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Abstract

Objective

Identifying the time of SARS-CoV-2 viral infection relative to specific gestational weeks is

critical for delineating the role of viral infection timing in adverse pregnancy outcomes. How-

ever, this task is difficult when it comes to Electronic Health Records (EHR). In combating

the COVID-19 pandemic for maternal health, we sought to develop and validate a clinical

information extraction algorithm to detect the time of clinical events relative to gestational

weeks.

Materials and methods

We used EHR from the National COVID Cohort Collaborative (N3C), in which the EHR are

normalized by the Observational Medical Outcomes Partnership (OMOP) Common Data

Model (CDM). We performed EHR phenotyping, resulting in 270,897 pregnant women

(June 1st, 2018 to May 31st, 2021). We developed a rule-based algorithm and performed a

multi-level evaluation to test content validity and clinical validity, and extreme length of ges-

tation (<150 or >300).

Results

The algorithm identified 296,194 pregnancies (16,659 COVID-19, 174,744 without COVID-

19) in 270,897 pregnant women. For inferring gestational age, 95% cases (n = 40) have

moderate-high accuracy (Cohen’s Kappa = 0.62); 100% cases (n = 40) have moderate-high
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granularity of temporal information (Cohen’s Kappa = 1). For inferring delivery dates, the

accuracy is 100% (Cohen’s Kappa = 1). The accuracy of gestational age detection for the

extreme length of gestation is 93.3% (Cohen’s Kappa = 1). Mothers with COVID-19 showed

higher prevalence in obesity or overweight (35.1% vs. 29.5%), diabetes (17.8% vs. 17.0%),

chronic obstructive pulmonary disease (0.2% vs. 0.1%), respiratory distress syndrome or

acute respiratory failure (1.8% vs. 0.2%).

Discussion

We explored the characteristics of pregnant women by different gestational weeks of

SARS-CoV-2 infection with our algorithm. TED-PC is the first to infer the exact gestational

week linked with every clinical event from EHR and detect the timing of SARS-CoV-2 infec-

tion in pregnant women.

Conclusion

The algorithm shows excellent clinical validity in inferring gestational age and delivery dates,

which supports multiple EHR cohorts on N3C studying the impact of COVID-19 on

pregnancy.

Introduction

Recent findings suggested Coronavirus Disease 2019 (COVID-19) to be associated with an

increased risk for adverse pregnancy outcomes and neonatal complications [1, 2]. However,

there has been limited knowledge pertaining to the timing of SARS-CoV-2 infection during

the pregnancy (e.g., infection in a specific trimester, gestational age [GA], or labor and deliv-

ery) and its association with pregnant women’s real-time clinical presentation [3]. Timing of

viral infection is important because fetuses are more vulnerable to maternal complications

and/or viral infection during certain gestational stages [4, 5]. Nevertheless, detecting the tim-

ing of viral infection poses substantial challenges to the quality of data and clinical information

extraction methodology.

Pregnancy care consists of antenatal, labor and delivery, and postpartum care [6]. Because

pregnancy care spans up to 21 months, it involves exceedingly rich clinical data. A complete

episode of pregnancy care often involves multiple encounters with multiple health providers,

clinical sites, and diverse clinical information systems, meaning that a vast number of clinical

events are generated at an unprecedented granularity and data quality. Over decades, compre-

hensive clinical data for pregnancy care have not been widely available until recent advances in

the use of normalized multi-system electronic health records (EHR), such as Observational

Health Data Sciences and Informatics (OHDSI)’s Atlas [7], National Institutes of Health

(NIH)’s All of Us, and NIH’s National COVID Cohort Collaborative (N3C) [8]. which have

provided growing Real-World Evidence (RWE) to support pregnancy research during the

COVID-19 pandemic [9–12].

One of the unique characteristics of EHR in pregnancy care is the complex temporal rela-

tions of clinical events. To better understand the impacts of SARS-CoV-2 infection or the

COVID-19 pandemic on pregnancy health, it is important to know the length of pregnancy

and the timing of pregnancy-related complications or events in relation to the time of preg-

nancy (i.e., GA). Both mothers and fetuses experience crucial physiological changes and clini-

cal complications during pregnancy, which generates a substantial number of clinical events in
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the EHR. Accurate identification of temporal relations of clinical events across the entire epi-

sode of pregnancy care is a fundamental step for clinical decision-making as well as down-

stream EHR data mining. GA is also the prerequisite for tracing the timing of SARS-CoV-2

infection and COVID-19 vaccination for pregnant women. Although EHR data have unique

advantages in preserving temporal information of these clinical events, clinical information

extraction methods tailored for pregnancy care have been scarce [13].

