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Abstract

The goal of this project is to investigate quantitatively the performance of differ-

ent deformable image registration algorithms (DIR) with helical (HCT), axial (ACT),

and cone-beam CT (CBCT). The variations in the CT-number values and lengths of

well-known targets moving with controlled motion were evaluated. Four DIR algo-

rithms: Demons, Fast-Demons, Horn-Schunck and Lucas-Kanade were used to reg-

ister intramodality CT images of a mobile phantom scanned with different imaging

techniques. The phantom had three water-equivalent targets inserted in a low-

density foam with different lengths (10–40 mm) and moved with adjustable

motion amplitudes (0–20 mm) and frequencies (0–0.5 Hz). The variations in the

CT-number level, volumes and shapes of these targets were measured from the

spread-out of the CT-number distributions. In CBCT, most of the DIR algorithms

were able to produce the actual lengths of the mobile targets; however, the CT-

number values obtained from the DIR algorithms deviated from the actual CT-

number of the targets. In HCT, the DIR algorithms were successful in deforming

the images of the mobile targets to the images of the stationary targets producing

the CT-number values and lengths of the targets for motion amplitudes <20 mm.

Similarly in ACT, all DIR algorithms produced the actual CT-number values and

lengths of the stationary targets for low-motion amplitudes <15 mm. The optical

flow-based DIR algorithms such as the Horn-Schunck and Lucas-Kanade per-

formed better than the Demons and Fast-Demons that are based on attraction

forces particularly at large motion amplitudes. In conclusion, most of the DIR algo-

rithms did not reproduce well the CT-number values and lengths of the targets in

images that have artifacts induced by large motion amplitudes. The deviations in

the CT-number values and variations in the volume of the mobile targets in the

deformed CT images produced by the different DIR algorithms need to be consid-

ered carefully in the treatment planning for accurate dose calculation dose cover-

age of the tumor, and sparing of critical structures.
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1 | INTRODUCTION

Deformable image registration (DIR) provides useful tools in radia-

tion therapy where images from different modalities can be

deformed and registered to account for anatomical variations

because of patient motion, organ filling, tumor growth with time or

shrinkage because of response to treatment with radiation ther-

apy.1 DIR has potential applications in image registration, segmen-

tation and dose mapping that can enable the performance of

adaptive radiation therapy (ART) by considering anatomical varia-

tions in order to obtain conformal dose coverage of tumors and

sparing of organs-at-risk.2–6 ART provides the tools to use updated

computed tomographic (CT) images such as kV-cone-beam CT

(CBCT) obtained from daily patient setup and tumor localization

with image-guided radiation therapy (IGRT) to perform more fre-

quent updates on the planning-target-volume (PTV) and other criti-

cal structures considering anatomical variations due to tumor

response to treatment.7 These variations in patient anatomy can be

accounted for in reasonable time by considering auto-segmentation

techniques that can use voxel-by-voxel deformation of the patient

CT images used in treatment planning to current CBCT images

obtained from daily patient setup.8 Patient motion leads to varia-

tions in patient anatomy inter- and intrafractions where ART will

provide tools to manage the geometric and dosimetric discrepan-

cies between patient CT simulation and treatment planning and

dose delivery.2 The dose variations due to changes in patient anat-

omy can be evaluated from the deformed initial dose maps on a

voxel-by-voxel basis using DIR algorithms. Furthermore, new treat-

ment plans using current CT images acquired daily can be gener-

ated and delivered as the treatment course progresses considering

variations in patient anatomy to achieve ART.

