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Abstract

Recently, predicting proteins three-dimensional (3D) structure from its sequence information has made a significant
progress due to the advances in computational techniques and the growth of experimental structures. However, selecting
good models from a structural model pool is an important and challenging task in protein structure prediction. In this study,
we present the first application of random forest based model quality assessment (RFMQA) to rank protein models using its
structural features and knowledge-based potential energy terms. The method predicts a relative score of a model by using
its secondary structure, solvent accessibility and knowledge-based potential energy terms. We trained and tested the
RFMQA method on CASP8 and CASP9 targets using 5-fold cross-validation. The correlation coefficient between the TM-
score of the model selected by RFMQA (TMRF) and the best server model (TMbest) is 0.945. We benchmarked our method on
recent CASP10 targets by using CASP8 and 9 server models as a training set. The correlation coefficient and average
difference between TMRF and TMbest over 95 CASP10 targets are 0.984 and 0.0385, respectively. The test results show that
our method works better in selecting top models when compared with other top performing methods. RFMQA is available
for download from http://lee.kias.re.kr/RFMQA/RFMQA_eval.tar.gz.
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Introduction

The 3D structure of a protein is essential for understanding its

function [1]. The success of genome sequencing program resulted

in massive amounts of protein sequence data [2]. However, the

majority of its 3D structures remain undetermined. Determination

of these uncharacterized protein structures by experimental

methods such as X-ray crystallography, NMR and electron

microscopy is quite difficult and time consuming with high costs.

On the other hand, to complement experimental methods,

computational methods to predict the 3D (three-dimensional)

structure of a protein from its sequence information have been

developed. Due to the advances in computing power, it is often

possible to generate numerous alternative models for a given

protein sequence with little computational burden. However,

selecting the best model from the candidate pool remains as a

challenging task [3].

Many protein structure prediction methods have been devel-

oped and tested in the Critical Assessment of protein Structure

Prediction (CASP) experiments [4,5]. Currently, most of the

methods, such as I-TASSER [6,7], PMS [8] and Rosetta [9] adopt

the sampling-and-selection strategy. The first step is to generate a

large number of 3D models with a sampling procedure and the

second step is to apply model quality assessment programs to

identify the most native-like conformation. In many cases, the tools

fail to select the best model. Therefore, ranking the predicted

structural models correctly is an important problem in structural

bioinformatics. To overcome such difficulties, in this study, we

devised a new global quality evaluation method by using the

random forest machine learning method.

The scoring functions for evaluating the qualities of given 3D

models of a protein can be classified into four categories: physics-

based potential functions, statistical potential functions, consensus-

based functions, and machine-learning-based functions. Physics-

based potential functions calculate the energy of a model including

its interaction with the solvent according to physical laws [10,11].

This method is time-consuming and often quite sensitive to small

atomic changes. Statistical potential functions evaluate a model

based on the statistical information of structural attributes

extracted from the database of known protein structures [12–

17]. However, statistical potential functions only reflect average

properties of known protein structures and have limited discrim-

inating power for ranking structural models. Consensus-based

functions [18–21] perform successfully when most of the models in

the pool are similar to the native structure. However, if poor

models dominate the model pool, they tend to perform worse than

knowledge-based approaches. In addition, consensus-based meth-

ods may fail when the consensus between models is low. Machine
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learning algorithms, such as support vector machine (SVM),

neural network (NN) and random forest (RF) evaluate model

quality according to learned ‘‘rules’’ [22–25]. Various attributes

extracted from the sequences and structures of proteins are used as

input features, and the model quality is obtained from them. The

advantage of machine learning methods is that it considers a large

number of attributes simultaneously, and can capture a hidden

relationship between them, which is hard to be revealed by

statistical potentials.