Identifying GA from EHR is challenging because GA is a concept of temporal relativity.

When it comes to clinical information extraction, this challenge is manifold. First, controlled

vocabularies (e.g., ICD, SNOMED-CT, LOINC, RxNorm) along with the relational EHR data-

base architecture are designed to preserve some temporal information of clinical events, yet

the information suffers from a low level of granularity (e.g., LOINC 95656–5: Gestational age

<30 weeks, LOINC 49085–4: First and Second trimester integrated maternal screen panel),

unreliable data entries (e.g., laboratory test results sometimes have delayed time stamps), and

incomplete data (e.g., laboratory test results sometime are missing due to many laboratory

results are photocopies). Second, approximately 80% of the EHR data consist of unstructured

data (i.e., clinical notes), with which a considerable amount of temporal information is in the

form of free text that cannot be directly used for quantitative analysis [14]. Third, EHR data

for pregnant women are distinct from most other medical specialties in that pregnancy care

has scheduled routine visits that are involved with antenatal care, labor and delivery hospitali-

zation, and postpartum care. Incomplete and/or inconsistent data are common because

patients are often engaged with different providers, health care systems, and clinical visits with

chief complaints not related to pregnancy but would generate data relevant to pregnancy [13].

For example, antenatal care and other medical care during the pregnancy could be at locations

different from labor and delivery hospitals. Missing critical information from one clinical site

would require researchers to infer such information using data from other sites or other visits.

Health records of individual visits span the inpatient and various outpatient visits but may not

contain explicit and consistent temporal information (e.g., last menstrual period [LMP] [15],

estimated date of delivery [DOD], and GA).

Current biomedical informatics methods for extracting and inferring temporal relations of

clinical events include rule-based methods, machine learning, natural language processing

(NLP), ontology-based methods, and temporal reasoning [14, 16–23]. Most of these methods

utilized unstructured clinical notes in combination with structured EHR data, which is compre-

hensive for generic temporal information extraction. However, methods focusing on temporal

events among pregnant women’s EHR are limited. Among studies that extract or infer DOD

and GA, LMP and imaging/lab test results are commonly used data; chart review is a commonly

used method [17, 20, 22, 23]. Using LMP data requires the providers to accurately document

LMP in the EHR, yet in the real world, many EHR datasets have a lot of missing values in LMP.

The use of ultrasound test results or other laboratory test results requires the EHR to compre-

hensively document both laboratory orders and testing results, yet testing results are often miss-

ing in real-world EHR datasets. Additionally, using laboratory data alone for inferring GA may

not be accurate due to the individual physiological variation among pregnant women. A recent

study utilized comprehensive ICD codes of diagnoses and procedures to infer delivery dates

[24]. While the study focused on full-term pregnancy with comprehensive medical records dur-

ing the labor and delivery hospitalization, comprehensive methods remain needed for early-

stage pregnancy (e.g., extreme preterm, very preterm) and those who have part of the pregnancy

care data and conflicting data documented in EHR. Particularly, there are no published meth-

ods for extracting temporal relations of clinical events for pregnant women with COVID-19.

This is a critical knowledge gap because temporal relations of clinical events are suggestive of

the exact time of viral infection, acute phase of COVID-19, and vaccinations.
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To identify temporal relations of clinical events imperative for pregnant women with

COVID-19, we developed a rule-based clinical information extraction algorithm, namely

Temporal Events Detector for Pregnancy Care (TED-PC), which infers GA and DOD using

both structured EHR data and annotated clinical notes. The algorithm is designed to capture

temporal information to be used for inferring GA and DOD, respectively, so that the complete

temporal relations in a pregnancy episode can be replicated and the timing of SARS-CoV-2

infection (in weeks) can be detected. This design is anticipated to be effective for pregnant

women with regular labor and delivery hospitalization, without complete hospitalization rec-

ords, and those who have pre-term delivery, miscarriage, early-stage pregnancy and termina-

tion, and multiple births. This algorithm is designed for EHR that are normalized by

Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) [8, 25]

and is implemented on the N3C enclave. EHR on N3C have 1) individual-level data linked

among multiple health systems nationwide and 2) normalized procedures, laboratory tests/

results, and annotated clinical notes, which enable the reasoning of GA and DOD for patients

with missing and conflicting data. These unique characteristics of OMOP CDM-normalized

EHR are critical for detecting the temporal information for pregnant women with COVID-19.

The performance and clinical validity of TED-PC were tested systematically on the N3C plat-

form. Presently, this algorithm is used as a critical clinical information extraction tool to iden-

tify comprehensive temporal relations of clinical events from multiple COVID-19 pregnant

women cohorts on N3C [26–28].

