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Purpose: To create an ensemble of Convolutional Neural Networks (CNNs), capable of detecting and stratifying the risk of 
progressive age-related macular degeneration (AMD) from retinal photographs.
Design: Retrospective cohort study.
Methods: Three individual CNNs are trained to accurately detect 1) advanced AMD, 2) drusen size and 3) the presence or otherwise 
of pigmentary abnormalities, from macular centered retinal images were developed. The CNNs were then arranged in a “cascading” 
architecture to calculate the Age-related Eye Disease Study (AREDS) Simplified 5-level risk Severity score (Risk Score 0 – Risk 
Score 4), for test images. The process was repeated creating a simplified binary “low risk” (Scores 0–2) and “high risk” (Risk Score 3– 
4) classification.
Participants: There were a total of 188,006 images, of which 118,254 images were deemed gradable, representing 4591 patients, 
from the AREDS1 dataset. The gradable images were split into 50%/25%/25% ratios for training, validation and test purposes.
Main Outcome Measures: The ability of the ensemble of CNNs using retinal images to predict an individual’s risk of experiencing 
progression of their AMD based on the AREDS 5-step Simplified Severity Scale.
Results: When assessed against the 5-step Simplified Severity Scale, the results generated by the ensemble of CNN’s achieved an 
accuracy of 80.43% (quadratic kappa 0.870). When assessed against a simplified binary (Low Risk/High Risk) classification, an 
accuracy of 98.08%, sensitivity of ≥85% and specificity of ≥99% was achieved.
Conclusion: We have created an ensemble of neural networks, trained on the AREDS 1 dataset, that is able to accurately calculate an 
individual’s score on the AREDS 5-step Simplified Severity Scale for AMD. If the results presented were replicated, then this 
ensemble of CNNs could be used as a screening tool that has the potential to significantly improve health outcomes by identifying 
asymptomatic individuals who would benefit from AREDS2 macular supplements.
Keywords: AREDS, Simplified Severity Scale, AMD, neural networks

Plain Language Summary
In this paper, we have improved upon previous work, creating an ensemble of neural networks to accurately automating the calculation 
of AREDS Simplified Severity Scale for AMD, using fundus images.

Introduction
Age-related macular degeneration (AMD) is responsible for approximately 9% of global blindness and is the leading 
cause of visual loss in developed countries. Worldwide, it is estimated that nearly 200 million are living with AMD and it 
is expected that this number will increase substantially over the next two decades as a result of changing population 
demographics.1,2 AMD is a progressive, stepwise disease and is classified, based on clinical examination or color fundus 
photography, into early, intermediate, and late stages. The hallmarks of intermediate disease are the presence of large 
drusen or pigmentary abnormalities at the macula. There are two forms of late AMD: 1) neovascular AMD and 2) 
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atrophic AMD, with geographic atrophy (GA).3–5 The Age-Related Eye Disease Study (AREDS), sponsored by the 
National Eye Institute (National Institutes of Health), was a randomized clinical trial to assess the efficacy of oral 
supplementation with antioxidant vitamins and minerals on the clinical course of AMD and age-related cataract.6 

Longitudinal analysis of this study cohort led to the development of the patient-based AREDS Simplified Severity 
Scale for AMD. It combines risk factors from both eyes to generate an overall score for the individual, based on the 
presence of one or more large drusen (diameter >125 mm) or pigmentary abnormalities at the macula of each eye.6,7 The 
5-step Simplified Severity Scale can be used by clinicians to predict an individual’s 5-year risk of developing late AMD 
and thus determine which patient would benefit from anti-oxidant supplements to reduce the risk of them developing 
neovascular AMD.6 The rising disease prevalence will place a significant burden on existing eye care services, and as 
a result there is increasing interest in the use of automated diagnostics and tele-ophthalmology services to identify at-risk 
individuals and facilitate both the early diagnosis of sight-threatening disease and instigation of early intervention 
strategies to reduce the risk of disease progression.8–10