In this study, we have developed an RF-based Model Quality

Assessment (RFMQA) method to estimate the ‘‘relative’’ quality of

a set of model protein structures. RFMQA combines statistical

potentials as well as the consistency measure between structural

features extracted from the 3D coordinates of a protein and

predicted values from the protein’s primary sequence. Combining

several statistical potential terms is a popular strategy that covers

various aspects of protein structures and this procedure has been

shown to outperform single potential approaches [18,20,21,26]. In

RFMQA, we consider three statistical potentials: dDFIRE,

Rwplus and GOAP [13–16]. In addition, the consistency of

secondary structure and solvent accessibility are also used as input

features. A relative TM-score [27] is given as the output of the

machine and used to rank given models. We show that RFMQA

outperforms single-model methods as well as consensus methods in

discriminating the best model, and a good correlation exists

between the TM-score of the model selected by RFMQA and that

of the best model.

Materials and Methods

Dataset
In this work, we used the single domain targets of CASP8 (85)

and CASP9 (72) as well as individual domains from the multi-

domain targets, according to the domain definition of CASP8 (79)
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Figure 1. Five-fold cross-validation on CASP8 and CASP9
targets. TM-score of the best server model (TMbest) versus TM-score
of the model selected by RFMQA (TMRF) for five-fold validation is
shown. Pearson’s correlation coefficient and the average TMloss

between TMbest and TMRF are 0.945 and 0.055, respectively.
doi:10.1371/journal.pone.0106542.g001
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and CASP9 (75). The final dataset contains 164 and 147 domains

from CASP8 and CASP9, respectively. Both template-based and

template-free modeling targets were included. All sever models

were downloaded from the CASP website (http://

predictioncenter.org/download_area/).

For training of RFMQA, we screened out significantly bad

models, for which models are sorted according to their TM-scores

[27], and only the top 50% of the models are used. It should be

noted that the screening was performed only for the training of our

machine. All the benchmarking and testing was done without the

screening procedure. In addition, we excluded targets whose

average TM-score is less than 0.3. The final dataset contains 229

domains (121 from CASP8 and 108 from CASP9) and 36575

server models.

Feature extraction
In this study, we used 9 features, 3 from potential energy terms,

4 from secondary structures and 2 from solvent accessibility. These

features are as follows:

a) Potential energy calculation (3 features). Three statis-

tical potentials were used as input features: dDFIRE, GOAP, and

RWplus. These potential energies evaluate the structural models

from different perspectives. dDFIRE is based on the distance

dependent pairwise energy term, DFIRE, and the orientation

between atoms (polar-polar, polar-nonpolar) involved in the

dipole-dipole interaction [13,14]; GOAP includes DFIRE and

additional angle dependent terms [16]; RWplus is a pair-wise

distance-dependent atomic statistical potential, which uses an ideal

random-walk chain as the reference state [15]. It should be noted

that in dDFIRE and GOAP, the identical DFIRE is included.

b) Protein secondary structure (4 features). The consis-

tency between predicted and actual secondary structures of a

protein is a good indication of the model quality. For each 3D

model, we used DSSP to calculate its secondary structure [28,29].

We predicted the secondary structure of the target sequence using

PSIPRED [30]. The number of secondary structural element (a-

helix, b-strand and coil) matches was calculated between the DSSP

and PSIPRED. These numbers were converted into % helix, %

sheet and % coil by dividing them by its total chain length Nres to

constitute three features.

For each amino acid residue position i, its secondary structure

type Si
d calculated using DSSP is compared with Si

p predicted by

PSIPRED with the confidence value of Pi. The secondary

structure consistency score of a protein 3D model is defined as:

Secondary structure consistency score =
PNres

i~1

Pid(Si
d ,Si

p)

Where Si
d , Si

p[ [1], Pi[ [0, 1] and d(Si
d ,Si

p) is the Kronecker

delta function, which gives 1 if Si
d and Si

p are identical, otherwise

0. The calculated consistency score was used as the fourth feature.

c) Solvent accessibility (2 features). The absolute solvent

accessibility (ASA) from the 3D model Ai was computed by DSSP

[28,29]. We predicted ASA from the amino acid sequence Bi by

SANN [31]. These two values were compared and transformed in

to a correlation coefficient and cosine value and used as two

features. The cosine value is calculated as:

cos (h)~

PN
i~1

AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

A2
i B2

i

s

Prior to the training of the Random Forest all feature terms as well

as TM-scores were normalized into the range of [0,1] using the

following formula:

