and EMT in BC migration, while previous study demonstrated involvement
of miRNA-200/EMT axis in BC chemoresistance. It has been reported that miRNA-200 can reduce
expression of BMI and E2F3 as inducers of BC metastasis that results in EMT inhibition via E-cadherin
upregulation [161]. Further studies can focus on identifying more downstream targets of miRNA-200
and how they can regulate both EMT and metastasis of BC cells.

4.6. Other microRNAs

In addition, clinical studies have shown that miRNA-195 undergoes downregulation in patients
with BC, and is associated with undesirable prognosis [169]. This miRNA is able to suppress
proliferation and progression of BC cells via STAT3 inhibition [170]. Moreover, a downregulation
of miRNA-195 by lncRNA UCA1 can promote mitochondrial function and growth of BC cells [171].
miRNA-195 is also able to inhibit EMT in BC cells via CDK4 inhibition [172]. In addition, studies
have demonstrated that different molecular pathways ensure progression and migration of BC cells.
For example, E26 transformation specific-1 (ETS1) is an oncogene factor in BC cells, and its induction
can elevate migration of BC cells [173,174]. There is a negative relationship between miRNA-338-3p
and ETS1 in BC cells. Moreover, by causing a downregulation of ETS1, miRNA-338-3p can abrogate
EMT in BC cells to suppress migration of BC cells [175].

5. MicroRNAs can Induce EMT in BC Cells

5.1. MicroRNAs and Wnt/EMT Axis

In previous section, we have highlighted that Wnt signaling pathway contributes to stimulation
of EMT via β-catenin’s nuclear translocation. It was revealed that miRNA-3619-5p acts as an
onco-suppressor, targets nuclear translocation of β-catenin. However, it has been reported that
miRNAs can also target GSK-3β activity. miRNA-135a has demonstrated an oncogene role in BC cells.
It appears that miRNA-135a induces EMT mechanism to promote metastasis of BC cells. Investigation
of molecular pathways showed that miRNA-135a can induce Wnt/ β-catenin signaling pathway via
inhibiting GSK-3β activity. Therefater, β-catenin undergoes nuclear translocation that activates EMT,
leading to enhanced migratory ability of BC cells [176]. miRNA-135a/Wnt/EMT can therefore be
targeted in further studies to inhibit the migration of BC cells.

5.2. MicroRNAs and EMT-Inducing Transcription Factors

Although onco-suppressor miRNAs reduce expression of EMT-TFs to suppress EMT in BC cells,
there are oncogenic miRNAs capable of enhancing expression of EMT-TFs in EMT induction. TGF-β1
is able to induce EMT in BC cells and miRNA-96 as an oncogene factor upregulating the expression
of TGF-β1 to stimulate EMT in BC cells and thus promoting their migration and invasion [177].
Stathmin 1 (STMN1) is a microtubule-destabilizing protein that plays a vital role in mitosis and cell
cycle progression [178,179]. STMN1 is considered as an oncogenic protein, its induction enhances
invasion and metastasis of cancer cells [180,181]. It has been reported that miRNA-221 can induce EMT
in BC cells via induction of TGF-β. The stimulatory effect of miRNA-221 on TGF-β-mediated EMT
relies primarily on inhibition of STMN1 [182].

5.3. MicroRNAs and EGR1/EMT Axis

In addition, early growth response gene 1 (EGR1) acts as a double-edged sword in cancer by
displaying both tumor promoting and suppressing roles. EGR1 can reduce apoptosis of cancer cells and
promote their migration and angiogenesis [183,184]. However, there are studies showing anti-tumor
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activity of EGR1 and its role in suppressing metastasis of cancer cells [185]. Moreover, miRNA-301b
and EGR1 can act in conjunction to regulate EMT in BC cells. It was found that miRNA-301b
has high expression in BC cells, while EGR1 undergoes downregulation in these malignant cells.
Investigation of molecular pathways revealed that miRNA-301b can induce EMT in BC cells via EGR1
downregulation [186].

5.4. Other microRNAs

The difficulty in inhibiting metastasis of BC cells is due to involvement of different and complicated
molecular pathways in progression of BC cells. RhoB is key member of Rho family and a GTP-binding
protein. Increasing evidence demonstrates that RhoB undergoes downregulation in cancer cells and
is correlated with poor prognosis [187,188]. RhoB has also been found to inhibit metastasis via EMT
downregulation [189]. Based on inhibitory effect of RhoB on EMT, its activity and expression should be
diminished by oncogenic miRNAs. Indeed, it was reported that miRNA-19a can promote metastasis
and invasion of BC cells by EMT induction via reducing RhoB levels [190].