Materials and methods

Data sources

We used the N3C database (level 3, containing dates of clinical events and zip codes), a multi-

center clinical data repository that contains de-identified EHR data of individuals with

COVID-19 blended with controls (i.e., non-COVID-19) [8]. N3C currently has EHR and med-

ical claims data from more than 73 healthcare systems and institutes across 50 states. The EHR

data are normalized using the OMOP CDM [8, 25]. In order to find the full clinical course of

each pregnancy, the study cohort included women who met the following conditions: (1) have

at least one childbirth between June 1st, 2018 and May 31st, 2021, (2) be aged between 15 to 49

years old at the DOD, and (3) have at least one GA-related record during the pregnancy.

Because the N3C database is normalized by OMOP CDM, we utilized the following

resources for EHR phenotyping. The ATHENA vocabulary repository is used for retrieving

OMOP CDM concept IDs and phenotyping patients with GA and childbirth-related records.

The Algorithms section details the design and the procedures for using the ATHENA.

Algorithms

To retrieve the full spectrum of each pregnancy in the EHR, it is crucial to identify the start

date (i.e., pregnancy start) and the end date (i.e., childbirth delivery) of the pregnancy. The

start date can be estimated by the GA-related records that indicate the GA (e.g., in weeks, in a

range of weeks, or a particular trimester) and the date of the record. The end date can be esti-

mated by the identification of the DOD. Because some pregnant women’s EHR data only have

either GA-related records or childbirth delivery records, we first estimated GA and DOD,

respectively, which resulted in a cohort of pregnant women with estimated GA, denoted as the

GA cohort, and a cohort of pregnant women with estimated DOD, denoted as the DOD

cohort. Then we estimated the start date and end date of the pregnancy by consolidating the

temporal information from both cohorts (Fig 1).
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Gestational age cohort (GA cohort). Phenotyping. The purpose of this step is to find

OMOP CDM concepts that can be used to retrieve GA-related information from EHR data.

For phenotyping the GA cohort, we used a keyword search strategy followed by a review of

retrieved OMOP CDM concepts. Using ATHENA, a set of keywords were reviewed and deter-

mined: “trimester”, “gestation”, and “pregnan” (regular expression of “pregnancy” or “preg-

nant”). These keywords were used in conjunction with three filters in the ATHENA database:

(1) “DOMAIN”, which included “Condition”, “Observation”, “Procedure”, “Measurement”,

etc.; (2) “CONCEPT”, which included “Standard” and “Non-standard”; (3) “VALIDITY”,

which included “Valid” and “Invalid”. The pseudo-query is:

Fig 1. Pipeline of TED-PC for extracting information and building cohorts.

https://doi.org/10.1371/journal.pone.0276923.g001
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(“trimester” OR “gestation” OR “pregnan”) AND (((DOMAIN = “Condition”) OR

(DOMAIN = “Observation”) OR (DOMAIN = “Procedure”) OR (DOMAIN = “Measure-

ment”)) AND (CONCEPT = “Standard”) AND (VALIDITY = “Valid”))

In the review of the returned OMOP CDM concepts, we applied the following three criteria

to narrow down the scope step by step to our target concepts: (a) “Whether a record indicates

a pregnant patient”; (b) “If yes, whether the record contains GA information of the patient”;

(c) “If yes, what is the value of the GA?”. Finally, we identified 138 OMOP CDM concepts (See

S1 Table). The researcher (TL) who performed the phenotyping was not involved in the phe-

notyping evaluation.

Rule-based algorithm. We developed a rule-based algorithm to infer GA from EHR data

(Fig 2). A critical feature of the algorithm is that we divided all extracted OMOP CDM con-

cepts into four accuracy levels based on their clinical meanings and granularity of the date:

high, moderate-high, moderate-low, and low (Table 1) and prioritized the retrieval of GA-

related information based on accuracy levels. Table 2 shows the pseudocode for the algorithm.

Childbirth delivery cohort (DOD cohort). Phenotyping. For phenotyping the DOD

cohort, we started with a list of CDC-recommended ICD, DRG, and CPT codes used for child-

birth delivery and followed by exploring the relevant OMOP CDM concepts using the seman-

tic relationships of concepts on ATHENA. First, we used a set of ICD-10, DRG, and CPT

codes suggestive of childbirth delivery (see S2 Table) [29]. These codes were used to retrieve

corresponding OMOP CDM concepts in ATHENA in which the resulting CDM concepts

were then used to identify the childbirth delivery records in the EHR. Second, since these

codes may not comprehensively capture all the OMOP CDM concepts indicating childbirth

delivery, we explored the semantic relationships of the OMOP CDM concepts retrieved by

these codes and supplemented them with the newly identified concepts [30]. The final concept

set contained 105 OMOP CDM standard concepts (See S3 Table). Researchers (TL and YS)

who performed the phenotyping and were not involved in the phenotyping evaluation.