To date, a small number of groups have reported the outcome of neural networks to automate the process of both 
detecting and classifying AMD in retinal images, with varying levels of success.11–17 However, only one group has 
attempted to automate the AREDS Simplified Severity Scale using retinal images.18,19 This approach is of interest 
because if this scale could be generated automatically from retinal images it would enable the development of tools that 
could enable mass screening for AMD in primary care, without recourse to specialist review. The one existing model 
which used low-quality images and an architecture that utilized three individual disease classifier CNNs which indepen-
dently fed data into the Simplified 5-step severity scale achieved an accuracy of just 0.671; kappa 0.55819 In the current 
paper, we hypothesized that it should be possible to build CNNs that would more accurately detect those elements critical 
to the AREDS 5-step Simplified Severity Scale, namely advanced AMD (aAMD), drusen size and retinal pigmentary 
abnormalities, if higher quality images were used. We also investigated the effect of image size, network architecture and 
hyperspace optimization on the overall performance of the neural network. The accuracy of the resulting optimized 
neural network to predict the final 5-step severity scale score generated was then assessed against the ground truth using 
traditional metrics, ROC analysis, sensitivity and specificity.

Methods
Dataset
The AREDS 1 (ie, initiated in 2010 and 2014) dataset was obtained from the National Eye Institute (https://www.ncbi. 
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id¼phs000001.v3.p1). The University of Auckland UNISERVICES 
and University of Auckland Contract Management team approved the process of data acquisition and use protocol. In 
total, 188,006 images from the AREDS1 datasets were initially obtained. These images were then passed through our 
previously published quality assessment (QA) neural network.20 In brief, this QA neural network was trained on 100,000 
fundus images which were labelled as gradable vs non-gradable. In our previous publications, it was demonstrated that 
the QA neural network has >99% accuracy.20–22 Using our QA neural network, the original 188,006 images were reduced 
to 118,254 images that were deemed gradable, representing 4591 patients (Figure 1). The overall demographics of this 
dataset were as follows: age 55.3–81.3 (overall mean 69.4), 2027 males, age 55.3–81.2 (male age mean 69.6), 2564 
females, age 55.3–81.3 (female age mean 69.2). Overall, 398 patients of the cohort used in this study developed 
advanced AMD during the AREDS.

These images were then labelled if they were clinical signs of advanced AMD (aAMD), drusen or pigmentary abnorm-
alities present. All images in the AREDS 1 dataset have been read by the AREDS reading center and a disease label issued 
according to the predefined protocol23 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetListOfAllObjects.cgi?study_ 
id=phs000001.v3.p1andobject_type=variable. We used the predetermined clinical labels allocated to each of the F2 images 
to populate the various disease states used in this study. These labels were not mutually exclusive (ie, one image could have 
several labels). The dataset was then split into training\validation\testing as described below, where the testing set included 
1148 patients, 41,849 images representing 7965 recorded visits (Tables 1–3).
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Image Preprocessing
The AREDS 1 dataset has JPG, DNG and TIFF formats available for all of the images. All the JPG images were pre- 
processed before feeding into the neural network training. First, the blank backgrounds on both sides of the fundus were 
cropped so that the fundus on each image fitted into a rectangular box. Then, the cropped images were resized into 
a standard 800*800 resolution. Finally, the cropped and resized images were further processed by applying the Gaussian 
blur algorithm (alpha=4, beta=−4, gamma=128 and scale ratio=10) in order to reduce the image noise and enhance the 
lesion patterns24 (Supplementary Figure 1).

Training Details
In this study, the following two sets of hyperparameters were utilized for training neural networks. A mini-batch size of 
16 and neural network input image size 800*800*3, and a mini-batch size of 32 and neural network input image size 
600*600*3. As the aim of this study was to use a classification neural network to automatically diagnose macular 
degeneration, the sparse categorical cross-entropy algorithm was applied to calculate training loss. The Adam optimiza-
tion algorithm was utilized to conduct a loss function gradient descent at a learning rate of 0.001. A global average 
pooling layer was added to the EfficientNetB0 neural network followed by a 0.3 dropout rate. Finally, a fully connected 
SoftMax dense layer was added corresponding to the task classes. A NVIDIA QUADRO RTX 8000 with 48 GB of high- 

Figure 1 Flowchart, demonstrating the initial data acquisition, image quality assessment, labelling process and training set creation.

Table 1 The Spread of Abnormalities in the 
Dataset Used in This Study, and Training, 
Validation and Test Dataset Splits for Each Neural 
Network Category

Advanced AMD No Yes

Number of Images 60,407 8627

Training 30,205 4315

Validation 15,101 2,156

Testing 15,101 2156
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speed GDDR6 memory was utilized for training. EfficientNetB0 deep learning neural network architecture was used for 
optimizing the hardware efficiency. Gaussian blur was used for image feature enhancement, as explained above. Class 
weights were applied to cope with class imbalance.

