
Open Access: Full open access to 
this and thousands of other papers at 
http://www.la-press.com.

Clinical Medicine Insights: 
Oncology

Introduction
Prostate cancer (PC) is the most common type of tumor and 
the second cause of death in men from EU,1 and the main 
prostate-related pathology associated with death in men from 
USA.2 These high incidence rates led the scientific community 
to search for PC markers.

Marginal markers. PC is not the only common prostate-
related pathology in men. Benign prostate hyperplasia (BPH) 
is also a prostate-related pathology, which consists mainly in 
a very high prostate volume. It can be difficult to differentiate 
BPH from PC, and there are a few studies that tried to predict 

it from prostate-specific antigen (PSA)3 or derivatives4,5 but 
without success, maybe because of the fact that severe inflam-
mation may affect the level of PSA in blood.6 Statistically, it 
is difficult to differentiate PC from BPH using intermediate 
PSA.7 Taking this into account, as well as the interaction with 
other predictive variables, we suggest that PC and BPH can 
be disjoint values for a prostate-pathology prediction model. 
To the best of our knowledge, no successful model for BPH 
and PC prediction has yet been suggested in the literature.

Thus, over the years, PSA has become the main indicator 
for referring primary care patients to a urologist. Furthermore, 
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ckground: Traditional methods for deciding whether to recommend a patient for a prostate biopsy are based on cut-off levels of stand-alone 
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esults: Statistical dependence with PC and BPH was found for prostate volume (P-value,0.001), PSA (P-value,0.001), international prostate 
symptom score (IPSS; P-value,0.001), digital rectal examination (DRE; P-value,0.001), age (P-value,0.002), antecedents (P-value,0.006), and 
meat consumption (P-value,0.08). The two predictive models that were constructed selected a subset of these, namely, volume, PSA, DRE, and IPSS, 
obtaining an area under the ROC curve (AUC) between 72% and 80% for both PC and BPH prediction.
oncluson: PSA and volume together help to build predictive models that accurately distinguish among PC, BPH, and patients without any of these 
pathologies. Our decision tree and logistic regression models outperform the AUC obtained in the compared studies. Using these models as decision sup-
port, the number of unnecessary biopsies might be significantly reduced.
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high levels of PSA or an abnormal digital rectal examination 
(DRE) became the main (and frequently the only) reason to 
recommend a surgical biopsy, resulting in the fact that around 
75% of these biopsies were negative.8 This low specificity was 
the main reason to define new variables derived from PSA in 
order to decrease the number of unnecessary biopsies while 
maintaining its sensitivity. Thus, variables such as PSA velo
city (increment of PSA in a given time), PSA density (PSA 
divided by prostate volume as measured by transrectal ultra-
sound), age-specific PSA (PSA ranges accepted as normal 
given the patient’s age), free/total PSA (PSA unbound to 
protein divided by total or standard PSA test), and complex 
PSA (PSA bound to alpha-1 anti-chymotrypsin; that is, PSA-
ACT) have been a hot research topic in the scientific commu-
nity. A comparison of several assays3 shows that complex PSA 
may achieve better specificity with respect to the others at the 
same sensitivity levels, but of course the method to obtain this 
variable is more costly. On the other hand, this conclusion is 
negated in later studies,9,10 which conclude that no real dif-
ferentiation can be found among the PSA-derived variables. 
It becomes clear that the marginal consideration of just one 
variable for biopsy recommendation is not enough, whatever 
the variable and whatever the cut-off level chosen. In the same 
way that PSA is not valid as the sole indicator of biopsy, the use 
of the international prostate symptom score (IPSS) evaluation 
as the only marker may result in many BPH situations being 
unidentified or confused with PC. The joint value of other 
variables such as PSA, DRE, and prostate volume is more 
conclusive than IPSS. In fact, we found that IPSS was sel-
dom selected in our experiments. So, given that PC and BPH 
may share the same probability for variables such as PSA, we 
propose that it is important to define models that provide a 
multivariate understanding of the variables available.