Patient motion may induce significant artifacts in CT images

obtained from the simulation CT, which can affect accuracy of the

shape and volume of tumor targets outlined for treatment plan-

ning.9,10 For example, motion causes the blurring of the edges of

mobile targets affecting the accuracy for determination of the

boundary of the targets in the CT images with strong motion arti-

facts.11–13 In addition, motion artifacts cause variations in CT-num-

ber values invalidating the accuracy of the values of electron density

of the mobile target and thus the accuracy of dose calculation.14 Dif-

ferent techniques are used to manage patient motion both during

simulation CT imaging and dose delivery.15 In simulation CT imaging,

patient motion is managed by breath holding technique during scan-

ning or by acquiring projection images at different motion phases

when the patient is scanned in synchrony with a breathing signal

and the projections are sorted in different motion phases to obtain

4D-CT images.16 At the stage of dose delivery, patient motion

management includes breath hold technique during irradiation or

beam gating when the beam is held on if the motion signal is syn-

chronized with the selected breathing phase window; and is held off

outside the gating window.17

The goals of this project are to investigate quantitatively the per-

formance of different DIR algorithms with helical CT (HCT), axial CT

(ACT), and CBCT images by evaluating the variations in the CT-num-

ber values and lengths of mobile targets inserted in a thorax phan-

tom moving with controlled motion patterns that simulates tumor

motion in lung. Four DIR algorithms: Demons,18,19 Fast-Demons,20,21

Horn-Schunk,22 and Lucas-Kanade23,24 from the DIRART software

were selected to register CT images of a phantom which moved with

controlled motion patterns. The variations in the volumes and CT-

number values of the mobile targets obtained from deformed images

were quantified.

2 | MATERIALS AND METHODS

2.A | Phantom setup and imaging

Three tissue-equivalent targets were inserted in a thorax phantom

that was mounted on a mobile platform (Standard Imaging, Inc., Mid-

dleton, WI, USA). The three targets small, medium, and large had

well-known shapes and volumes with lengths of 10, 20, and 40 mm

in the direction of motion were embedded in low-density foam simu-

lating lung-tissue as shown in Fig. 1. The phantom moved along the

F I G . 1 . Mobile phantom system.
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Y-axis in the superior-inferior direction with adjustable motion ampli-

tudes and frequencies. In this experiment, the phantom was imaged

with different techniques, helical, axial, and cone-beam CT while it

was stationary and moving. The phantom moved during imaging with

different motion amplitudes in the range (0–20 mm) and frequencies

(0.1–0.5 Hz). Helical CT imaging was performed with a simulation CT

(GE Discovery-CT-590RT, General Electric Healthcare, Milwaukee,

WI, USA) using a thorax technique with a pitch of 1.375; effective

field-of-view of 65 cm diameter, axial reconstruction matrix of

512 9 512 pixels, slice thickness of 2.5 mm; 120 kVp; 440 mA and

1 s rotation time. Similar parameters were used for axial CT imaging.

The cone-beam CT images were obtained from an on-board imaging

(OBI) system mounted on a TrueBeam STX machine (Varian Medical

Systems, Inc., Palo Alto, CA, USA). The OBI was made from a kV x-

ray source and a flat-panel detector that had an effective imaging

area of nearly 30 9 40 cm2 (PaxScan� 4030CB) with a spatial reso-

lution of 1024 9 768 pixels. Two CBCT-imaging modes including

full-fan and half-fan were used. The full-fan CBCT images covered a

region of 25 cm diameter and 15 cm thickness where the radio-

graphic projections were obtained by rotating the gantry about 180o

around the phantom, while the half-fan CBCT images were acquired

by a full circle rotation around the phantom in order to cover a

wider region of 50 cm diameter and 17 cm thickness. The imaging

parameters for the half-fan CBCT were 2 mm slice thickness,

125 kVp and 264 mAs, while 2 mm slice thickness, 100 kVp and

146 mAs were used for the full-fan CBCT.