Neural Network Architecture
We tested a number of neural network designs (including InceptionRestNetV2, EfficientNet B0-B4, ResNet, etc) and chose the 
EfficientNetB0 architecture for optimizing the hardware efficiency.25 This architecture was further modified to have input size 
images as either 600*600 or 800*800 pixel size. The dataset (Figure 1) was then split into 50%/25%/25% ratios for training, 
validation and test purposes. It was ensured that the patient-level data were used only for training, validation or testing, to ensure 
that there could be no patient-level data leakage between training, validation or testing subgroups. A series of data augmentation 
process were applied to the images during the neural network training, including but not limited to 5% width and height shift 
range, 20% shear transform range, 360 degrees rotation range, 10% zoom in and out range, horizontal and vertical flip and most 
importantly, to address image lightness issues, a 0–1.5 brightness scaling range. We also investigated various high-level neural 
networks designs, whereby different networks were trained, each focused on a different single aspect or their combinations of the 
Simplified Severity Scale risk elements. These neural networks were then interconnected in different combinations to yield the 
best results as defined by overall accuracy, sensitivity and specificity compared to Peng et al.19

Overall Model Architecture
Those images deemed to be of good quality were used to train three individual disease state neural networks: 1) an 
Advanced AMD classifier, 2) a Drusen size classifier and 3) a pigmentary abnormalities classifier (see below for details). 
An important component of the current study was to determine the optimal arrangement of these three component 
classifiers that would most accurately reproduce the 5-step Simplified Severity Scale, so in addition to building a model 
that utilized the three component classifiers reading any given image simultaneously, we also created a number of models 
that utilized more complex interconnecting component classifiers. The best outcome was achieved using a “cascading” 
neural network hierarchy, where individual neural networks, each focused on one component of the AREDS clinical 
variable labels, feed data into each other. The architecture of cascading CNNs is shown in Figure 2. In the first pass, the 

Table 3 The Pigmentary Abnormalities in the Dataset 
Used in This Study, and Training, Validation and Test 
Dataset Splits for Each Neural Network Category

Pigmentary Abnormality No Yes

Number of images 45,217 13,948

Training 6974 22,610

Validation 3487 11,304

Testing 3487 11,303

Table 2 The Drusen Categories in the Dataset Used in This Study, and 
Training, Validation and Test Dataset Splits for Each Neural Network 
Category

Drusen Size None/Small Medium Large

Number of Images 25,295 13,915 19,039

Training 12,649 6959 9521

Validation 6324 3478 4759

Testing 6324 3478 4759
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image was interrogated by the Advanced AMD classifier and if the image was identified as having features of aAMD; 
either geographic atrophy or neovascularization, no further analysis was performed. If aAMD was not detected the image 
was then passed through to the Drusen Size and Pigmentary Abnormality classifiers. We further identified that the drusen 
size network had difficulty differentiating between none/small and medium drusen (see results). With reference to the 
AREDS 5-step Simplified Severity Scale (AREDS 18)6 the finding of medium drusen is only relevant if large drusen are 
not detected in either eye. To determine drusen size, all images were therefore first passed through a binary CNN which 
classified images as either “non-large v large drusen”. Images were only then passed to a second binary “none\small 
v medium drusen” classifier if no large drusen were detected. The results generated by the three disease classifiers were 
then used to calculate an individual’s score on the 5-step severity scale as illustrated in Supplementary Figure 2.

Labeling Nomenclature Used to Train the Individual Disease Classifier CNNs
The Advanced AMD neural network was designed to analyze the F2 (macular centred) images producing a binary (yes: 
aAMD present/no aAMD not present) outcome. The aAMD neural network was trained using the following pre-assigned 
AREDS variables:

● (SSR/HEMORRHAGIC RD FIELD 2 Left/Right Eye) LESSRF2 & RESSRF2 labels were used where grade 0 was 
used to label negative and grade 2 was used to label positive.

● (HARD EXUDATE FIELD 2 Left/Right Eye) LEHDEXF2 & REHDEXF2, labels were used where grade 0 was 
used to label negative and grade 2 was used to label positive.