Multivariate markers and predictive models. Given 
the above, the next logical step found in the literature is the 
stratified use of a set of variables; that is, the surgical process is 
decided according to the concatenation of pre-defined values 
and to a given order for such variables. For example, Catalona 
etal.11 claim that patients with a PSA level of 4–10ng/mL 
have, in general, a 25% probability of having PC. It is possible 
to factor this PC probability according to six different levels of 
%free PSA, achieving three to five points more in specificity. 
This kind of data stratification regarding the values of ordered 
variables is commonly known as look-up tables, and these 
have been compared with other PC prediction methods,12 
leading to the conclusion that they do not work very well. We 
think that the potential reason is that this linear combination 
of variables, based just on frequencies, might not represent the 
real interaction between such variables.

And so, in the last decade, we have seen an increase in 
the number of articles devoted to the development of predic-
tive models coming from the machine learning13 community. 
These models also use a pre-defined set of relevant features 
but combine their values according to different classification 

paradigms, which, moreover, can automatically re-define 
the predictive models built when adding new records to the 
database. Some of these models predict a binary response for 
PC,8,12,14 and some others are able to compute a probability of 
PC.6,15,16 However, the most important difference for clini-
cians is the fact that some of these predictive models make 
their prediction in a black-box manner; that is, they cannot 
explain in an interpretable manner the process of inference fol-
lowed to decide the value of the response variable. Whatever 
the effectiveness of a predictive model is, these are always to 
be used just as decision support systems,12 and so it is impor-
tant that the clinician can understand what the reasons for a 
given prediction are. Thus, although some classifiers used for 
prediction such as artificial neural networks14,17 usually obtain 
very good performance results after validation, they are unable 
to explain what interactions among the predictive variables 
have led them to make their prediction. Thus, focusing on the 
development of classifiers that can make an accurate predic-
tion of PC and be self-explainable, we find that in the last few 
years there have been four predictive models that have caught 
the attention of the research community: nomograms,18 deci-
sion trees,8,12 logistic regression,19,20 and Bayesian Networks 
(BNs).21,22

Nomograms are regarded as one of the most accurate and 
interpretable type of models. By means of graphical line-based 
connections, they show the interaction among variables from 
a mathematical formulation, which, commonly, is built using 
a regression model. Thus, this method is not self-dependent, 
which is probably the reason why we cannot find it in most of 
the state-of-the-art statistical and machine learning software 
packages. Furthermore, its representation and interpretation 
are very sensitive to the number of variables. With respect to 
BNs, the specialist may need a long training period and the aid 
of a visual application with a text explanation of the prediction 
and colored links in the graph.21 Furthermore, the more vari-
ables are included, the more difficult the model is to interpret 
and the more disagreements may exist between structures built 
manually and automatically. Thus, it is not clear that BNs can 
be categorized or regarded as easy-to-interpret by the clinician. 
On the other hand, decision trees are self-descriptive models: 
using predictive variables as nodes of the tree, and one branch 
per nominal value of each node, any person can follow the rea-
soning of the prediction starting from the root node to a leaf 
node, which contains the predicted value of the goal or class 
variable. And as for logistic regression models, they provide a 
set of coefficients to apply to a given formula; these coefficients 
are very easy to interpret and help the clinician to understand 
the contribution of each variable to the outcome. Consequently, 
after reviewing the current state-of-the-art models, we find 
that decision trees and logistic regression are the only predic-
tive models that successfully satisfy a three-fold criterion:

1. They clearly show the interaction among variables: we 
can interpret what the most important variables are in 
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reducing uncertainty about the prostate pathology, and 
it is straightforward to test the impact on prediction per-
formance when removing or swapping variables, and fur-
thermore, they are easily tunable.

2. They are easily interpretable: decision trees start with a 
root variable, and depending on its value, the clinician 
follows the corresponding branch, which leads to another 
variable, which can take another set of values, and so on 
until a leaf node is reached and its value is the prediction 
given. Regarding regression models, they provide odds 
ratios and a statistical significance that let us easily rec-
ognize the impact of variables on the model. Moreover, 
a clinical expert can even manually suggest interaction 
between variables.