2.B | Deformable image registration algorithms

The DIRART research software developed at the University of

Washington-Saint Louis was used in this study.1 It includes a variety

of DIR algorithms coded in the MATLAB software (MathWorks, Inc.,

Natick, MA, USA) and has software tools to perform important

functions in implementing adaptive radiation therapy.3 Four DIR

algorithms: Demons,18,19 Fast-Demons,20,21 Horn-Schunck,22 and

Lucas-Kanade23,24 were used to register the CT images of a mobile

phantom along with CT images of the stationary phantom. These

algorithms represent a variety of autonomous intensity-based algo-

rithms DIR to solve the optical flow equation. The Demons algorithm

extends the diffusion model into an optical flow equation. Optical

flow involves the displacements between two image sets during a

temporal sequence that is represented in intensity variations.18,19

The Demons algorithm follows similar theoretical physics principles

as the Maxwell’s demons in fluids. The diffusion model in image reg-

istration is based on the physics of thermodynamics of gases or flu-

ids that is applied in the information theory for mutual entropy

minimization techniques. The Demons algorithm uses two images

that are considered to be bounded by semipermeable membranes.

Then, one image diffuses through the other as a deformable grid

that is driven by ‘demons’ forces on the perimeter of the image. In a

diffusing model, the demons force at each point is sampled at the

image boundary. The forces collectively diffuse the moving image

through the boundary of the static image and remain constantly

decreasing in magnitude until the images are aligned in the same

coordinate space. The Demons algorithm needs an additional con-

straint to solve the aperture problem.22 The optical flow is calculated

in two steps: (a) the instantaneous optical flow is computed for

every point within the static image, and (b) the deformation field is

regularized by smoothing with a Gaussian filter.18 The Fast-Demons

algorithm explicitly takes into account Newton’s third law of motion

in combination with the diffusing model used by the Demons algo-

rithm.20,21 In Fast-Demons, the demons forces allow additionally the

moving object to diffuse through the static or reference image.21

This active force in the Fast-Demons algorithm serves as an amplify-

ing factor in the overall force applied in the Demons algorithm.20,21

The Horn-Schunck algorithm represents optical flow as variations

in the image intensity by an apparent distribution of velocities from

the movement of different image voxels.22 A global smoothness con-

straint is imposed to satisfy the aperture problem where the number

of independent variables is larger than the number of independent

linear equations.22 The aperture problem is solved by considering an

optical flow constraint equation which is convolved with a Gaussian

low-pass filter where two main approaches are used. The global

methods such as the Horn-Schunck algorithm employ regularizing

smoothness terms, whereas the local differential methods such as

Lucas-Kanade assume spatial constancy to solve the problem of

non-uniqueness. The Lucas-Kanade algorithm uses three key

assumptions for the optical flow equation that include: (a) intensity

is constant between the two image sets, (b) the voxels move small

displacements and (c) neighboring voxels move with same veloc-

ity.23,24 This algorithm considers small motions of the different vox-

els in the images, thus the motion of more than the range of a pixel

will invalidate image registration. The image intensity must also

remain constant and a pixel should move like its neighbors for the

Lucas-Kanade method to work successfully. For large motion of the

voxels, the resolution of the images is reduced. Local optical flow

methods such as the Lucas-Kanade algorithm are more robust with

noisy images; however, the velocity or DVFs are less dense than the

global methods such as the Horn-Schunck technique. A multigrid

approach of four stages was used to sample down the images by a

factor of 2 at each stage in sequence from low to high resolution.

Multiple passes (2,3,4,5 passes) were used where in each pass the

registration was performed with smaller number of iterations

(10,20,30,40 iterations) with a multiple grid Gaussian filter and

smoothing parameter of 3 during iterations and (0.5 0 0) after pass-

ing. The DIRART software provides the tools to perform validation

test for the different DIR algorithms that include inverse consistency

and Jacobian analysis which were within acceptable limits in this

study.