Xnorm~
x{ min (x)

max (x){ min (x)

Random forest
Breiman (2001) proposed Random Forest (RF) [32] as an

ensemble technique utilizing hundreds or thousands of indepen-

dent decision trees to perform classification and regression. RF is a

state-of-the-art machine learning technique and has been used for

a large number of biological problems [33–39]. One important

advantage of RF is that it provides the importance information of

each input variable, which is suitable for information retrieving

from a dataset of high dimension with noise.

The RF algorithm takes an advantage of two ideas, bagging and

the random feature selection. For a given training set D of size n,

bagging generates m new training sets Di each of size n9, by

sampling from D uniformly and with replacement, which is called

as a bootstrap sample. By using this bootstrap sample, an

unpruned regression tree is generated. At each successive node,

m features are randomly chosen and used to find the best split,

which maximizes the information gain measure by Gini impurity

[40]. The tree grows until the number of data in the node becomes

smaller than the given threshold (cutoff value of 5 is used in this

Table 2. The input features used for RFMQA are listed along with their importance estimates.

Index Feature Importance

F1 dDFIRE 26.2

F2 RWplus 30

F3 GOAP 28.7

F4 % of identical a-helix matches between DSSP and PSIPRED 33.3

F5 % of identical b-sheet matches between DSSP and PSIPRED 31.4

F6 % of identical coil matches between DSSP and PSIPRED 27.3

F7 Secondary structure consistency score 22.6

F8 Correlation coefficient of ASA 24.3

F9 Cosine of ASA 25.6

doi:10.1371/journal.pone.0106542.t002

Protein Model Quality Assessment

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e106542

http://predictioncenter.org/download_area/
http://predictioncenter.org/download_area/


study). Repeating the aforementioned steps to build a large

number of regression trees establish the random forest.

The rest of training data, out of bag (OOB) samples, is used to

estimate the error rate of the tree as well as the importance of each

variable. When a tree is trained, the error of the tree is estimated

using the original OOB data. Next, the test feature is randomly

permuted among the OOB data and the error of the tree is re-

estimated by using the permuted data. The average difference

between the two error estimates over all trees in the forest is the

raw importance score for the test feature.

For prediction, input features pass through from the root to the

end nodes of all trees based on the predetermined splits. The

output of each tree is defined as the average objective value in the

end nodes and the ensemble average of outputs from all the trees is

considered as the final estimate.

Optimization of the parameters for RF
Several statistical parameters can be tuned to improve the

learning in the RF algorithm. In this study, two most influential

parameters were the number of trees (ntree) used to compute the

final average predicted value and the number of variables (mtry)

randomly chosen at each node split. We used the RF regression

FORTRAN source code downloaded from the Breiman website

(http://www.stat.berkeley.edu/,breiman/RandomForests/reg_

home.htm). During each round of cross validation, we optimized

the parameters in the following ranges: ntree from 500 to 10000

with the interval of 500 and mtry using the values of 1, 2, 3, 4, 5, 6

and 7. Finally, random forest consists of 3000 decision trees and

mtry = 1 feature was used to obtain the best split at each node

providing the optimal performance.

Table 3. Pairwise comparisons of RFMQA against individual potential energy terms for five fold cross-validation.

dDFIRE GOAP DFIRE Rwplus OPUS

Gain 105 108 127 107 130

Loss 74 88 70 77 66

Equal 50 33 32 45 33

Note: The first row represents the number of models selected by RFMQA that are better than those selected by the potential energy term indicated (Gain). The second
row represents the number of models selected by RFMQA worse (Loss) and the third row represents the number of models in tie (Equal).
doi:10.1371/journal.pone.0106542.t003

Figure 2. Pairwise comparisons. TMRF against TM-score of the model selected by individual statistical potential (TMQA) is shown; (A) dDFIRE
versus RFMQA, (B) RWplus versus RFMQA, (C) OPUS versus RFMQA, (D) GOAP versus RFMQA, and (E) DFIRE versus RFMQA.
doi:10.1371/journal.pone.0106542.g002
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Benchmark datasets
We used two datasets to test the performance of RFMQA

method. The first one constitutes CASP10 server models, which

were taken from http://www.predictioncenter.org/

download_area/CASP10/server_predictions/. The second one is

the full set of I-TASSER decoys [15] downloaded from: http://

zhanglab.ccmb.med.umich.edu.