Rule-based algorithm. Upon manual chart review of the EHR data, we found the OMOP

CDM concepts with the domain of procedure have the highest accuracy with respect to deter-

mining the DOD, followed by domains of condition and then observation. Thus, we developed

a rule-based algorithm to approximate the true DOD by prioritizing the OMOP CDM ‘proce-

dure’ domain over the ‘condition’ domain over the ‘observation’ domain (Fig 3). Table 3

shows the pseudocode for the algorithm.

All data manipulation, phenotyping, and algorithms were implemented using SQL, R,

Python, and PySpark on the N3C platform. Source programming codes are available at N3C,

project “[RP-2B9622] Assessing and predicting the clinical outcomes of pregnant women with

COVID-19 using machine learning approach.”

Evaluation

We performed a multi-level evaluation to test the validity of the algorithm as well as inter-rater

reliability. To test the content validity of the OMOP CDM concepts resulting from the pheno-

typing, two researchers (CL and NG) independently reviewed the concept IDs and their

semantic meanings and properties on the ATHENA and dichotomously rated the relevance of

all concept IDs. Inter-rater reliability was measured by Cohen’s Kappa. Disagreements were

discussed and resolved together with a senior OB/GYN physician (BC).

To test the clinical validity of the algorithm for inferring GA, we randomly selected 30

patients from the final cohort, which resulted in 40 distinct pregnancies, including multiple

gestations. Their comprehensive medical records on GA, excluding laboratory data, were

extracted from the EHR. We calculated the start date of pregnancy by subtracting the GA in
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weeks from the event date for each record. Two clinical experts (CL and NG) independently

reviewed the retrieved records and rated them based on two metrics: accuracy (high/moder-

ate/low) and granularity (high/moderate/low). Accuracy is concerned with the level that the

selected OMOP CDM concepts can accurately indicate the GA. For example, GA-related rec-

ords are typically documented during antenatal care visits. Multiple GA-related records, even

when documented at different dates, can suggest a consistent GA. The algorithm-selected con-

cept is most accurate if it is among these records. When there are other GA-related records

suggesting a GA different from the algorithm-selected record, the accuracy would not be high.

Granularity refers to the extent that the algorithm-selected concept can indicate a specific ges-

tational week. For example, the “gestation period, 38 weeks” has a high granularity level

whereas “third-trimester pregnancy” has a low granularity level.

To test the clinical validity of the algorithm for inferring DOD, we randomly selected 30

gestations from the final cohort. Their records consisting of procedures, conditions, observa-

tions, and measurements were extracted from the EHR within ± 14 days of estimated DOD.

Two clinical experts (CL and NG) independently reviewed the charts and labeled whether the

DOD was correctly inferred by the algorithm.

Despite the average gestation being around 280 days, this estimation varies among individu-

als. To represent rare cases such as preterm birth, post-term birth, and early-stage termination,

we also performed extreme value analysis, in which two clinical experts (TL and CL) performed

chart reviews for 30 randomly selected samples with<150 or>300 days of gestation.

Characteristics of pregnant women with and without COVID-19

Using TED-PC, we performed descriptive analyses to explore maternal demographics and

underlying conditions (See S4 Table for OMOP CDM concepts) for pregnant women with

(cases) and without COVID-19 (controls) which are characterized by temporal information of

the gestational weeks when SARS-CoV-2 infection was identified.

Fig 2. Flowchart for estimating gestational age and pregnancy dates.

https://doi.org/10.1371/journal.pone.0276923.g002

Table 1. Concepts categorization by accuracy level.

Accuracy

level

Time

interval

Definition Example concept IDs

High 1 week The concept name specifies the value of GA in weeks (e.g., Gestation period, 15

weeks).

4337360: Gestation period, 1 week

4097608: Gestation period, 18 weeks

444098: Gestation period, 40 weeks

Moderate—

high

2–5 weeks The concept name does not specify the value of GA in weeks but specifies the

range of GA in weeks which is larger than 1 week and smaller than 6 weeks (e.g.,

Gestation 9–13 weeks)

4181468: Gestation 9–13 weeks

44791171: 9–13 weeks gestational age

45757118: Spontaneous onset of labor between 37 and

39 weeks gestation with planned cesarean section

Moderate—

low

6–10

weeks

The concept name does not specify the value of GA in weeks but specifies the

range of GA in weeks which is larger than 5 weeks and smaller than 11 weeks (e.g.,

Gestation 14–20 weeks)

4180111: Third trimester pregnancy less than 36

weeks

4178165: Gestation 14–20 weeks

44791170: 14–20 weeks gestational age

Low 11–13

weeks

The concept name does not specify the value of GA in weeks but specifies the

trimester (e.g., first trimester)

3657563: First trimester bleeding

4239938: First trimester pregnancy

4112238: Third trimester

GA: gestational age.

https://doi.org/10.1371/journal.pone.0276923.t001
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Table 2. The pseudocode for the algorithm: Estimating the gestational age.