● (SUBRETINAL/SUBRPE HEMORRHAGE FIELD 2 Left/Right EYE) LESUBHF2 & RESUBHF2 labels were 
used where grade 0 was used to label negative and grade 2 was used to label positive.

● (SUBRETINAL FIBROSIS FIELD 2 Left/Right EYE), LESUBFF2 & RESUBFF2 labels were used where grade 0 
was used to label negative and grade 2 was used to label positive.

Figure 2 The “cascading” architecture, where the patient-level image set is split into left and right eye images. These images then progress through an aAMD detection 
neural network and if negative, through the Drusen Size and Pigmentary Abnormality detection neural networks. The Simplified Severity Score is then calculated depending 
on the image-level results, which is then aggregated back to the patient-level.

Clinical Ophthalmology 2023:17                                                                                                   https://doi.org/10.2147/OPTH.S396537                                                                                                                                                                                                                       

DovePress                                                                                                                         
459

Dovepress                                                                                                                                                              Xie et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=396537.docx
https://www.dovepress.com
https://www.dovepress.com


● (GEOGRAPHIC ATROPHY CENTER POINT Left/Right EYE) For Advanced AMD (Geographic Atrophy), 
LEGEOACT & REGEOACT labels were used where grade 0 was used to label negative and grade 2 was used 
to label positive.

● (GEOGRAPHIC ATROPHY AREA C/SUB Left/Right) EYE LEGEOACS & REGEOACS labels were used where 
grade 0 was used to label negative and grades 2–4 were used to label positive.

● (GEOGRAPHIC ATROPHY W/I GRID Left/Right EYE) LEGEOAWI & REGEOAWI labels were used where 
grade 0 was used to label negative and grades 2–7 were used to label positive.

The “Drusen Size” neural network was designed to analyse the F2 (macular centred) images producing a 3-class 
outcome: none\small drusen, medium drusen and large drusen >125 present. If two or more images belong to the 
same eye from the same patient visit, the eye-level prediction was aggregated by the maximum method described above. 
The Drusen Size neural network was trained using the following pre-assigned AREDS variables:

1. (MAXIMUM DRUSEN SIZE W/I GRID Left Eye/Right EYE) LEDRSZWI & REDRSZWI, where grades 0 and 
2 were used to identify none/small drusen; grade 3 was used to identify medium drusen; grades 4 and 5 were used 
to identify large drusen.

2. (DRUSENOID PED FIELD 2 Left/Right EYE) LEDRUSF2 & REDRUSF2, where variable grade 2 was used to 
identify large drusen.

The Pigmentary Abnormality (PA) neural network was designed to analyze the F2 (macular centered) images producing 
a binary (yes: PA present/no PA not present). The PA neural network was trained using the following pre-assigned 
AREDS Clinical variables:

1. (INCREASED PIGMENT AREA W/I GRID Left/Right EYE) LEINCPWI & REINCPWI, where variable grade 0 
was used to label negative; variable grades 2–6 were used to label positive.

2. (RPE DEPIGMENTATION AREA W/I GRID Left/Right EYE) LERPEDWI & RERPEDWI, where variable 
grade 0 was used to label negative, while variable grades 2–7 were used to label positive.

Assessing the Individual Neural Networks and Overall Model Performance
The image level results for the component neural networks aAMD, Drusen size and Pigmentary abnormalities are 
presented as t-distributed stochastic neighbor embedding (t-SNE) plots. To facilitate an assessment of the overall 
model to accurately predict an individual score on the 5-step Simplified Severity Scale we first had to calculate the 
score issued to each patient whose images were used in this study. Based on the data provided by AREDS each eye of 
every patient can be issued with disease labels based on the presence or otherwise of advanced AMD, drusen size or 
pigmentary abnormalities. Having identified these labels, the score issued by the 5-step Simplified Severity Score was 
calculated for each patient at every visit. These scores served as the ground truth against which the overall model was 
assessed. As the AREDS dataset comprises multiple images per eye, the worst outcome per image was used to 
generate the eye level results. For example, if any image was predicted positive for aAMD, the eye was labelled 
positive for aAMD. The eye-level results were then aggregated to produce the patient-level data and the AREDS 5-step 
Simplified Severity Score.