Evaluation Metrics
We compared the performance of RFMQA with the statistical

potential energy terms (dDFIRE, RWplus, GOAP, OPUS and

DFIRE). Additionally, we compared our method with top QA

methods in CASP10 (GOAP, ProQ2, PMS, ModFOLDclust2,

MULTICOM-CONSTRUCT and Pcons) [41]. Among these

methods, GOAP, ProQ2 and PMS are single-model methods

[8,16,42]; ModFOLDclust2, MULTICOM-CONSTRUCT and

Pcons are consensus methods [19–21,25,43–46]. The performance

was evaluated by four complementary measures: Pearson’s

correlation coefficient, Spearman’s correlation coefficient and

the average loss of TM-score between TMbest (TM-score of the

most native-like structure among decoys) and TMmethod (TM-score

of the model selected by a QA method). The fourth metric is ‘‘Z-

score’’; for each target, TM-score of the model (TM) selected by a

QA method was converted into Z-score by dividing (TM –

Table 4. Performance of various scoring functions in predicting the quality of the model on CASP10 targets for a blind test.

RFMQA dDFIRE GOAP DFIRE RWplus OPUS

CCTM 0.984 0.967 0.971 0.956 0.782 0.954

rTM 0.985 0.964 0.966 0.964 0.960 0.966

Average TMloss 0.038 0.052 0.048 0.057 0.052 0.061

CCRank 0.395 0.403 0.365 0.378 0.357 0.323

Note: The first, the second and the third rows respectively represents the correlation coefficient (CCTM), Spearman’s correlation coefficient (rTM ) and the average TM-
score loss (TMloss) between TMmethod (TM-score of the model selected by a QA method) and TMbest (TM-score of the most native-like structure among decoys). The final
row represents the average correlation coefficient between the predicted ranking and the actual ranking (CCRank) of 95 CASP10 targets. Bold fonts denote the best
result.
doi:10.1371/journal.pone.0106542.t004

Figure 3. Evaluation of RFMQA on CASP10 targets and its pairwise comparison with other potential energies. (A) TMRF versus TMbest.
Pearson’s correlation coefficient and the average TMloss between TMRF and TMbest are 0.984 and 0.039, respectively, (B) dDFIRE versus RFMQA, (C)
RWplus versus RFMQA, (D) OPUS versus RFMQA, (E) GOAP versus RFMQA, and (F) DFIRE versus RFMQA.
doi:10.1371/journal.pone.0106542.g003
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TMaverage) by the standard deviation. Additionally, we computed

pairwise comparison between the models selected by TMRF

against the models selected by individual methods. Here, TMRF

refers to the TM-score selected by RFMQA.

Pearson’s correlation coefficient is computed using the following

formula:

rp~

Pn
i~1

(xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(xi{�xx)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(yi{�yy)2

s

x and y are the TMmethod and TMbest, respectively. n is the total

number of targets and i is the target index.

Spearman’s correlation is computed using the following

equation:

r~1{
6
P

d2
i

n(n2{1)

For a given number of targets, the raw scores of Xi (TMmethod) and

Yi (TMbest) are converted into ranks of xi and yi. Where

di~xi{yi, is the difference between the ranks.

Results and Discussion

In this study, we carried out two model quality assessment

experiments using the single domain targets of recent CASP

experiments. In the first experiment, a five-fold cross-validation

was performed using CASP8 and CASP9 domain targets. The

dataset, which contains 229 targets, was randomly divided into 5

groups, and four groups were used for training and the remaining

group for testing. This procedure was repeated five times. To

obtain the performance of RFMQA from the five-fold cross-

validation, the prediction result of each target is calculated using

the optimal RF machine generated by using four groups excluding

the target. In the second experiment, we evaluated the perfor-

mance of RFMQA by using the CASP8 and CASP9 as the

training dataset and tested the performance against the most

recent CASP10 targets.