Algorithm: GA estimation for each gestation

1: procedure GA ESTIMATION

2: Input: GA-related clinical events, the date of GA-related clinical events

3: Output: Estimated GA for each gestation

4: pregnancy date <- calculated by the date of GA-related clinical events

5: if the time range indicated by the GA-related clinical events = = 1 week
then

6: accuracy <- 1

7: else if 2 weeks < = the time range indicated by the GA-related clinical
events < = 5 weeks then

8: accuracy <- 2

9: else if 6 weeks < = the time range indicated by the GA-related clinical
events < = 10 weeks then

10: accuracy <- 3

11: else if 11 weeks < = the time range indicated by the GA-related clinical
events < = 13 weeks then

12: accuracy <- 4

13: endif

14: for each patient

15: Sort the GA-related clinical events by event date chronologically

16: repeat

17: Select the first pregnancy date with the highest accuracy�

18: for the GA-related clinical events in (±270 days of the selected
pregnancy date)

19: Remove

20: endfor

21: Estimated GA <- the first GA-related clinical event with the highest
accuracy�

22: until the last GA-related clinical event

23: repeat

24: if remaining GA-related clinical events exist then

25: repeat

26: Select the first pregnancy date with the highest accuracy�

27: for the GA-related clinical events in (±270 days of the selected
pregnancy date)

28: Remove

29: endfor

30: Estimated GA <- the first GA-related clinical event with the
highest accuracy�

31: until the GA-related clinical event

32: else stop

33: endif

34: until the GA-related clinical event

35: endfor

36: endprocedure

GA: gestational age.

https://doi.org/10.1371/journal.pone.0276923.t002
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Fig 3. Flowchart for estimating dates of delivery.

https://doi.org/10.1371/journal.pone.0276923.g003
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Results

Identified OMOP CDM concepts

We identified 2,773 OMOP CDM concepts from the ATHENA vocabulary repository, of

which 2,370 indicated pregnancy. Among the concepts relating to pregnancy, 336 have GA-

related information. We excluded 189 concepts that either indicated the inaccurate time range

broader than one trimester (13 weeks) (e.g., concept ID 21493940: US for pregnancy in the

Table 3. The pseudocode for the algorithm: Estimating the date of delivery.

Algorithm: DOD estimation for each gestation

1: procedure DOD ESTIMATION

2: Input: childbirth delivery clinical events, the domain and the date of
DOD-related clinical events

3: Output: Estimated DOD for each gestation

4: Event DOD <- the date of childbirth delivery clinical events

5: if domain = = “procedure” then

6: accuracy <- 1

7: else if domain = = “condition” then

8: accuracy <- 2

9: else if domain = = “observation” then

10: accuracy <- 3

11: endif

12: for each patient

13: Sort the childbirth delivery clinical events by event DOD in reversed
chronological order

14: repeat

15: Select the first event DOD with the highest accuracy�

16: for the childbirth delivery clinical event in (±270 days of the
selected event DOD)

17: Remove

18: endfor

19: Estimated DOD <- the first event DOD with the highest accuracy�

20: until the last childbirth delivery clinical event

21: repeat

22: if remaining childbirth delivery clinical events exist then

23: repeat

24: Select the first event DOD with the highest accuracy�

25: for the childbirth delivery clinical events in (±270 days of the
selected event DOD)

26: Remove

27: endfor

28: Estimated DOD <- the first event DOD with the highest accuracy�

29: until the last childbirth delivery clinical event

30: else stop

31: endif

32: until the last childbirth delivery clinical event

33: endfor

34: endprocedure

DOD: date of delivery.

https://doi.org/10.1371/journal.pone.0276923.t003
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second or third trimester) or did not have corresponding records in the N3C database (e.g.,

concept ID 3025286: Gestational age estimated from foot length on US by Mercer 1987

method). Totally, 138 concepts contained useful gestational week information with a time

range from one week to one trimester. Within the selected 138 concepts, 42 (30.4%) were in

high accuracy, 9 (6.5%) were in moderate-high accuracy, 5 (3.6%) were in moderate-low accu-

racy, and 82 (59.4%) were in low accuracy.