The patient-level outputs from the component neural networks, and the overall performance of the neural network to 
predict an individual’s AREDS 5-step Simplified Severity Score was assessed using the traditional metrics accuracy, 
specificity, sensitivity, Cohen’s kappa statistic, and receiver operating characteristic curve analysis (with reference to the 
Reading Center grades issued by AREDS as the gold standard) as appropriate. The kappa values <0 indicate no 
agreement, and 0–0.20 indicate slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 as substantial, and 0.81–1 almost 
perfect agreement.26 Unweighted kappa was used to assess binary classification neural networks, and the quadratic 
weighted kappa was used to assess multi-class classification neural networks.
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Results
Our iterative design and optimization process revealed that a “cascading neural network”, comprising a series of EfficientNet B0 
neural networks (Figure 2), combined with an optimized hyperparameter set, yielded the most accurate results. The performance 
of the sequential cascading neural network model that we finally settled on was superior to the simultaneous 3-class neural 
network model utilised by Peng et al19 (AUC 0.993 v 0.988 both architectures tested with images 800*800). Having settled on the 
appropriate architecture for the overall model and in order to assess the impact image size had on the models’ overall performance, 
the results generated from a 600*600 image input size and an 800*800 image size are reported.

Image-Level Performance of the Individual Component Neural Networks
The t-distributed stochastic neighbor embedding (t-SNE) algorithm is a dimensionality reduction algorithm that converts high- 
dimensional data into low-dimensional data. It is commonly used to visualize high-dimensional data in two-dimensional plots. As 
mentioned earlier, after feeding a fundus input image into the deep learning neural network, the neural network outputs a multi- 
dimensional vector for final classification. In this experiment, all the fundus images in the testing set were converted into 1280- 
dimensional feature vectors. These 1280-dimensional feature vectors were then reduced into 2-dimension (Figures 3). Each dot in 
the t-SNE plot represents a fundus image. Depending on the on the ground-truth labels, these dots are plotted in a different color 
and as a result the figures thus generated are a good visualization of the trained neural network’s performance. The figures 
presented represent the results generated by using images 800*800.

In the Drusen Size neural network, there are three classes: none/small drusen, medium-sized drusen and large drusen. It is 
observed that there is clear boundary distinguishing none/small drusen (blue dots) from large drusen (green dots) (Figure 3). This 
shows that the trained neural network is comfortably able to distinguish between none/small drusen and large drusen. However, 
the boundaries between none/small drusen and medium drusen and large drusen and medium-sized drusen (red dots) are less 
distinct. As the result, it is expected that there will be false negatives and positives in identifying medium-sized drusen. 
Furthermore, as large drusen (green dots) overlap more with medium-sized drusen than none/small drusen it indicates that the 
trained neural networks are better able to distinguish between medium-sized and large drusen than none/small drusen and 
medium-sized drusen.

For both Pigmentary Abnormality and Advanced AMD neural networks, the clustering of both classes is reasonably well 
separated indicating that the trained neural networks can distinguish comfortably between the relevant classes (Figures 4 and 5). 
This finding agrees with the results from the confusion matrix Tables 4–9.

Patient-Level Performance of the Individual Component Neural Networks
“Advanced AMD” Neural Network Results
At the patient level, the Advanced AMD neural network yielded 93.74% accuracy – 92.39% sensitivity- 94.07% specificity – 
0.813 kappa (95% CI: 0.792–0.833) and 94.53% accuracy – 92.82% sensitivity – 94.95% specificity – 0.835 kappa (95% CI: 

Figure 3 Scatter plot illustrating the performance of the Drusen Size neural network.
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0.815–0.854) for 600*600 and 800*800 image input size, respectively (Tables 5 and 6). At the patient level, the neural network 
achieved an AUC of 0.973 when 600*600 images were used. A modest improvement to 0.975 was achieved when 800*800 
images were used (Figure 6).

“Drusen Size” Neural Network Results
At the patient level, the Drusen Size neural network yielded 81.59% accuracy – 0.810 quadratic weighted kappa (95% CI: 0.793– 
0.827) and 82.6% accuracy – 0.820 quadratic weighted kappa (95% CI: 0.803–0.837) for the 600*600 and 800*800 input image 
sizes, respectively (Tables 7 and 8).

Figure 4 Scatter plot illustrating the performance of the Pigmentary Abnormality neural network.

Figure 5 Scatter plot illustrating the performance of the Advanced AMD neural network.