3 | RESULTS

3.A | CBCT images

Figure 2 shows coronal views of the mobile targets (small, medium,

large) registered to the CBCT images of the stationary phantom used
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as a reference image to which the moving images have been regis-

tered using different deformable image registration algorithms. The

deformed CBCT images of the mobile phantom are shown for sev-

eral motion amplitudes (2.5–20 mm) and four deformable image reg-

istration algorithms: (a) Demons, (b) Fast Demons, (c) Horn-Schunck,

and (d) Lucas-Kanade. Increasing motion amplitudes enhanced image

artifacts in the CBCT images where the lengths of the mobile targets

were elongated along the direction of motion. The motion artifacts

at lower amplitudes were suppressed and image quality was

improved in the deformed CBCT images. All DIR algorithms were

able to reproduce the shapes and volumes of the three targets in

the deformed CBCT images of the mobile phantom at small and

intermediate motion amplitudes. However, at large motion ampli-

tudes, the shapes and volumes of the small mobile target were not

reproducible at the largest motion amplitude of 20 mm used in this

study. The Demons and Fast-Demons algorithms behaved well at

small motion amplitudes and failed at large motion amplitudes. The

Horn-Schunck algorithm performed well over a large range of motion

amplitudes. The Horn-Schunck technique considers spatial as well as

smoothing components. It employs a global method that computes

the optical flow velocity based on a neighborhood average and then

filters the results with a Gaussian filter. Therefore, Horn-Schunck

penalizes large errors in the intensity constancy. The Lucas-Kanade

performance was in between the previous DIR algorithms where it

employs local spatial components only.

Figure 3 shows the CT-number profiles from the stationary and

mobile CBCT images of the three targets: small, medium, and large

along the direction of motion. Two major effects were pronounced

in the CT-number profiles of the mobile targets: (a) the CBCT-num-

ber distributions spread-out more beyond the actual lengths of the

stationary targets and (b) the level of the CT-number values

decreased as the motion amplitude increased for the CBCT profiles

of the targets. Figure 4 shows the CT-number profiles for CBCT

images of the small and medium stationary and mobile targets along

F I G . 2 . Coronal views from the CBCT images reconstructed at the central level of the targets embedded in the thorax phantom with various
motion amplitudes and DIR algorithms where each column represents one motion amplitude as indicated. The images in the first row represent
the CBCT of the moving targets and the second to fifth rows represent the deformed imaged using the Demons, Fast-Demons, Horn-Schunck,
and Lucas-Kanade, respectively.
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the superior-inferior direction parallel to the phantom motion (Y-

axis). Four DIR algorithms were used that included the Demons in

(a-b), Fast-Demons in (c-d), Horn-Schunck in (e-f), and Lucas-Kanade

in (g-h) to correct motion artifacts with the phantom moving with

the indicated motion amplitudes. The different DIR algorithms pro-

duced the physical length and shape of the original target (stationary

target) for small and medium at motion amplitudes ≤15 mm. As the

motion amplitude increased, the DIR algorithms failed to reproduce

the length of the original target for motion amplitudes 17.5 and

20.0 mm, respectively. While the actual shapes and volumes of the

different targets were reproduced by most of the DIR algorithms,

there were large discrepancies between the CT-number values

obtained from the different DIR algorithms and the corresponding

CT-numbers of the stationary targets. For example, the differences

in the CT-numbers increased gradually from 400 HU at small motion

amplitude up to 1000 HU for large motion amplitudes for the small

target. For the larger target, the difference in the CBCT profile

between the deformed and stationary images ranged from nearly

200 to 700 HU over the range of motion amplitudes from 5 to

20 mm. This indicates that the CT-number values produced by the

different DIR algorithms might not be valid for dose calculation algo-

rithms used to correct tissue heterogeneities in treatment planning

particularly at large motion amplitudes in CBCT images.