3. Finally, these two models are implemented and are eas-
ily usable in well-known software packages such as R,23 
Weka24 (which are free and open-source tools) and IBM 
SPSS.25

With regard to the predictive attributes, we can find a wide 
range of variables used in many PC-related articles. However, 
many of them are difficult and/or expensive to obtain, such 
as complex PSA, serum proteases such as hK2,3 or expres-
sion of cytokines.26 Moreover, they may even be impossible to 
obtain when the prediction needs to be performed in primary 
care consultations. Thus, in this article, we present a study 
with two main contributions: (1) we provide interpretable 
predictive models for PC and BPH, obtaining better results 
than those found in the literature and compared in this study, 
and thus making it possible to reduce the number of unneces-
sary biopsies, which is a non-definitive painful process that 
can cause infections; and (2) we build these models by using 
only variables that are easy to obtain from a primary care con-
text; except in the case of prostate volume, which cannot be 
regarded as easy to obtain but which is, however, cheap.

In the next section, we explain the methodology used to 
obtain the target sample, and to create and evaluate the predic-
tive models and perform the statistical comparisons. Then, we 
present the results of our statistical and predictive analyses, and 
finally, we discuss these results and draw our conclusions.

Materials and Methods
This is an observational study, with an original sample size 
of 150men obtained from five primary care centers during a 
3-year period, 2009–2012, in the city of Albacete, Spain. It was 
approved by the ethical committee of the CHUA (Hospital  
of Albacete). The research was conducted in accordance with 
the principles of the Declaration of Helsinki.

The inclusion criteria were men of age .50 years, 
PSA$3ng/mL, and life expectancy.10 years. With respect 
to life expectancy, we used the statistics provided by the SES-
CAM service (health service in the region of Castilla-La 
Mancha, Spain), which claims that patients less than 78 years 
old may be included in the study. All patients participated upon 

explicit agreement, and briefings were conducted in the pri-
mary care centers to inform doctors of recruited patients about 
this study. A transabdominal vesico-prostatic ultrasound (an 
echography of the prostate) and DRE were conducted on all 
patients included in the study. The former provides the variable 
volume, that is, the volume of the prostate measured in cubic 
centiliters (cc), and the latter gives the variable DRE, this is a 
qualitative variable that describes the feeling on the special-
ist's finger when touching the prostate gland. Table1shows all 
variables obtained for this study. A patient without cancer was 
tagged as BPH when having values: PSA $8ng/mL, volume 
$30cc, and DRE augmented. Thus, BPH is always diagnosed 
by symptomatology in primary care centers. The hospitals in 
which prostate biopsies were performed include in their proto-
col not to verify BPH diagnosis through histology.

Patients with urologic diseases other than PC and BPH 
were excluded (orchitis, prostatitis, and urinary tract infec-
tions were found), so we finally ran our study over N=125 
patients: 25 tagged as PC, 75 as BPH, and 25 as none. Fol-
lowing the protocol established at the urology service in the 
hospital in which this research was carried out, a follow-up of 
6months was made. So, in our database, patients without a 
biopsy had been followed for at least 6months.

Variables. Prostate volume is the only variable included 
that cannot be regarded as an easy variable to obtain, since 
most primary care clinics do not have the necessary hardware 
to perform ultrasound scans. However, we included it because 
of the great importance it receives in the current literature for 
both PC and BPH, and moreover, if one has the necessary 
scanner, it is a cheap indicator to obtain.

The other variables acquired were: PSA, age, antecedents, 
DRE, meat consumption, physical activity, metabolic syndrome, 
origin, smoker, hematuria, body mass index (BMI), alcohol con-
sumption, sexual activity, and the total sum of questions from 
IPSS. Questions and measurements were designed by the main 
investigator, and approved by the ethical board of the hospital.

Since the predictive models applied in our research use 
categorical variables, a new version of our numerical variables 
was added to our database by converting them to their mul-
tinomial version according to state-of-the-art values and the 
advice of a urologist from the same hospital where this study 
was conducted. All variables are shown in Table1.