Table 4 Patient-Level Performance of the Advanced 
AMD Neural Networks for the 600*600 Image Size

Prediction Actual No Yes

No 3614 228

Yes 71 862
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“Pigmentary Abnormality” Neural Network Results
At the patient level, the Pigmentary Abnormality neural network yielded 83.84% accuracy –0.793 quadratic weighted kappa (95% 
CI: 0.771–0.815) – and 86.33% accuracy – 0.823 quadratic weighted kappa (95% CI: 0.803–0.844), for the 600*600 and 800*800 
input image sizes, respectively (Tables 9 and 10).

Table 5 Patient-Level Performance of the Advanced 
AMD Neural Networks for the 800*800 Image Size

Prediction Actual No Yes

No 3647 194

Yes 67 866

Table 6 Patient-Level Performance of the Drusen Size Neural 
Networks for the 600*600 Image Size

Prediction Actual None/Small Medium Large

None/Small 2142 346 29

Medium 188 888 159

Large 11 77 560

Table 7 Patient-Level Performance of the Drusen Size 
Neural Networks for the 800*800 Image Size

Prediction Actual None/Small Medium Large

None/Small 2131 353 33

Medium 157 922 156

Large 9 57 582

Table 8 Patient-Level Performance of the Pigmentary 
Abnormality Neural Networks for the 600*600 Image Size

Prediction Actual None One Eye Both Eyes

None 2554 298 28

One Eye 220 804 100

Both Eyes 7 60 341

Table 9 Patient-Level Performance of the Pigmentary 
Abnormality Neural Networks for the 800*800 Image Size

Prediction Actual None One Eye Both Eyes

None 2628 235 17

One Eye 215 829 89

Both Eyes 11 46 351
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Patient-Level Simplified Severity Scale Results
The AREDS Simplified Severity Scale has five risk score levels (0–4), each of which is associated with a calculated risk of the 
individual’s macular degeneration progression. This score is based on the presence and size of any drusen and whether there are 
characteristic pigmentary abnormalities in the fundus images. The extent to which these features are present determines both the 
eye-level and patient-level risk score. Here, we have used the outcome of our Drusen Size and Pigmentary Abnormality neural 
networks from each image, which were then aggregated to patient-level, to calculate the equivalent Simplified Severity risk score 
as the basis for the assessment of the accuracy of our platform. Using the 600*600 images, the 5-class accuracy level was found to 
be 78.49% (Table 11). Quadratic weighted kappa value 0.854 (95% CI: 0.842–0.865). Using the 800*800 images, the 5-class 
accuracy level was found to be 80.43% (Table 11). The quadratic weighted kappa value was 0.870 (95% CI: 0.861–0.880). The 
overall neural networks achieved an AUC of 0.991 and 0.993 using image sizes of 600*600 and 800*800, respectively (Figure 7).

To assess the utility of our neural network as a community screening tool, the Simplified Severity risk score was further 
contracted to a binary, 2-class classification: of low risk (Simplified Severity risk scores 0–2) and high risk (Simplified Severity 
risk score 3–4). Using this very simplified reclassification, the Cascading neural network achieved an accuracy of 98.03% and 
a sensitivity of 85.44% and a specificity of 98.66% and a negative predictive value of 99.27% when automating the production of 

Figure 6 Area under the receiver operating curve for the advanced AMD neural network.

Table 10 Patient-Level 5-Class Risk Score Prediction vs Calculated, for Image Input Size of 
600*600

Prediction 
Actual

Risk Score 0 Risk Score 1 Risk Score 2 Risk Score 3 Risk Score 4

Risk Score 0 3158 476 49 1 0

Risk Score 1 274 1098 218 17 3

Risk Score 2 22 130 677 62 17

Risk Score 3 1 6 49 61 46

Risk Score 4 0 1 2 25 111
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the AREDS simplified scale from retinal images sized 600*600; kappa value 0.795 (95% CI 0.760–0.829) (Table 12). If images of 
800*800 were used the respective figures were 98.08%, 86.09%, 98.66% and 99.32% (Table 12). The kappa value was 0.796 
(95% CI 0.761–0.831) (Table 13).