Algorithm performance

To evaluate phenotyping results, the content validity of the selected concepts was assessed and

rated blindfolded by two independent reviewers (CL and NG) who did not participate in the

phenotyping. Both reviewers rated all concepts as “valid” (100% agreement).

We evaluated the performance of the GA algorithm in two dimensions: accuracy and gran-

ularity. Among the 30 randomly selected pregnant women, eight of them had two gestations

and one of them had three gestations during the study time frame. The mean gestation length

was 270.15 days with a maximum of 299 days and a minimum of 159 days. Among the 40 preg-

nancies, one reviewer rated 34 (85.0%) samples as high accuracy, 4 (10.0%) samples as moder-

ate accuracy, and 2 (5.0%) sample as low accuracy. The other reviewer rated 35 (87.5%)

samples as high accuracy, 3 (7.5%) samples as moderate accuracy, and 2 (5.0%) samples as low

accuracy. The Cohen’s Kappa with linear weighting is 0.62, CI = [0.35, 0.90]. For granularity,

both reviewers rated the 39 samples as high granularity and one sample as low granularity

(100% agreement, unweighted Cohen’s Kappa = 1). See Table 4 for the confusion matrix.

For the DOD algorithm, a total of 30 patients’ EHR were reviewed independently. Both

reviewers rated the 30 samples to be accurate (100% agreement, unweighted Cohen’s

Kappa = 1)

Extreme value analysis

We randomly selected 30 gestations with a gestation length either smaller than 150 days or

greater than 300 days and extracted their EHR. After chart review, 28 of the 30 gestations were

extracted with correct GA information, with an accuracy of 93.3%. For the two error cases, the

first one was due to the contradiction between the GA records on different dates. For example,

there was a record with the concept name “Gestation period, 38 weeks” on date 1, but other

records with the same concept on date 2. The second error case was due to the contradiction

between the GA records on the same date. For example, on the same date, one record was with

the concept name “Gestation period, 36 weeks” and another record was with the concept

name “Gestation period, 39 weeks”. Among the correctly inferred cases, a certain level of inac-

curacy existed. Five gestations only had low accuracy level GA records. Among the extreme

case, one of them had only one GA record. Inter-rater reliability is 100% (unweighted Cohen’s

Kappa = 1).

Table 4. Confusion matrix of the accuracy rating for the performance of the GA algorithm.

Reviewer2

High Moderate Low Total

Reviewer1 High 33 1 0 34

Moderate 2 1 1 4

Low 0 1 1 2

Total 35 3 2 40

https://doi.org/10.1371/journal.pone.0276923.t004
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Characteristics of pregnant women with and without COVID-19

Between June 1st, 2018 and May 31st, 2021, a total of 296,194 gestations in 270,897 pregnant

women were identified from the N3C database. The mean and median ages are 30.31 and 31,

respectively. There were 245,892 women who had one pregnancy during the study time,

24,713 and 292 had two and three pregnancies, respectively. The mean gestational length was

274.14 days. The median was 278 days, with a minimum of 140 days and a maximum of 308

days. N3C data retrieval was completed on 02/12/2022.

Using TED-PC, we identified the timing of SARS-CoV-2 infections in gestational weeks.

Fig 4 shows the frequency of infections across gestational weeks. More than half of the infec-

tions happened during late pregnancy (between 32 and 41 weeks), which might be related to

the increased antenatal visits in late pregnancy. See S5 Table for the selected demographics

and underlying conditions of the cohort captured by TED-PC, stratified by trimesters. There

were 104,791 and 191,403 gestations before and during the COVID-19 pandemic, respectively,

among which there are 16,659 gestations with COVID-19 and 174,744 without COVID-19

peri-pandemic. Age group 30–34 shared the largest proportion across the age groups, followed

by the age groups 25–29, 40–44, and 20–24. White people made up the largest percentage of

nearly 50% of the total population, followed by Black and Hispanic/Latino races. For mothers

who had ever been infected by SARS-CoV-2 before the DOD (before or during the preg-

nancy), age groups 30–34, 20–24, and 25–29 had the largest percentage. Besides, the

Fig 4. The distribution of the SARS-CoV-2 infection cases by gestational week.

https://doi.org/10.1371/journal.pone.0276923.g004
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percentage of White was lower (39.7%) compared with that of pre-pandemic (57.1%). His-

panic/Latino made up the largest proportion across the races in those SARS-CoV-2 infected

mothers (31.5%). Compared with the pregnant women without COVID-19, pregnant women

with COVID-19 had a higher prevalence in obesity or overweight (35.1% vs. 29.5%), diabetes

(17.8% vs. 17.0%), chronic obstructive pulmonary disease (COPD) (0.2% vs. 0.1%), respiratory

distress syndrome (ARDS) or acute respiratory failure (ARF) (1.8% vs. 0.2%), myocardial

infarction (0.2% vs. 0.1%), and HIV/AIDS (0.6% vs. 0.4%). The characteristics of the propor-

tions shared similar trends when stratified by different trimesters.