Under each urologist’s criteria, referred patients under-
went a fine-needle biopsy (six-cores or higher). If the biopsy 
was positive, they were tagged as PC. Patients who were not 
referred to the specialist and did not present PC for 2 years 
but suffered from BPH were tagged with the BPH diagnosis. 
Otherwise, they were tagged as none.

tatistical and predictive analysis. We ran Chi-square  
correlation tests for each predictive variable with the diagnosis 
variable (if a variable was numerical, we used its discretized 
version). For each numerical variable, the non-parametric 
Kruskal–Wallis analysis of variance test was used (after a prior 
Shapiro–Wilk test to reject the normal distribution assumption) 
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able 1. Variables obtained from men included in the study. Mean and standard deviation are shown for numerical variables; frequency (%) is 
shown for each possible value of the categorical variables. he 95% Cs are computed with a bootstrap of 1000 samples.

aale alue Mean/% 95% CI St Dev.

ntecedents o 79.2 72.0–86.0 –

1st grade (parents, brother, sister) 15.2 8.8–22.4 –

2nd grade (grandparents, uncle, aunt) 5.6 1.6–9.6 –

Origin City 67.2 59.2–75.2 –

own 32.8 24.8–40.8 –

[50–59] 16.0 10.4–23.2 –

[60–69] 48.0 40.0–56.0 –

ge (years) [70–79] 30.4 23.2–38.4 –

[80-] 5.6 2.4–10.4 –

moker o 64.0 56.0–72.0 –

es 36.0 28.0–44.0 –

lcohol consumption one 31.2 23.2–40.0 –

ow 56.0 46.4–64.8 –

igh 12.8 7.2–18.4 –

BM (kg/m2) umerical/{low, normal, overweight, obesity} 28.56 27.8–29.4 4.27

Metabolic syndrome o 84.8 77.6–90.4 –

es 15.2 9.6 22.4 22.4

Meat consumption one 0.0 0.0 0.0

3–4 units/week 57.6 48.0–67.2 –

aily 42.4 32.8–52.0 –

P (ng/ml) umerical/{[3–6],[6–10],[11-]} 8.34 6.8–10.2 9.97

P (points) umerical/{low, mid, high} 8.93 7.7–10.2 7.01

R ormal 25.6 17.6–33.6 –

ugmented 65.6 56.8–73.6 –

odularity 8.8 4–14.4 –

Volume (cc) umerical/{[-30], [30–39], [40–50], [51-]} 57.0 51.8–62.9 32.78

ematuria ormal 75.2 68.0–83.2 –

vidence 8.0 4.0–12.8 –

Microscopic 16.8 9.6–23.2 –

Macroscopic 0.0 0.0 –

Physical activity (weekly sessions) 0–1 38.4 29.6–46.4 –

2–4 43.2 34.4–52.0 –

.=4 18.4 12.0–25.6 –

exual activity ow 31.2 23.2–38.4 –

igh 68.8 61.6–76.8 –

iagnosis PC 20.0 12.8–27.2 –

BP 60.0 52.0–68.8 –

one 20.0 12.8–26.4 –

 

in order to compare its mean depending on diagnosis. All these 
methods were used as implemented by the R statistical package.

As explained in the Introduction, we chose two predic-
tive models: decision tree and logistic regression. In particular, 
the decision tree built is C4.5,27 which decides what variables 
to use in the tree based on an embedded feature-selection 
process regarding the reduction in uncertainty about the target 

variable (diagnosis). The well-known logistic regression model 
is constructed with a forward stepwise feature-selection pro-
cess, which adds features to the final model based on an inner 
cross-validation driven by accuracy.

The metrics obtained to measure the performance of the 
two models are: accuracy (success rate) and area under the 
ROC curve (AUC).28 Accuracy is a very common and intuitive 
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metric, which consists in dividing the number of correct pre-
dictions by the total number of predictions performed, and 
so it ranges from 0 to 100%. Of course, in contexts such as 
medical applications, the class or outcome variable presents a 
skewed distribution. Thus, if the classifier always predicts the 
skewed value of the class variable, its accuracy is high but less 
frequent values are never predicted correctly. However, AUC 
is insensitive to class skewness and changes of the class distri-
bution from the training to the test sets; that is why it is very 
commonly used in classification problems related to medicine. 
It ranges from 0 to 100%, and it can be interpreted as the prob-
ability that the classifier will rank a randomly chosen positive 
instance higher than a randomly chosen negative instance.28

These metrics were computed with a special case of cross-
validation: leave-one-out (LOO) validation. This kind of vali-
dation returns a very small biased, but with the potential of 
having a greater variance,29 as can be seen in the standard devi-
ation of the accuracies obtained in Section3. However, it has 
been shown that this variance is not greater, theoretically, than 
the variance of the hold-out validation method,30 and LOO 
is recommended for small sample sizes rather than common 
10-cross-validation.31 For comparison purposes with other 
prediction methods found in the literature, we use individual 
AUC for PC and BPH. We cannot use accuracy since this 
merges together the predictions for PC and BPH, and to the 
best of the authors’ knowledge there does not exist any article 
that builds predictive models for these two pathologies.