3.B | HCT images

Figure 5 shows coronal views from HCT images for the small, med-

ium, and large targets obtained from the different DIR algorithms. Sim-

ilar to CBCT, four DIR algorithms were used to deform the mobile

HCT images and to reproduce images that matched with the station-

ary images of the targets. The coronal views in the first row (a,b) rep-

resented the images obtained from Demons, the second row (c,d)

from Fast-Demons, the third row (e,f) from Horn-Schunck, and the

fourth row (g,h) from the Lucas-Kanade with different motion

amplitudes as indicated. The shapes and volumes of the targets were

reproducible even at large motion amplitudes (20 mm) particularly for

the large mobile target (40 mm). The small and medium targets

showed irregular distortion in the shapes such as shrinkage or elonga-

tion depending on their motion phases during HCT in contrast with

CBCT images which showed a regular increase in the length of the

mobile targets with motion amplitudes along the direction of motion.

This was due to the interplay between the motion of imaging table

and the mobile phantom in HCT imaging. If the mobile targets moved

along the direction of the couch motion, they became elongated and if

they moved opposite to the couch motion they shrank along the direc-

tion of motion. Most of the DIR algorithms were able to deform the

distorted mobile targets and to reproduce the actual shapes in HCT

imaging. However, the Fast-Demons algorithm had the least perfor-

mance compared to the other algorithms investigated in this study.

Figure 6 shows the CT-number profiles of the stationary and

mobile targets along the direction of motion (Y-axis) for the small

and medium (a) and large (b) targets in HCT images. The CT-number

distributions in HCT were affected by motion with image artifacts

that included: (a) displacement in the position of the mobile target,

(b) elongation or shrinkage in the length of the mobile targets

depending on the phase of motion during imaging, and (c) variation

in the CT-number level. The CT-number distributions of the small

and medium targets were distorted more than that of the large tar-

get considering the same motion amplitude.

Figure 7 shows a comparison of the CT-number profiles from

the stationary targets and the deformed HCT images using the dif-

ferent DIR algorithms with motion artifact along the direction of

motion. In HCT, both the CT-number level and length of the station-

ary targets obtained from the deformed CT-number profiles were

reproducible up to relatively large motion amplitude: ≤10 mm for

the small and medium targets and ≤15 mm for the large target. At

large motion amplitudes (17.5 and 20 mm), the image artifacts

induced by motion distorted the HCT images significantly and most

F I G . 3 . CT-number profiles for the small and medium targets (a) and larger target (b) in CBCT images along the direction of motion in pixels
(2.0 mm) for motion amplitudes in the range 0–20 mm.
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F I G . 4 . CT-number profiles along the direction of motion in pixels (2.0 mm) for the deformed images by the different algorithms (a) Demons,
(b) Fast-Demons, (c) Horn-Schunck, and (d) Lucas-Kanade in the first column for the small and medium targets in CBCT images. (e,f,g,h) in the
second column are the CT-number profiles for the large target as in the first column.
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of the DIR algorithms were not able to reproduce the volume and

CT-numbers of the mobile targets in the deformed images. The dif-

ferent DIR algorithms were able to reproduce both the shape and

CT-number distributions in HCT and their performance was superior

compared to CBCT. The shapes and volumes from the deformed

HCT images were valid and they can be used to contour the targets

F I G . 5 . Coronal views from HCT images reconstructed at the central level of the targets embedded in the thorax phantom with various
motion amplitudes and DIR algorithms with each column representing one motion amplitude as indicated. The images in the first row
represent the HCT of the moving targets and second to fifth rows represent the deformed imaged using the Demons, Fast-Demons, Horn-
Schunck, and Lucas-Kanade, respectively.

F I G . 6 . CT-number profiles for the small and medium targets in HCT images using different DIR algorithms: (a) and large target (b) along the
direction of motion in pixels (2.5 mm) with different motion amplitudes (0–20 mm) from HCT images.
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F I G . 7 . CT-number profiles along the direction of motion in pixels (2.5 mm) for the deformed images by the different algorithms (a) Demons,
(b) Fast-Demons, (c) Horn-Schunck, and (d) Lucas-Kanade in the first column for the small and medium targets in HCT images. (e,f,g,h) in the
second column are the CT-number profiles for the large target as in the first column.