Performance of RFMQA during five-fold cross-validation
using CASP8 and CASP9 targets

To assess the performance of RFMQA and the other individual

statistical potentials, we used four measures: 1) the correlation

coefficient (CCTM) between the TM-score of the best server

model, TMbest, and the TM-score of the selected model by a QA

method, TMmethod, 2) Spearman’s correlation coefficient (rTM )

between the TM-score of the best server model, TMbest, and the

TM-score of the selected model by a QA method, TMmethod, 3)

the average loss of TM-score, TMloss = TMbest – TMmethod, and 4)

the average correlation coefficient between predicted ranking and

the actual ranking of all targets (CCrank) (See Table S1 target

details). From Table 1, it is evident that RFMQA outperforms the

other statistical potentials in selecting the best model. The average

loss of TM-score by RFMQA is 0.055, while the corresponding

values of the other statistical potentials are all over 0.06. The

better performance of RFMQA demonstrates that combining

information from multiple statistical potentials as well as secondary

structure and solvent accessibility prediction can give better results

than using a single statistical potential. Among the five statistical

potential energy terms, dDFIRE outperforms other potentials in

selecting the best server model with the TMloss of 0.06.

A comparison of TMRF and TMbest score is illustrated in

Figure 1. TMRF shows a good correlation with TMbest with CCTM

Table 5. Pairwise comparisons of RFMQA against individual potential energy terms for 95 CASP10 targets.

dDFIRE GOAP DFIRE Rwplus OPUS

Gain 51 42 59 57 59

Loss 28 31 19 23 26

Equal 16 22 17 16 10

Note: The first row represents the number of models selected by RFMQA that are better than those selected by the potential energy terms indicated (Gain). The second
row represents the number of models selected by RFMQA worse (Loss) and the third row represents the number of models in tie (Equal).
doi:10.1371/journal.pone.0106542.t005

Table 6. Benchmark of the model quality evaluation on the CASP10 dataset.

Methods CCTM rTM AverageTMloss CCRank

P
TMscore1

P
ZTMscore1

RFMQA 0.984 0.985 0.039 0.396 64.231 111.471

GOAP 0.979 0.982 0.049 0.488 63.257 78.715

ProQ2 0.978 0.981 0.048 0.404 63.324 84.975

PMS 0.960 0.960 0.058 0.412 80.652 80.652

MULTICOM-
CONSTRUCT

0.953 0.962 0.058 0.424 62.347 67.536

ModFOLDclust2 0.979 0.975 0.047 0.493 63.408 83.740

Note: The first column represents the method name. The second, the third and the fourth columns respectively represent the correlation coefficient (CCTM), Spearman’s
correlation coefficient (rTM ) and the average TM-score loss (TMloss) between TMmethod (TM-score of the model selected by a QA method) and TMbest (TM-score of the
most native-like structure among decoys). The fifth column represents the average correlation coefficient between the predicted ranking and the actual ranking
(CCRank).

P
TMscore1 is the sum of the first-ranked models and

P
ZTMscore1 is the sum of Z-score for the first-ranked models. Bold fonts denote the best result.

doi:10.1371/journal.pone.0106542.t006
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of 0.945 and rTM of 0.965. This strong correlation indicates that

RFMQA can successfully rank the relative structural qualities of

protein 3D models and identify the best model accurately.

Moreover, we trained another new RFMQA by using only the

statistical potential energy terms as input features. The resulting

CCTM and TMloss values are 0.923 and 0.066 respectively. These

metrics are slightly worse than the values obtained by RFMQA

with 9 features (Table 1), indicating that the combination of

various potential energies and consistency between predicted and

calculated values from 3D models improves the performance.