DAB2IP is a member of RAS-GTPase-activating protein family and its expression has been found
to be downregulated in cancer cells [191]. It has been shown that inhibition of DAB2IP in BC cells can
mediate both chemoresistance and metastasis [192,193]. Therefore, targeting DAB2IP is of interest for
minimizing the migration of BC cells. In order to ensure invasion of BC cells, miRNA-92b can affects
DAB2IP effectively. In fact, by causing an inhibition of DAB2IP, miRNA-92b induces EMT, leading
to enhanced migration and invasion of BC cells [194]. These studies clearly establish that miRNAs
are able to induce EMT in BC cells. However, most of the studies have focused on onco-suppressor
miRNAs, and their capability in inhibition of EMT in BC cells. In addition, other studies have also
paid attention into regulation of miRNA/EMT axis by other important molecular signaling pathways.
Hence, more studies are needed to identify oncogenic miRNAs, which can induce EMT in BC cells to
target them effectively for suppressing migration and metastasis of BC cells (Figure 2).Biomolecules 2020, 10, x FOR PEER REVIEW 10 of 27 
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6. Regulation of mciroRNA/EMT in Bladder Cancer Cells

6.1. LncRNAs as Main Regulators

Although miRNAs are potential upstream modulators of EMT in BC cells, and according
to previously reported findings, they can target EMT via affecting different molecular pathways.
In addition, there are studies showing that several important molecular pathways can also influence
miRNAs. This demonstrates the complexity of molecular pathways involved in regulating EMT in BC
cells. Similar to miRNAs, lncRNAs are key members of non-coding RNA family that can participate in
regulation of vital biological mechanisms such as cell proliferation and cell differentiation [183,195].
A number of studies have shown a significant role of lncRNAs in cancer cells, both as an oncogene or
onco-suppressor [196,197]. Both miRNAs and lncRNAs can control the regulation of protein-coding
genes [198]. LncRNAs are able to suppress interaction of miRNAs with their target via acting as
molecular decoys and sequestering miRNAs [199,200]. Notably, miRNAs are downstream targets
of lncRNAs in BC cells [201,202]. This dual relationship can be studied to draw a unique axis and
potential therapeutic targeting in future studies. miRNAs are capaable to affect EMT-TFs involved in
regulation of EMT in BC cells. LncRNA SNHG6 is an oncogene factor that can promote proliferation of
cancer cells, and its downregulation can restrict malignant behavior of cancer cells [138]. Accumulating
data demonstrates that SNHG6 can induce EMT in cancer cells via targeting EMT-TFs such as TGF-β
and ZEB1 [203], making it an efficient target in suppressing metastasis of cancer cells.

For instance, SNHG6/miRNA-125b/EMT has been implicated in the migration of BC cells. It has
been reported that SNHG6 can down-regulate the expression of miR-125b as an onco-suppressing
factor. Therefore, an increase occurs in expression of Snail1/2 and ZEB1 to induce EMT, leading to an
enhanced metastasis of BC cells [204]. LncRNA H19 is an enhancer of growth and migration in BC
cells. Increasing evidence demonstrates that H19 is able to enhance metastasis of BC cells by reducing
E-cadherin levels via EZH2 induction [205]. This inhibitory effect of lncRNA H19 on E-cadherin
levels can provide condition for migration and invasion of BC cells and undesirable prognosis [206].
An experiment has examined the relationship between lncRNA H19 and miRNA-29b-3p in regulation
of EMT in BC cells. This study found that LncRNA H19 can function as an inhibitor of miRNA-29b-3p
by sponging. Consequently, an increase occurs in expression of DNMT3B, as a downstream target of
miRNA-29b-3p. This provides condition for induction of EMT by H19/miRNA-29b-3p/DNMT3B axis.
Inhibition of lncRNA H19 leads to inhibition of EMT and stimulation of MET to suppress metastasis
of BC cells [207]. It is worth highlighting that lncRNAs may indirectly affect EMT and metastasis
of BC cells. The final aim of targeting miRNAs by lncRNAs in BC cells is to modulate downstream
targets of miRNAs and regulate EMT mechanism. For instance, lncRNA LINC00612 is able to induce
PHF14 expression via miRNA-590 inhibition, leading to EMT induction and metastasis of BC cells [208].
These studies are in agreement with the fact that lncRNAs can substantially affect miRNA/EMT axis
in BC cells. However, more studies are needed to examine the relationship between lncRNAs and
miRNA/EMT in BC cells to unravel this intriguing association.