All the predictive analysis methods referred to were used 
as implemented by the Weka toolkit, using the default para
meters of classifiers C4.5 (decision tree) and Logistic. With 
respect to the validation process, the default seed (1) was used.

esults
Prior to building the predictive models, we ran statistical tests 
to identify categorical variables related to diagnosis. The aim 
of these tests is to search for variables that are statistically cor-
related with the variable diagnosis, which is categorical. Some 
of the predictive variables are categorical, and while others are 
numerical. Depending on the nature of these variables, a dif-
ferent test must be run.

tatistical analysis. Table2shows the well-known Chi-
square test of independence for diagnosis and each one of 
the other categorical variables. Table 3 shows the results of 
a non-parametric group test for the difference in the mean  
of each numerical variable, given each of the three possible val-
ues of diagnosis. Although the purpose of Figure1 is mainly 
descriptive, it can also be used as a support to the statistical 
findings in Table2.

Categorical variables that proved to be correlated with 
diagnosis are shown in Table2, volume, DRE, and PSA being 
the three variables with a more significant (and a stronger) 
correlation. Even using the most-conservative Bonferroni 
correction, the three variables identified as being the most 
relevant would still continue being so.

With respect to numerical variables, a significant differ-
ence in their means with respect to diagnosis was found for 
volume, PSA, and IPSS. Since diagnosis has three possible 
values (PC, BPH, and none), we show in Table 3 the 95% 
confidence interval (CI) of the difference in the mean for each 
variable, comparing the mean for PC with respect to the other 
two factors.

Volume, PSA, and IPSS boxplots are shown in Figure1 
for each possible diagnosis. Outliers were checked and we did 
not remove them since they belong to actual and correct data. 
We can see that the PSA and volume distributions show very 
little overlapping for each type of diagnosis, so we can regard 
them as the stand-alone variables with the highest discrimi-
nating power. Although IPSS was found to be statistically 
different for each diagnosis, we see a huge overlap between 
PC and BPH, so it might not be very helpful when trying to 
differentiate those diagnoses.

able 2. Chi-squared correlation test for categorical (and 
discretized-numeric) variables with respect to diagnosis. Results 
shown are: P-value, the correlation test statistic, and the strength of 
the correlation as computed by Cramer’s V (range from 0 to 1).

aale P-value χ2 Cae’ 

Volume (discretized) 4.21-11 60.141 0.470

R 4.22-09 44.878 0.408

P (discretized) 1.18-07 42.983 0.398

ge 0.002 21.315 0.230

P (discretized) 0.002 16.633 0.247

ntecedents 0.006 14.311 0.229

Meat consumption 0.028 10.878 0.200

moker 0.193 3.293 0.156

Origin 0.343 2.142 0.126

BM (discretized) 0.373 4.256 0.125

ematuria 0.564 4.844 0.133

lcohol consumption 0.572 4.783 0.133

Metabolic syndrome 0.743 0.594 0.066

exual activity 0.788 0.477 0.062

Physical activity 0.805 1.623 0.077
 

able 3. P-value and Chi-squared statistic of the Kruskal–Wallis 
non-parametric analysis of variance for numerical variables with 
respect to diagnosis. Results are shown only for the three variables 
for which the test was significant. The last two rows show the 95% 
C of the difference of the mean of each variable, given PC and the 
other two possible diagnosis.

olue PS IPSS

P-value 8.19-12 1.25-09 5.01-05

Kruskal Wallis χ2 51.057 41.004 19.804

BP-PC 95% C [10.44, 40.71] [−13.78, −6.21] [0.44, 6.34]

one-PC 95% C [−34.93, 2.20] [−17.11, −7.82] [−6.80, 0.43]
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Thus, after performing a statistical study, we found that 
the variables that are marginally related to diagnosis are: vol-
ume, PSA, IPSS (in both their numeric and categorical ver-
sions), DRE, age, antecedents, and meat consumption. Then, 
we conducted a predictive analysis using these variables as a 
start set, from which the models selected those which help 
them to improve their predictive performance the most.