One of the advantages of random forest method over other

machine learning technique is that the importance of input

features can be readily obtained during the training. The

importance estimation results are shown in Table 2. The results

show that the contribution of 9 features is more or less equal. To

get more detailed view on the performance of RFMQA, we

performed the pairwise comparison of TMRF and TM-score of the

model selected by each individual potential energy function

(Table 3 and Figure 2). Note that, in Figure 2, the points above

the diagonal line correspond to the cases where RFMQA

outperforms the other method. The numbers of better and worse

predictions by RFMQA compared to each statistical potential, are

105/74 (dDFIRE), 107/77 (RWplus), 130/66 (OPUS), 108/88

(GOAP) and 127/70 (DFIRE). These numbers show that

RFMQA model selection is better than the other statistical

potential.

Performance on CASP10 targets
To validate the effectiveness of our proposed method, we

applied it to the CASP10 targets, where we trained a new RF tree

by using the CASP8 and 9 single domain targets as a training set,

and the CASP10 targets as a test set (see Table S2). For

benchmarking, we utilized 95 targets (QA1; stage2), which were

used in the official CASP10 assessment. Prior to the quality

assessment, we removed the disordered region in the models

predicted by Disopro [47] and subjected those models to quality

assessment.

First, we compared the performance of RFMQA with statistical

potential energy terms and then with the top QA methods from

CASP10. From Table 4, it is clear that RFMQA outperforms the

other individual statistical potentials. The average TMloss of

RFMQA is 0.038, while that of the best performing statistical

potential, GOAP, is 0.049. This difference is more remarkable

than the previous 5-fold cross-validation experiment. The pairwise

comparison of TMRF with the TMbest is illustrated in Figure 3.

The CCTM between them is 0.984, while the best performing

statistical potential, GOAP, is 0.978. The pairwise comparison of

TMRF and TM-score of the model selected by individual energy

terms are shown in Figure 3 and Table 4 & 5. The results show

that the number of better predictions by RFMQA is larger than

those from the other individual statistical potentials.

Figure 4. Comparison of RFMQA with top QA methods on CASP10 models. (A) GOAP versus RFMQA, (B) ProQ2 versus RFMQA, (C)
MULTICOM-CONSTRUCT versus RFMQA, (D) ModFOLDclust2 versus RFMQA, (E) PMS versus RFMQA, and (F) Pcons versus RFMQA.
doi:10.1371/journal.pone.0106542.g004
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Comparison of RFMQA with other methods on CASP10
models

CASP10 assessed a variety of model quality evaluation methods

including meta methods, clustering methods, energy-based meth-

ods and machine learning methods [41,48,49]. In this case, we did

not try to re-evaluate these methods. Instead, we compared the

RFMQA results with top QA (GOAP, ProQ2, PMS, ModFOLD-

clust2, MULTICOM-CONSTRUCT and Pcons) results from the

official CASP10 assessment (http://predictioncenter.org/casp10/

qa_analysis.cgi). Among the top QA methods, the ModFOLD-

clust2 consensus method produced the best results in terms of

CCTM (0.979), average TMloss (0.047) and the TM-score sum of

the top model (63.40) (see Table 6). However, RFMQA consis-

tently outperforms ModFOLDclust2 with CCTM of 0.984, average

TMloss of 0.038, and the TM-score sum of 64.23. This result shows

that our method selects models closer to the native structure than

those selected by other methods. In case of CCRank, ModFOLD-

clust2 is better than any other methods compared in this study

including RFMQA.

To get a detailed view on the performance of RFMQA, we

performed the pairwise comparison of TMRF and the TM-score of

the model selected by other QA methods (Figure 4 and Table 7).

The results show that the number of better predictions by

RFMQA is larger than those from the other QA methods. Since,

ModFOLDclust2 was the top performer, we compared it with our

method in detail as below.

The pairwise comparison of RFMQA and ModFOLDclust2

shows that RFMQA gains in 56 cases with an average TM-score

gain (TMRF-TMModFOLDclust2) of 0.031 and looses in 37 cases with

an average TM-score loss of (TMModFOLDclust2 - TMRF) 0.025.