ALI ET AL. | 69



in order to define the PTV in the treatment planning process. The

CT-numbers were valid for dose calculations and heterogeneity cor-

rections at low and intermediate motion amplitudes as demonstrated

in this study.

3.C | ACT images

Figure 8 shows coronal views from ACT images produced by the dif-

ferent DIR algorithms of the mobile phantom with the small, med-

ium, and large targets similar to Figs. 2 and 5. Each column

represents the variations in the CT-number distributions with differ-

ent motion amplitudes. Four DIR algorithms were used where the

coronal views in the second row represent the images produced by

Demons, the third row by Fast-Demons, the fourth row by Horn-

Schunck, and the fifth row by the Lucas-Kanade. In ACT, the image

artifacts induced by motion were more predominant compared to

the corresponding artifacts in HCT for similar motion parameters of

amplitudes and frequencies. This has been attributed mostly to

shorter scan times by HCT compared to ACT. For small motion

amplitudes of <5 mm, the different DIRs were able to reproduce the

shapes and volumes of the different mobile targets because of the

small image artifacts induced in the ACT images. As the motion

amplitude increased, strong image artifacts were induced by motion

in the ACT images which led to splitting in the images of the mobile

targets. The different DIRs failed to reproduce the shapes and vol-

umes of the mobile targets in the deformed images particularly for

the small target with high CT-number gradients; and the CT-number

spread-out distributions to a spatial range, comparable to the length

of the target along the direction of motion. The reproducibility of

the shapes and volumes of the large target was better than the small

and medium targets with large motion amplitudes because image

artifacts induced by motion did not distort the shapes of the large

target significantly. The Horn-Schunk and Lucas-Kanade DIRs gener-

ally performed better than the Demons and the Fast-Demons partic-

ularly at large motion amplitudes with strong image artifacts induced

by motion.

Figure 9 shows the profiles of the CT-number distributions

through the center of the target along the direction of motion of the

phantom. The profiles represent the variations in the CT-number dis-

tributions with motion amplitudes for the mobile phantom and

deformable images produced by the different DIR algorithms. The

CT-number levels and lengths of the mobile targets were repro-

ducible by the deformed CT-number profiles for low-motion ampli-

tudes ≤5 mm for the small target, ≤10 mm for the medium target,

F I G . 8 . Coronal views from ACT reconstructed at the central level of the targets embedded in the thorax phantom with various motion
amplitudes and DIR algorithms where each column represents one motion amplitude as indicated. The images in the first row represent the
ACT of the moving targets and second to fifth rows represent the deformed imaged using the Demons, Fast-Demons, Horn-Schunck, and
Lucas-Kanade, respectively.
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and <15 mm for the large target. The shape of the targets was dis-

torted at large motion amplitudes because of the strong image arti-

facts induced by the phantom motion. The different DIR algorithms

showed better performances in deforming images of the mobile tar-

get to produce the actual CT-number levels and shapes of the sta-

tionary targets in HCT compared to ACT as shown in Fig. 10. This is

due to the strong image artifacts in ACT induced by motion artifacts

which led to splitting of the different targets at large motions

amplitudes.

4 | DISCUSSION

In this study, an experimental phantom benchmark was designed to

investigate quantitatively the performance of different DIR algorithms.