6.2. CircRNAs as Main Regulators

Circular RNAs (circRNAs) are another member of non-coding RNAs capable of regulating miRNAs
in cancer cells [190,209]. CircRNAs can be divided into onco-suppressor and oncogenic in BC. They are
able to target different molecular pathways in BC cells and miRNAs are their major downstream
targets [210,211]. In BC cells, circRNA circPICALM functions as an onco-suppressor factor via causing
downregulation of miRNA-1265. The expression of this circRNA undergoes downregulation in BC
cells and tissues and has been correlated with poor prognosis. In addition, analysis of molecular
pathways has demonstrated that circPICALM can reduce the expression of miRNA-1265. STEAP4, as a
downstream target miRNA-1265 undergoes upregulation, which in turn, can inhibit phosphorylation of
FAK at Y397, resulting in inhibition of EMT and metastasis of BC cells [212]. In addition to miRNA-1265,
it appears that miRNA-221 may be affected by circRNAs in BC cells. For instance, miRNA-221 is an
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oncogene factor that can reduce the number of cancer cells undergoes apoptosis to ensure proliferation
and survival of BC cells [213]. Besides, miRNA-221 has also demonstrated immunosuppressor activity
and can facilitate immune evasion of BC cells [214]. So, targeting miRNA-221 is of importance in
suppressing malignant behavior of BC cells. Another example is that of CircMTO1 that acts as
an onco-suppressor to inhibit miRNA-221 in BC cells. It appears that inhibition of miRNA-221 by
circMTO1 may be related to a decrease in migration of BC cells. This is due to inhibition of miRNA-221
and enhancement of E-cadherin/N-cadherin ratio, thereby leading to EMT and metastasis inhibition of
BC cells [183]. It is also noteworthy that circRNAs are able to indirectly affect EMT-TFs in BC cells by
targeting miRNAs. As it was mentioned earlier, TGF-β can act as a promoter of EMT in cancer cells
and suppressing TGF-β ca be promising strategy in metastasis inhibition. Moreover, CircRIP2 can
function as an oncogenic factor in BC cells that can trigger EMT to ensure metastasis and malignant
behavior of tumor cells. Interestingly, investigation of molecular pathways indicated that circRIP2
could reduce the expression of miRNA-1305 that in turn, can inhibit TGF-β2 and its downstream target,
Smad3. This eventually can lead to inhibition of EMT and decreased invasion of BC cells [215].

6.3. Anti-Tumor Compounds as Main Regulators

It is worth highlighting that pharmacologically active anti-tumor drugs are also able to target
miRNAs for cancer therapy. Sulforaphane is a plant-derived natural compound exclusively found in
cruciferous vegetables [216]. It has demonstrated high anti-tumor activity by induction of apoptosis
and regulation of miRNAs, that can sensitize cancer cells to chemotherapy [217]. In BC cells,
administration of sulforaphane has been suggested to be an ideal candidate for suppressing invasion
and migration of cancer cells. In order to inhibit EMT in BC cells, sulforaphane can effectively
target miRNA-200c/ZEB1 axis. miRNA-200c is an onco-suppressor factor and its upregulation by
sulforaphane can lead to an inhibition of ZEB1 expression. This in turn can effectively suppress
EMT and metastasis of BC cells [218]. Chronic inflammation acts as a positive factor for growth
and malignancy of cancers, including BC [219,220]. Tumor-associated macrophages (TAMs) are key
members of tumor microenvironment and their abundancy has been correlated with metastasis of
cancer cells, and unfavorable prognosis [221,222]. BAY11-7082 as an inhibitor of oncogenic NF-κB
signaling pathway [223–226] is able to inhibit stimulatory action of TAMs on EMT in BC cells. Normally,
TAMs upregulate expression of miRNA-30a to induce NF-κB/Snail signaling pathway, leading to EMT
and invasion of BC cells. BAY11-7082 can decrease expression of miRNA-30a to disrupt NF-βB/Snail
axis, thereby restricting invasion of BC cells via inhibition of EMT [227]. Sodium butyrate (NaB) is a
histone deacetylase inhibitor that is extensively applied in cancer therapy for inhibition of migration
and induction of apoptosis via mitochondrial dysfunction [228–231]. Interestingly, administration of
NaB has been found to be important in suppressing EMT in BC cells. It appears that NaB can enhance
expression of miRNA-139-5p that in turn may reduce Bmi1 expression. Thus, miRNA-139-5p/Bmi1
axis cans lead to an increase in E-cadherin levels and a decrease in Snail, N-cadherin and vimentin
levels to inhibit EMT in BC cells [232]. Celecoxib is another anti-tumor agent capable of suppressing
cancer proliferation via induction of oxidative stress [233]. Celecoxib is able to suppress metastasis of
cancer cells via EMT inhibition [234]. A recent study has shown that celecoxib is able to target miRNAs
in regulation of EMT in BC cells. Administration of celecoxib enhanced the expression of miRNA-145
that in turn, inhibited TGFβR2. This leads to an inhibition of Smad3 and a decrease in migration and
metastasis of BC cells via suppressing EMT [235]. These studies are in agreement with the fact that
anti-tumor compounds can affect miRNAs in regulation of EMT in BC cells and more studies will be
needed to discover novel anti-tumor drugs with modulatory impact on miRNA/EMT axis in BC cells.
To date, a variety of studies have examined regulation of miRNA/EMT axis in BC cells. LncRNAs
are major upstream regulators of miRNA/EMT axis in BC cells and experiments have extensively
investigated their relationship with metastasis of BC cells. The p53 and KCNQ1OT1 are other upstream
mediators capable of regulating miRNA/EMT axis in BC cells [236,237]. Overall, identification of these
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signaling pathways will enable us to target them in further studies and effectively inhibit metastasis of
BC cells (Table 2, Figure 3).