The benchmarking dataset contain 22 multiple domain proteins

(highlighted in magenta in Table S2), where RFMQA is better

than ModFOLDclust2 in 16 cases. These results show that

RFMQA works well for single domains as well as multiple

domains. More specifically, RFMQA selected models better than

those by ModFOLDclust2 for the following targets: T0658,

T0685, T0698, T0715, T0719, T0743 and T0744 (shown as +
in Figure 4D). The average difference in TM-score is 0.109. On

the other hand, ModFOLDclust2 performed better for T0700,

T0714 and T0742 (shown as x in Figure 4D). Furthermore, we

examined the targets with TM-score difference [(TMRF –

TMModFOLDclust2), (TMModFOLDclust2 – TMRF)] $0.05. Table S3

shows that RFMQA works well in 8/8 cases for the class of alpha+
beta proteins; 1/3 case for the class of all-alpha proteins and 1/2

Table 7. Pairwise comparisons of RFMQA against top CASP10 methods.

GOAP ProQ2 PMS MULTICOM-CONSTRUCT ModFOLDclust2 Pcons

Gain 51 56 59 59 56 57

Loss 31 31 32 34 37 38

Equal 13 8 4 2 2 0

Note: The first row represents the number of models selected by RFMQA that are better than those selected by a top QA method (Gain). The second row represents the
number of models selected by RFMQA worse (Loss) and the third row represents the number of models in tie (Equal).
doi:10.1371/journal.pone.0106542.t007

Figure 5. Examples of good predictions by RFMQA are shown
for (A) T0698 and (B) T0715. Models selected by RFMQA (magenta)
and ModFOLDclust2 (green) are shown as superposed against the
TMbest model (cyan).
doi:10.1371/journal.pone.0106542.g005

Figure 6. Examples of bad predictions by RFMQA are shown for
(A) T0700 and (B) T0742. Models selected by RFMQA (magenta) is
shown as superposed against the TMbest model (cyan).
doi:10.1371/journal.pone.0106542.g006
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case for the class of all-beta proteins. Overall, our results indicate

that RFMQA selects, on average, better models than ModFOLD-

clust2.

Two examples of better predictions by RFMQA over

ModFOLDclust2 are shown in Figure 5. Models selected by

RFMQA (magenta) and ModFOLDclust2 (green) are shown as

superposed against the TMbest model (cyan) for targets T0698 and

T0715. Since the RFMQA-selected model is identical to the

TMbest model in the case of T0698, we compared TMbest with

ModFOLDclust2. Figure 5A shows that the model selected by

ModFOLDclust2 is problematic at the N- and C-terminal helix-

helix packing with a slight deviation in the loop region between the

helices. Another example is an a+b protein shown in Figure 5B

(T0715), where the model selected by ModFOLDclust2 is

problematic at the N-terminal region helix-helix packing (see top

view). Side view shows that in the middle region (shown inside a

circle) it has a long loop instead of extending a helix. On the other

hand, the RFMQA model is quite similar to the TMbest model

with only small deviation in the loop between two helices.

Examples of worse predictions by RFMQA are shown for

T0700 and T0742 in Figure 6. Since the ModFOLDclust2-

selected model is identical to the TMbest model in both cases, we

compared the TMbest model with the RFMQA model. Figure 6A

shows that the RFMQA model is problematic in helix-turn-helix

packing (top and side views). The lower panel shows that the

RFMQA model for T0743 (Figure 6B) is problematic at the N-

terminal region, where it has a long loop instead of helix-turn-helix

motif (side view; marked in circle). Top view shows that loop

connecting the beta-barrel deviates from the TMbest model

(Figure 6B).

Furthermore, to analyze the target selection in detail, we

calculated Z-score by subtracting the mean quality from the model

Figure 7. Distribution of Z-score for the model selection on CASP10 targets. Z,0 is colored in red; 0#Z,1 is colored in green; 1#Z,2 is
colored in blue; 2#Z,3 is colored in magenta and Z$3 is colored in cyan.
doi:10.1371/journal.pone.0106542.g007

Table 8. Performance test on the I-TASSER decoy set.