Discussion
The AREDS 5-step Simplified Severity Scale was developed to provide clinically useful risk categories for the 
development of advanced AMD in persons with earlier stages of AMD.6 It results in a scoring system that assigns 1 
point for the presence of one or more large (≥125 µm) drusen, 1 point for the presence of any retinal pigment 
abnormalities in an eye, and 1 point for bilateral medium drusen if there are no large drusen in either eye. Risk factors 
are summed across both eyes, forming a 5-step scale (steps 0–4) for which the 5-year risk of developing advanced AMD 
in at least 1 eye is derived. The 5-step Simplified Severity Scale has since been validated by comparing the projected risk 
against real-world data derived from the Blue Mountains Eye Study with a high degree of concordance between the 
predicted and expected 5- and 10-year incident rates of late AMD being reported.27 We used a novel CNN approach to 

Table 11 Patient-Level 5-Class Risk Score Prediction vs Calculated, for Image Input Size of 
800*800

Risk Score 0 Risk Score 1 Risk Score 2 Risk Score 3 Risk Score 4

Risk Score 0 3204 432 48 0 0

Risk Score 1 257 1131 212 9 1

Risk Score 2 18 116 701 61 12

Risk Score 3 1 3 34 80 45

Risk Score 4 0 2 2 20 115

Figure 7 Area under the receiver operating curve for the patient-level performance of the cascading neural network in predicting the 5-Step Simplified Severity Score using 
600*600 and 800*800 images.
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automate the classification of the images in the AREDS dataset with a view to identifying the three principal components 
of the Simplified Severity score: advanced AMD, large drusen and pigmentary abnormalities with the aim of then being 
able to automate the risk of an individual’s disease progressing using the AREDS 5-step Simplified Severity Scale 
Scores. At the patient level, our classifier achieved a 5-class accuracy of 78.49% and 80.43%, and a quadratic kappa of 
0.854 and 0.870 for the 600*600 images and 800*800 images, respectively. If the 5-class-AREDS Simplified scale is 
further reduced to a binary low risk/high risk outcome, the accuracy of our combined neural networks was 98% with 
a sensitivity of ≥85% and a specificity ≥99% for both the 600*600 and the 800*800 images. The improvement in neural 
network performance with image size is in keeping with published data. Whilst increasing image size leads to significant 
efficacy gains between 200*200 and 500*500 pixels sizes, these gains quickly plateau when larger sized images 
(800*800 to 2000*2000) are used.28,29

A limited number of other groups have used the AREDS dataset to build neural networks designed to automate 
grading of the clinical features of AMD. Of these, Peng et al19 is the only other group who choose to train an algorithm to 
automatically reproduce the AREDS Simplified Severity Scale scores for each participant in the testing dataset by 
training different neural networks to automate the grading of Advanced AMD, Drusen Size and Pigmentary Abnormality 
classifiers from retinal photographs. The accuracy of DeepSeeNet’s individual neural networks (ie, Advanced AMD, 
Drusen and Pigmentary classifiers) were 96%, 74% and 89%, respectively. Whilst these figures appear similar to those 
reported in the current study, methodological differences mean that direct comparison at the level of the component 
neural networks is problematic. Firstly, Peng et al19 used lower resolution images (228*228). However, as many of the 
subtle lesions of pigmentary abnormalities and small/medium drusen may be missed in lower quality images, we elected 
to use images of higher resolution (600*600 and 800*800). As a result the images used to train and test the 
CNNs produced in the current manuscript and those presented by Peng et al19 are different. Secondly, the architecture 
of the CNN developed by Peng et al19 differs significantly to that implemented in the current study. Peng et al19 utilized 
a 3-class deep learning model which simultaneously classified images into one 3 types of drusen: none/small drusen, 
medium drusen and large drusen before combining the results to generate the 5-step simplified score. Both DeepSeeNet 
and the model we developed had difficulty differentiating between none/small and medium drusen. From a clinical 
perspective, and with reference to the 5-step Simplified Severity Scale, the finding of medium drusen is only relevant if 
large drusen are not detected in either eye. We therefore built a model which utilized a novel sequential “cascading” 
architecture. The finding that the performance of the sequential cascading model was superior to the simultaneous 3-class 
deep learning model utilised by Peng et al19 when both architectures were tested using images 800*800 (AUC 0.993 
v 0.988) (Figure 7) vindicates our approach. Consequently, a more appropriate comparison of the performance of 
DeepSeeNet and the current study would be to compare the overall outcome of their best performing neural network 