Discussion

Using N3C data, we created the first EHR-based cohort of SARS-CoV-2-infected pregnant

women in the US with complete temporal information of clinical events spanning the gesta-

tion length, which supports urgently needed COVID-19 research for pregnant women. Our

algorithm is among the first that detects exact gestational week of viral infection, early-state

pregnancy, preterm birth, early termination, post-term birth, and other adverse clinical events.

Because viral infection at different stages of pregnancy is associated with different risks of fetus

development and maternal status, TED-PC is generalizable to viral infection aside from

COVID-19 as well as adverse events that would affect pregnancy. This algorithm shows the

promise to underpin EHR deep phenotyping of pregnancy care as well as machine learning

methods, in which both require precise temporal information of clinical events. As a rapid

development of the clinical information extraction tool for combating COVID-19, our algo-

rithm is currently supporting several EHR-based cohort studies on the N3C to examine the

impact of COVID-19 on pregnant women’s real-time clinical inflammatory progression and

pregnancy complications.

The accuracy of TED-PC is warranted by a few logic layers. First, compared with previous

studies that focused on claims data or required labor efforts, our study took advantage of the

OMOP CDM normalized EHR data to categorize normalized concepts into different priority

groups [17, 22–24, 31–34]. For example, the GA algorithm prioritized the concepts in the

“Procedure” domain over “Condition” domain over “Observation” domain, which logically

prevented the algorithm from selecting the records at a higher risk of semantic ambiguity and

low granularity. Second, our algorithm categorized the GA-related concepts into different

accuracy levels by indicating the time range. This step allows TED-PC to prioritize records

with the most accurate information. Third, the use of the 270-day interval in our algorithm

enabled us to distinguish different gestations of the same pregnant woman within the time

frame. Fourth, the merging and matching process of the GA cohort and the DOD cohort

excluded gestations with untrustworthy or missing values, which is common in EHR.

Detection of temporal information for pregnant women with COVID-19 is made available

by two major features of OMOP CDM. First, OMOP CDM normalizes multi-system EHR

data linked at an individual level. This unique feature enables our algorithm to impute a huge

amount of missing temporal values and to resolve conflicts of temporal values among health

records from different hospital systems. Second, OMOP CDM includes annotated clinical

notes, procedures, and laboratory tests/results, which allows the algorithm to leverage multi-

source contextual information for inferring temporal information at an adequate level of

granularity.

A few limitations of this study warrant note. First, because several GA-related OMOP CDM

concepts do not indicate specific gestational weeks (e.g., “Spontaneous onset of labor between

37 and 39 week gestation with planned cesarean section”), we inferred the gestational weeks

using the median time point of the range for these concepts, which may impair the
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performance of the algorithm. This impact is mild on the concepts with high or moderate-

high accuracy levels since the time range is small, but it could be severe in the concepts with

the low accuracy level. Second, our EHR data may not be comprehensive. For example, some

examinations or laboratory tests do not have time information, but they are often prescribed

to pregnant women during a specific time frame of gestation. Our future direction will aim to

improve the performance of TED-PC and test the external validity. From error analysis, data

incompleteness and inconsistency remain the major sources of error. Well-designed EHR data

imputation methods and a hybrid model of rule-based and machine learning algorithms hold

promises for addressing these issues. Although our algorithm is implemented on N3C, it could

be potentially repurposed for other OMOP CDM normalized EHR.

Conclusion

We explored and compared the characteristics of pregnant women by different timing of

SARS-CoV-2 infection with our newly developed technique: TED-PC, a rule-based algorithm

to automatically infer comprehensive temporal information of clinical events from EHR dur-

ing pregnancy care. The performance of TED-PC is satisfactory as collectively the accuracy

and granularity of temporal information are beyond 90%. TED-PC has been implemented on

N3C, supporting multiple national EHR cohorts for desperately needed research on the impact

of COVID-19 on pregnancy. TED-PC is implemented on N3C data but remains generalizable

for OMOP CDM normalized EHR.

Supporting information

S1 Table. OMOP CDM concepts for gestational age-related EHR records.

(DOCX)

S2 Table. ICD, CPT, and DRG codes suggestive of childbirth delivery dates.

(DOCX)

S3 Table. OMOP CDM concepts for delivery date-related EHR records.

(DOCX)

S4 Table. OMOP CDM concepts for underlying conditions.

(DOCX)

S5 Table. Selected demographics and underlying conditions for pregnant women with and

without COVID-19 by gestations during pre- and peri-pandemic.