ecision tree predictive model. The decision tree con-
struction process runs an internal (embedded) feature-selection 
process, which finally selects those variables that, in turn, 
reduce the uncertainty about the value of the target variable 
(diagnosis). When the inclusion of other variables does not 
reduce this uncertainty, then no more variables are selected. 
It is important to specify that the order of variables from the 
root node does not imply the order in which variables need to 
be acquired; all variables in the tree need to be obtained. The 
order among nodes is just the order of the inference of expla-
nation of the output predicted.

Our decision tree (see Fig. 2) selected, from the start 
set defined above, the variables volume, PSA, and DRE, in 
that order. The variables volume and PSA are numeric, so the 
decision tree discretized them following the well-known dis-
cretization algorithm presented in ref. 32. After validation, 
the mean accuracy obtained is 79.2% with standard deviation 
SD=40.7%. With respect to AUC, prediction for both PC 
and BPH was over a mean of 72% (SD=1.9%), it being a little 
higher for normal.

Volume and PSA were selected in their numerical ver-
sion, and the construction algorithm automatically discretized 
them in the optimal intervals with respect to diagnosis. Thus, 
volume became binomial with 43cc as cut-off point; and PSA 
also became binomial with different cut-off points depending 
on the level of the tree: 5.63ng/mL if volume ,=43cc, and 
23ng/mL if volume.43cc. For the case of volume ,=43cc 

and PSA ,= 5.63 ng/mL, the tree differentiates a second-
level cut-off point depending on the DRE result: 3.72ng/mL 
for DRE=augmented, and 4.69 for DRE=normal.

ogistic regression predictive model. We ran the con-
struction method of a logistic regression model with a greedy 
forward stepwise process, using as candidates the same vari-
ables from the start set as for the decision tree model, and AUC 
as metric for the evaluation of feature subsets. The variables 
selected were volume, PSA, IPSS in their numerical ver-
sion, and meat consumption. We found that if we dropped 
meat consumption from the model, AUC for PC increased 
by around 15%; thus we rejected it manually. Consequently, 
IPSS is the only different variable not selected in the decision 
tree (which used the DRE result instead). The logistic model 
and the corresponding odds ratios are shown in Table4. This 
model, whose resulting equations are shown in Figure 3, 
obtained 74.4% accuracy with SD=44.3%, and an AUC for 
each diagnosis value of over 80.0% (SD=4.73), it being very 
similar for PC and BPH.

The odds ratio obtained in the model indicates that:

•	 For a patient with a given prostate volume, each 1-cc 
increase in such volume would increase the probability 
of PC by 9.6% (95% CI: 2.4–17.4%) and that of BPH by 
13.3% (95% CI: 5.9–21.1%), with respect to not suffering 
from any of these pathologies.

•	 For a patient with a given PSA, each 1-ng/mL increase 
would double their previous probability of PC (95% CI: 
43.8–280%) and BPH (95% CI: 15.9–200%), with respect 
to not suffering from any of these pathologies.

•	 Given two patients with the same volume and PSA val-
ues, the probability of one patient having PC increases 
for each extra point obtained in the IPSS questionnaire 
by 13.4% (95% CI: −2.6 to 32.1%); while the probability 
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igure 1. Boxplots of P, volume, and P, for each possible diagnosis. he short segment inside each box represents the mean of the distribution, 
and the long segment represents the median.
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of BPH increases by 19.1% (95% CI: 3.7–36.8%), with 
respect to the probability of not suffering from any of 
these pathologies.

Finally, Figure 4 shows the ROC curves and their 
area values for each of the predictive models and the PC 
and BPH diagnosis (AUC is known to be equivalent to a 
Mann–Whitney U test). The logistic regression model obtains 
a higher AUC for both PC and BPH; however, the decision 
tree obtains a higher mean accuracy. This is because of its better  

behavior at predicting the none factor of diagnosis; that is, the 
decision tree gives less false negatives with respect to both 
pathologies. For the sake of clarity, we do not show the ROC 
curve for none, since it adds no extra information because its 
AUC is always better than the rest of the AUCs, in both pre-
dictive models.