Table 12 Patient-Level Binary Risk Score Prediction 
vs Calculated, for Image Input Size of 600*600

Low Risk High Risk

Low Risk 6102 100

High Risk 59 243

Table 13 Patient-Level Binary Risk Score 
Prediction vs Calculated, for Image Input Size of 
800*800

Low Risk High Risk

Low Risk 6119 83

High Risk 42 260
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at predicting the patient-level AREDS 5-step Simplified Severity Scale scores against those produced by our neural 
network. In this analysis Fine-tuned DeepSeeNet, achieved an accuracy of 0.671; kappa 0.558,19 while the accuracy of 
our best performing neural network was 0.804; kappa 0.679 (Table 10). The improved performance of our neural network 
could in part be explained by the fact that higher resolution images were used in the training and validation processes of 
our neural networks (600*600 and 800*800 vs 224*224 used by DeepSeeNet). However, as image resolution itself is 
only modestly related to the neural network’s performance, it is likely that other factors such the novel cascading neural 
network design, and the highly optimized hyperspace parameter set would also contribute to the superior performance of 
our neural network. It is noteworthy that both classifiers described here performed significantly better than the retinal 
specialists who achieved an accuracy of just 0.60.19

Two other groups have used the AREDS datasets to build automated algorithms designed to grade disease from 
retinal images. Grassmann et al used the AREDS dataset to build an automated algorithm designed to classify retinal 
images into 1 of the 13 classes.16 Using images of 512*512 resolution and an image preprocessing step designed to 
normalize the color balance and local illumination of each fundus image, six pre-assembled neural networks, each with 
differing architectures, were tested. Finally, using the predicted class probabilities of these six neural networks, a random 
forest ensemble was trained. The neural networks achieved overall an average balanced accuracy over all classes, of 
between 0.703 and 0.742. The random forest ensemble achieved 0.747. Burlina et al similarly used the AREDS dataset to 
build an algorithm designed to evaluate the severity of AMD from fundus photographs using the AREDS detailed 9-step 
severity scale. They achieved an overall accuracy for the 5-year risk of just 59.1% with further analysis revealing that the 
algorithm had difficulty distinguishing patients with no AMD from early AMD and early AMD from intermediate AMD. 
When the 9-step detailed classification was simplified to a 4-step classification, the accuracy improved to 75.7%.30 The 
authors concluded that although algorithms to classify AMD from fundal images hold promise, they should be restricted 
to a smaller number of clinically important classes, ones relevant to detecting individuals who would benefit from 
intervention or community screening for high-risk individuals. While there is a plethora of other studies that have trained 
neural networks to detect macular degeneration, many used small datasets, or lack a transparent ground truth and thus are 
very unlikely to generalise.31

Our approach was to design a novel algorithm with a restricted number of classes that could accurately replicate the AREDS 
5-step Simplified Severity Scale with the aim of developing a tool that would facilitate automated mass community screening of 
older asymptomatic individuals to determine who would benefit from AREDS2 supplements. The major limitation of our neural 
network is that all the neural networks were trained solely on high-quality images derived from the AREDS 1 datasets. The 
images within the AREDS 1 dataset have some unique quality characteristics, including but not limited to image blur, lens and 
central macular projection artifacts. While our neural network achieved satisfactory performance in the internal test set, it is 
conceivable that the neural networks may fail to generalize if presented with a different set of images. Finally, the AREDS 1 
dataset is not representative of all ethnicities and socioeconomic groups, and this will contribute to the bias of any neural network 
generated as a result. The networks created in this study should therefore be re-trained (using transfer learning) with data derived 
from other more inclusive datasets and then robustly tested in a prospective clinical trial using “real-world” non-AREDS retinal 
images, to be assured of the generalizability of the CNN we have developed.

Conclusion
We have created individual neural networks, trained on macular centered images from the AREDS 1 dataset, that are 
capable of accurately grading discrete clinical features of AMD from macular centered fundal images. When 
arranged in a cascading ensemble, the grades issued by these individual networks allowed us to accurately calculate 
the AREDS 5-step Simplified Severity Scale score for AMD for any given individual. If the results presented were 
replicated, then the ensemble of neural networks we have developed could be used as a screening tool that has the 
potential to significantly improve health outcomes by identifying asymptomatic individuals who would benefit from 
AREDS2 macular supplements.
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