(DOCX)

Acknowledgments

We thank Ms. Ashlee Kim for her support of medical coding. We thank N3C consortium for

providing the data and infrastructure. The N3C consortium contact is NCATS_N3C@nih.gov.

N3C attribution

The analyses described in this publication were conducted with data or tools accessed through

the NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Pol-

icy v 1.2-2020-08-25b supported by NCATS U24 TR002306. This research was possible

because of the patients whose information is included within the data and the organizations

(https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories)

PLOS ONE Inferring Gestational Age and Delivery Date from Electronic Health Records for Pregnancy Women with COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0276923 October 31, 2022 15 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276923.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276923.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276923.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276923.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276923.s005
https://covid.cd2h.org/
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://doi.org/10.1371/journal.pone.0276923


and scientists who have contributed to the ongoing development of this community resource

(https://doi.org/10.1093/jamia/ocaa196).

IRB

The N3C data transfer to NCATS is performed under a Johns Hopkins University Reliance

Protocol # IRB00249128 or individual site agreements with NIH. The N3C Data Enclave is

managed under the authority of the NIH; information can be found at https://ncats.nih.gov/

n3c/resources.

Individual acknowledgments for core contributors

We gratefully acknowledge contributions from the following N3C core teams (leads desig-

nated with asterisks):

• CD2H Principal Investigators and N3C Lead Investigators: Melissa A. Haendel�, Christo-

pher G. Chute�, Anita Walden

• NCATS CD2H and N3C Science Officer: Kenneth R. Gersing

• NCATS CD2H and N3C Program Officer: Leonie Misquitta

• NCATS N3C Leadership Team: Joni L. Rutter�, Kenneth R. Gersing�, Penny Wung Bur-

goon, Samuel Bozzette, Mariam Deacy, Christopher Dillon, Rebecca Erwin-Cohen, Nicole

Garbarini, Valery Gordon, Michael G. Kurilla, Emily Carlson Marti, Sam G. Michael, Leonie

Misquitta, Lili Portilla, Clare Schmitt, Meredith Temple-O’Connor

• Workstream, subgroup and administrative leaders: Melissa A. Haendel�, Tellen D. Bennett,

Christopher G. Chute, David A. Eichmann, Justin Guinney, Warren A. Kibbe, Hongfang

Liu, Philip R.O. Payne, Emily R. Pfaff, Peter N. Robinson, Joel H. Saltz, Heidi Spratt, Justin

Starren, Christine Suver, Adam B. Wilcox, Andrew E. Williams, Chunlei Wu

• Key liaisons at data partner sites

• Regulatory staff at data partner sites

• Individuals at the sites who are responsible for creating the datasets and submitting data to

N3C

• Data Ingest and Harmonization Team: Christopher G. Chute�, Emily R. Pfaff�, Davera

Gabriel, Stephanie S. Hong, Kristin Kostka, Harold P. Lehmann, Richard A. Moffitt, Michele

Morris, Matvey B. Palchuk, Xiaohan Tanner Zhang, Richard L. Zhu

• Phenotype Team (Individuals who create the scripts that the sites use to submit their data,

based on the COVID and Long COVID definitions): Emily R. Pfaff�, Benjamin Amor, Mark

M. Bissell, Marshall Clark, Andrew T. Girvin, Stephanie S. Hong, Kristin Kostka, Adam M.

Lee, Robert T. Miller, Michele Morris, Matvey B. Palchuk, Kellie M. Walters

• N3C Community Project Management and Operations Team: Anita Walden�, Will Cooper,

Patricia A. Francis, Rafael Fuentes, Alexis Graves, Julie A. McMurry, Andrew J. Neumann,

Shawn T. O’Neil, Usman Sheikh, Elizabeth Zampino

• Analytics Team (Individuals who build the Enclave infrastructure, help create codesets, vari-

ables, and help Domain Teams and project teams with their datasets): Benjamin Amor�,

Mark M. Bissell, Katie Rebecca Bradwell, Andrew T. Girvin, Amin Manna, Nabeel Qureshi

PLOS ONE Inferring Gestational Age and Delivery Date from Electronic Health Records for Pregnancy Women with COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0276923 October 31, 2022 16 / 22

https://doi.org/10.1093/jamia/ocaa196
https://ncats.nih.gov/n3c/resources
https://ncats.nih.gov/n3c/resources
https://doi.org/10.1371/journal.pone.0276923


• Publication Committee Team: Mary Morrison Saltz�, Christine Suver�, Christopher G.

Chute, Melissa A. Haendel, Julie A. McMurry, Andréa M. Volz, Anita Walden, Carolyn Bra-
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