With respect to accuracy, given the special case of 
LOO validation, the paired comparison between classifiers 
is not a comparison of means but a comparison of a bino-
mial result: success or failure at classifying one instance 

igure 2. ecision tree: the diagnosis is predicted in the lean nodes, based on the patient’s values for volume, R, and P. 79.2% accuracy, and UC 
for cancer, BP, and none is 71.4, 74.1, and 81.7%, respectively.

able 4. Coefficients and odds ratio logistic regression model, the reference value is diagnosis=normal.

aale Coeffent  ato P-value  ato 95% CI

Dagno P. Cane BPH P. Cane BPH P. Cane BPH P. Cane BPH

ntercept (B0) −8.939 −8.159 – – – – – –

Volume 0.092 0.125 1.096 1.133 0.009 0.000 [1.024, 1.174] [1.059, 1.211]

P 0.850 0.623 2.339 1.865 0.001 0.010 [1.438, 3.805] [1.159, 3.001]

P 0.126 0.175 1.134 1.191 0.105 0.013 [0.974, 1.321] [1.037, 1.368]
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(the test set only has one instance in LOO). Thus, the sta-
tistical comparison of accuracy is performed by means of 
the Chi-square independence test using the contingency 
table of successes and failures. The result is that the accu-
racy obtained by the two classifiers is not statistically dif-
ferent (P-value=0.008).

iscussion
This study presents some limitations, which should be taken 
into account when interpreting the results obtained.

1. The sample size after cleaning the database is 125; and 
it was obtained from a single center. The fact of having a 
not very large sample size has one main drawback, which 
is the existence of some inadequacies (paths in the tree 
with less clinical sense than others), which are created by 
the tree because it finds that the entropy (uncertainty) in 
data is reduced in that way. We present in this paper the 
decision tree that resulted in the best performance after 
validation. Another option would be to present the tree 
with most clinical adequacy.

2. We did not exclude patients with PSA.10ng/mL. This 
range is commonly excluded from PC prediction stud-
ies since those values are related to having PC. However, 
as mentioned in the Introduction, using PSA as a sole 
marker for PC prediction has been shown not to have 
enough predictive power. Furthermore, patients with 
PSA.10may present BPH but not PC, and our goal is 
to differentiate BPH from PC. In fact, our sample con-
tains 13 patients with PSA in range,10–20 nine of them 
being tagged as BPH but not PC (of those nine, four 
were not even recommended for biopsy by the urologist).

3. Biopsies were performed only on those patients who met 
the criteria for biopsy, in order to avoid unnecessary pain. 
Since the study was performed using primary care con-
sultations, the criteria to perform a biopsy depended on 
the urologist who attended the patient at the hospital; 
commonly, these criteria are suspicious DRE, PSA.10, 
PSA.=4, and free PSA,20%.

We studied 15 predictive variables for diagnosis that 
are not very expensive and are easy to acquire from primary 
care consultations (all except volume in many primary care 
buildings). Although the ultrasound scanner is not available 
in all primary care clinics, our results find that this variable 
is the most significant (more than PSA) for PC/BPH predic-
tion, and so primary care doctors would find it a valuable aid 
when deciding whether to refer the patient to a urologist. Fur-
thermore, the urologist could use any of the self-explainable 
predictive models developed in this work in order to make the 
final decision about the necessity of a surgical biopsy, which is 
a painful and infection-prone procedure.

Volume, DRE, PSA, age, IPSS, antecedents, and 
meat consumption were found to be the only variables with 
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igure 3. quations in the logistic regression model. By selecting as 
outcome the diagnosis value with a greater probability, this model 
obtained 74.4% accuracy, and for each possible diagnosis {PC, BP, and 
none}, the UC obtained was 83.3%, 85.3%, and 92.4%.
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significant marginal correlation with diagnosis. However, 
the predictive models that were constructed finally selected 
only volume, PSA, and DRE (decision tree) or IPSS (logis-
tic regression), three of which are numerical (DRE is catego
rical). The Kruskal–Wallis test and CIs for the difference of 
means (Table3) show that the mean prostate volume is higher 
in BPH patients than in those with PC while, in contrast, 
the volume is higher in PC cases than in patients without any 
of these pathologies. With respect to PSA, this is greater in 
patients with PC than in patients with BPH or without any of 
these pathologies; furthermore, this difference of mean PSA 
is lower in the BPH-none cases. Moreover, in Figure 1 we 
find that boxplots for PSA and volume do not overlap for any 
diagnosis; thus, this corroborates with our assumption that 
PC and BPH can be predicted with the same predictive model 
(a distinction that is necessary7), and we share evidence with 
another work8 that relates increase in volume with decrease 
in PC risk, but this requires further study since it may be the 
case that a six-core biopsy finds it easier to find PC tissues in 
a low-volume prostate.