This phantom benchmark with well-known targets has water-equiva-

lent densities, and specific shapes and volume inserted in low-density

foam where the boundaries of the targets that move with controlled

motion are well defined which make quantitative evaluation of the

performance of DIR algorithms possible. In contrast, evaluation of the

performance of the DIR algorithms in cancer patients is difficult

because the actual tumors usually move irregularly, they have different

shapes and their densities are similar to surrounding tissues. This study

demonstrated that in CBCT, most of the DIR algorithms of the mobile

targets were able to produce the shapes and volumes of the mobile

targets. However, they did not produce the CT-number values of the

stationary targets in the deformed images. The image artifacts induced

by motion were more regular in CBCT imaging where the mobile tar-

get elongation increased linearly with motion amplitude. The CT-num-

ber level decreased as motion amplitude increased, while the

dependence on motion frequency and phase were negligible. In HCT

and ACT, the motion artifacts were irregular where some mobile tar-

gets were elongated or shrunk depending on the motion phases during

imaging. The DIR algorithms were successful in deforming the images

of the mobile targets to the images of the stationary targets producing

the CT-number values, lengths, and shapes of the targets for relatively

large motion amplitudes <20 mm in HCT. In ACT, all DIR algorithms

produced the actual CT-numbers and lengths of the stationary targets

up to intermediate motion amplitudes <15 mm. The DIR algorithms

failed to produce valid shapes, volumes, and CT-numbers of the mobile

targets in the deformed images at large motion amplitudes. Besides

the strong dependence on amplitude, motion frequency and phase

played important role in the significance of the image artifacts induced

by motions. This was represented in the elongations and shrinkage

effects of the targets along the direction of motions in HCT and ACT

images. The Horn-Schunck and Lucas-Kanade which are optical flow-

based algorithms performed better than the Demons and the Fast-

Demons particularly at large motion amplitudes. However, the

Demons and the Fast-Demons that are based on attraction forces con-

verged faster than the optical flow algorithms.

In order to be able to use DIR algorithms in ART, it is crucial to

produce the actual shapes, volumes, and the CT-number values of

the mobile targets. This is important to determine accurate tumor

volume that is used in treatment planning to define the PTV. How-

ever, this study demonstrated that the performance of the different

DIR algorithms depends on the motion artifacts and the modality of

imaging. For small motion amplitudes, most of the DIR algorithms

used in this study were able to reproduce the lengths of the mobile

targets along the direction of motion. However, at large motion

amplitudes, nearly all four DIR algorithms were not able to produce

the shapes and volumes of the mobile targets. Besides the volumes

and shapes of the different tumor targets, motion artifacts affected

the CT-number values which were not reproduced in the deformed

images by the different DIR algorithms at large motion amplitudes in

all CT-imaging modalities. At small motion amplitudes, the different

DIR algorithms performed better in HCT compared to ACT and

CBCT. Therefore, the use of the target volumes and CT-number val-

ues obtained from DIR algorithms has to be evaluated carefully

F I G . 9 . CT-number profiles for (a) the small and medium targets, and (b) the larger target along the direction of motion for motion in pixel
(2.5 mm) amplitudes in the range 0–20 mm from ACT images.
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F I G . 10 . CT-number profiles along the direction of motion in pixels (2.5 mm) for the small and medium targets in the first column of
the deformed HCT images by the different algorithms: (a) Demons, (b) Fast-Demons, (c) Horn-Schunck, and (d) Lucas-Kanade with
different motion amplitudes as indicated. The CT-number profile in (e,f,g,h) in the second column for the large target as in the first
column.
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before use in treatment planning and dose calculation to correct

heterogeneity in radiation therapy.

5 | CONCLUSIONS

This study used a mobile thorax phantom that has three water-

equivalent targets with well-known shapes and sizes that are

inserted in low-density material in order to evaluate quantitatively

the performance of different DIR algorithms. The performance of

the DIR algorithms depends strongly on the image artifacts in the

different CT-imaging modalities induced by motion. In CBCT, DIR

algorithms produced successfully the volumes and shapes of the sta-

tionary targets without producing accurate CT-numbers. In HCT, the

DIR algorithms produced the CT-number values, lengths, and shapes

of the stationary targets even at large motion amplitudes. The ACT

images had large image artifacts at large motion amplitudes. The dif-

ferent DIR algorithms failed to produce the shapes, volumes, and

CT-number values of the stationary targets. Thus, the use of

deformed CT images from different algorithms and imaging modali-

ties in treatment planning and dose calculation for cancer patients

treated with radiation therapy should be evaluated carefully.
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