Methods CCTM rTM AverageTMloss

P
TMscore1

P
ZTMscore1

RFMQA 0.935 0.913 0.089 32.906 44.454

ModFOLDclust2 0.912 0.908 0.095 32.588 42.826

dDFIRE 0.919 0.921 0.099 32.40 39.08

RWplus 0.902 0.920 0.100 32.314 37.069

OPUS 0.883 0.883 0.130 30.652 16.559

GOAP 0.894 0.897 0.115 31.497 28.229

Note: The first column represents the method name. The second, the third and the fourth columns respectively represent the correlation coefficient (CCTM), Spearman’s
correlation coefficient (rTM ) and average TM-score loss (TMloss) between TMmethod (TM-score of the model selected by a QA method) and TMbest (TM-score of the most
native-like structure among decoys).

P
TMscore1 is the sum of the first-ranked models and

P
ZTMscore1 is the sum of Z-score for the first-ranked models. Bold fonts

denote the best result.
doi:10.1371/journal.pone.0106542.t008
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selected (TM-score) divided by the standard deviation of each

target. These Z-scores are not biased by the target difficulty, as the

score is normalized by the quality distribution of each target.

Hence, it can directly measure the added value of the model

quality assessment program relative to a random pick, which

would have the value of zero Z-score. Distributions of Z-scores by

various methods are shown in Figure 7. The result shows that only

5.3% of RFMQA-selected models are worse than the average (Z,

0), while the next best performing Pcons and ModFOLDclust2

have about 9.5% of targets in that range. Conversely, 14.7% of the

RFMQA selected model is of high Z-score (Z$2), while the next

best performing ProQ2 has 12.7% in that range. Interestingly, in

the figure, all single-model methods select more models with Z$2

than all consensus methods (ModFOLDclust2, MULTICOM-

CONSTRUCT and Pcons). Overall, it shows that RFMQA model

selection is consistently better than the other single-model and

consensus methods.

Benchmarking on I-TASSER decoys
In addition to the CASP10 targets, we evaluated the perfor-

mance of RFMQA on I-TASSER dataset (see Table S4 for detail

of targets) to identify the best decoys. The results summarized in

Table 8 show that ModFOLDclust2 outperforms the other

statistical potential methods such as dDFIRE, RWPlus, OPUS,

GOAP and DFIRE in terms of average TMloss (0.095), TM-score

sum of the top model (32.588) and Z-score (42.826). However,

again, RFMQA is better than ModFOLDclust2 with TMloss of

0.089, TM-score sum of 32.906, and Z-score 44.454. Overall, our

result shows that models selected by RFMQA are consistently

closer to the native structure than those selected by other QA

methods.

Conclusion

In this study, we have developed RFMQA by combining

various scoring functions and consistency terms between predicted

values and calculated values from 3D models. The current method

can predict the relative score of a single model using the potential

energy terms and the structural features. The predicted score can

be used to rank given 3D protein models and to identify the best

model. To evaluate the efficiency of our method, we applied it to

recent CASP10 targets. The test results show that RFMQA

method is better than other QA methods tested in this study. Its

performance generalizes well to different protein targets and

structure predictors. Therefore, this new method can be used as a

quality assurance component for any protein structure prediction

tool.
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Table S1 List of CASP8 and CASP9 targets used for 5-
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(XLS)
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model selected by RFMQA, GOAP, ProQ2, MULTICOM-

CONSTRUCT, ModFOLDclust2, Pcons, PMS, dDFIRE,

DFIRE, RWplus and GOAP. The last column corresponds to

the best out all decoys. FM targets and Multidomain targets are
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(XLSX)

Table S3 Targets with the TM-score difference greater than

0.05 are listed. The first 11 targets correspond to those with

(TMRF – TMModFOLDclust2) $0.05 and the last 3 are to those with

(TMModFOLDclust2 – TMRF) $0.05.
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Table S4 List of I-TASSER decoys used for benchmark-
ing. Colums represent the target name, the TM-score of the
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