Although our models are used to predict yes/no outcomes, 
soft models such as logistic regression are capable of predict-
ing a numerical probability (0 to 1) for each possible diagno-
sis, which is useful if the medical user would rather not have 
just one rigid prediction. With respect to IPSS, it becomes 
clear from both the CIs and the boxplot that it might be of 
some help in distinguishing among the possible diagnoses, 
but there is a big overlap between BPH and PC, and PC and 
none. Furthermore, the distribution of IPSS in BPH patients 
is very widely spread, and so this variable should definitively 
be used together with other predictive variables. In fact, it is 
discarded by the decision tree embedded feature-selection 
process, although it is selected in the logistic regression model 
(but it is not significant with respect to PC, as shown in the 
P-value column in Table4).

As we explained in the Introduction, the clinician needs 
the predictive model used as decision support to be interpre-
table, as is the case of decision trees and logistic regression. 
Maybe the decision tree is nearer to a natural language expla-
nation of the inference process: starting from the root node, 
and following the corresponding branches according to the 
value of the variable in the node, a final diagnosis (leaf node) 
is reached, and the path followed is in fact the explanation 
of such a prediction. On the other hand, the logistic regres-
sion model is able to express the influence of variables on the 
diagnosis by means of its coefficients and the consequent odds 
ratios. Furthermore, the resulting equations can be easily 
inserted in any spreadsheet to easily compute the prediction 
outcome of a new patient.

For the sake of comparison with other state-of-the-art 
studies, we computed the AUC metric for PC and BPH 
in each model. In a study by Chun et al.12, nomogram and 
black-box (neural network) prediction models were compared 
using the AUC metric for PC. Our decision tree and logistic 

regression obtained 75.1% and 80.3% AUC, respectively; that 
is, there is a 75.1% (or 80.3%) probability of correctly classify-
ing a random patient with PC or BPH, instead of classifying 
another healthy random patient as having a prostate disease. 
However, ref. 12 reports an AUC for the nomogram and neu-
ral network of 70.6% (using variables age, DRE, PSA, and 
%free PSA) and 67.0% (using the variables age, DRE, PSA, 
%free PSA, and TRUS-measured volume), respectively. In 
another work by Garzotto etal,8 a CART (tree) and a logistic 
regression were compared, and they obtained a PC AUC of 
74% and 72%, respectively, using in both models the variables 
PSA, PSA density, presence of a TRUS hypoechoic lesion, 
age, and volume. Although our results are slightly better, this 
should only be interpreted as a heuristic comparison, since 
validations of cited works are performed on different patients, 
sample sizes, and set of predictive variables.

Consequently, we suggest the use of self-explainable 
predictive models as decision support in order to decide on 
the referral of patients for prostate biopsy. We tried to reject 
prostate volume (it is not easy to obtain from a primary care 
context, although it is cheap) as a predictive variable, but per-
formance decreased significantly for BPH, a pathology that 
must be predicted and contrasted against PC. Some patients 
may present a high PSA and be recommended for biopsy, 
while by using this indicator together with volume, the clini-
cian could tell whether the actual pathology of the patient is 
BPH, which is a probable scenario as we found in Figure1 
and depicted in the decision tree model. This may help to 
reduce the number of unnecessary surgical procedures, con-
sequences of which comprise those related to diagnosis and 
treatment.

As future work, we intend to enlarge our sample with 
more patients from different health centers. Thus, we may 
obtain greater scientific evidence for the possibility of differ-
entiating multivariate symptoms for PC and BPH prediction, 
thus avoiding unnecessary surgery. Once models are built 
with a greater sample, they could be validated in the context 
of primary care consultations with new patients.
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