Table 2. Regulation of microRNA/EMT axis in BC cells.

Upstream
Regulator MicroRNA Downstream

Target Cell Line Major Outcomes Refs

LncRNA
DANCR miRNA-149 MSI2

Bladder cancer 5637,
SW780, UM-UC-3,

T24 and SV-HUC-1 cells

DANCR enhanced metastasis and
invasion of cancer cells by

downregulation of miRNA-149,
and subsequent activation of

MSI2, resulting in EMT

[238]

LncRNA ARSR miRNA-129-5p SOX4 RT4 and 5637 cells
ARSR reduces expression of

miRNA-129-5p via sponging to
upregulate SOX4, leading to EMT

[239]

LncRNA XIST miRNA-200c - Human bladder cancer
cell lines 5637 and T24

Stimulation of EMT by
downregulation of miRNA-200c [240]

LncRNA UCA1 miRNA-143 HMGB1
Human bladder cancer
cell lines (T24, 5637, J82,

RT4 and HT1376)

UCA1 induces expression of
HMGB1 via miRNA-143

downregulation, leading to EMT
[241]

LncRNA UCA1 miRNA-145 ZEB1/2
Human bladder cancer

cells 5637, T24,
and UMUC2

Stimulation of EMT by
downregulation of miRNA-145

and subsequent activation
of ZEB1/2

[242]

LncRNA
AC114812.8 miRNA-371b-5p FUT4

Human BC cell lines T24,
UM-UC-3, J82, and 5637,

and the human
immortalized normal
urinary epithelial cell

line SV-HUC-1

Sponging of miiR-371b-5p by
AC114812.8 leads to induction of

FUT4, and EMT
[243]

LncRNA TUG1 miRNA-145 - SV-HUC-1 cells TUG1 induces EMT via
downregulation of miRNA-145 [244]
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7. Conclusions and Future Directions

Based on the role of miRNAs in regulation of different cellular events, a disturbance in their
expression leads to development of pathological events, particularly cancer. miRNAs have been under
attention for regulating both proliferation and invasion of BC cells, and to date, a substantial number
of studies have identified oncogene and onco-suppressor miRNAs in BC cells [22,25,211,245–248].
On the other hand, EMT can act as a downstream target of miRNAs in BC. EMT considerably enhances
metastasis and migration of BC cells, and its targeting is of importance in suppressing invasion of
BC cells and thereby providing desirable prognosis. In the present review, we have provided a
comprehensive review about role of miRNAs in regulation of EMT in BC cells. We have divided
discussion section into three parts including onco-suppressor miRNAs in EMT inhibition, oncogene
miRNAs in EMT induction, and regulation of miRNAs by other molecular pathways such as lncRNAs,
circRNAs, etc. Each of the above-mentioned section has investigated a unique signaling pathway
in which miRNAs can function as key players regulating tumorigenesis. Targeting these molecular
pathways can be considered as an efficient therapeutic strategy in suppressing EMT in BC cells and
elevating overall survival of patients with BC.
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BC bladder cancer
miRNA microRNA
lncRNA long non-coding RNA
EMT epithelial-to-mesenchymal transition
MET mesenchymal-to-epithelial transition
NMIIA non-muscle myosin IIA
3/-UTR 3/-untranslated region
TGF-β transforming growth factor-β
mTOR mammalian target of rapamycin
EMT-TFs EMT-promoting transcription factors
ITGA3 integrin α3
ETS1 E26 transformatin specific-1
CARMA3 CARD-cotnaining MAGUK 3
NF-βB nuclear factor-kappaB
MMP-2 matrix metalloproteinase-2
STMN1 stathmin 1
EGR1 early growth response gene 1
circRNAs circular RNAs
TAMs tumor-associated macrophages
NaB sodium butyrate
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