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A B S T R A C T   

SARS-CoV-2 attaches to the angiotensin-converting enzyme 2 (ACE-2) receptor on human cells. The virus causes 
hypercytokinemia, capillary leak, pulmonary edema, acute respiratory distress syndrome, acute cardiac injury, 
and leads to death. Mesenchymal stem cells (MSCs) are ACE-2 negative cells; therefore, can escape from SARS- 
CoV-2. MSCs prevent hypercytokinemia and help the resolution of the pulmonary edema and other damages 
occurred during the course of COVID-19. In addition, MSCs enhance the regeneration of the lung and other 
tissues affected by SARS-CoV-2. The case series reported beneficial effect of MSCs in COVID-19 treatment. 
However, there are some concerns about the safety of MSCs, particularly referring to the increased risk of 
disseminated intravascular coagulation, and thromboembolism due to the expression of TF/CD142. Prospective, 
randomized, large scale studies are needed to reveal the optimum dose, administration way, time, efficacy, and 
safety of MSCs in the COVID-19 treatment.   

1. Introduction 

Coronaviruses (CoVs) were first identified in the 1930s as the cause 
of animal bronchitis and gastroenteritis [1]. Human CoVs were first 
discovered in the 1960s as the cause of the common cold; however, they 
caused life-threatening acute respiratory distress syndrome (ARDS) in 
the last two decades [2,3]. In 2002, Severe Acute Respiratory Syndrome 
CoV (SARS-CoV) started to cause fatal respiratory system infections in 
China and spread to Southeast Asia and Canada, resulted in 8273 

infected cases with a case fatality rate (CFR) of 9.3 % [2]. Ten years 
later, Middle East Respiratory Syndrome CoV (MERS-CoV) started to 
cause fatal infections in Saudi Arabia. Two additional MERS outbreaks 
were reported in 2015 and 2018, affecting 2494 cases in 27 countries, 
with a CFR of 37 % [4]. At the end of 2019, Novel CoV (2019-nCoV) 
which was later named as SARS-CoV-2, found to be related with a cluster 
of pneumonia patients in China [5,6]. The disease caused by 
SARS-CoV-2 was named as COVID-19, by the World Health Organization 
(WHO). More than 160 million confirmed cases of COVID-19 have been 

Abbreviations: ARDS, acute respiratory distress syndrome; ACE-2, angiotensin-converting enzyme 2; CoV, coronavirus; CFR, case fatality rate; DIC, disseminated 
intravascular coagulation; GVHD, graft versus host disease; MSC, mesenchymal stem cell; MERS-CoV, Middle East Respiratory Syndrome Coronavirus; SARS-CoV, 
Severe Acute Respiratory Syndrome Coronavirus. 
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registered to the WHO as of 15 May 2021, including more than 3 million 
deaths [7]. 

2. Pathophysiology of COVID-19 

2.1. Entrance into the host cell 

SARS-CoV-2 attaches to the angiotensin-converting enzyme 2 (ACE- 
2) receptor on human cells. ACE-2 is highly expressed on epithelial cells 
of lung [8,9]. In addition to the lung, ACE-2 is expressed by a variety of 
tissues, including heart, liver, and kidney [9]. Therefore, once 
SARS-CoV-2 enters the bloodstream, it can bind to many tissues in the 
body. This explains why SARS-CoV-2 mainly affects the respiratory 
system, but dysfunctions of other organs are also observed during the 
course of COVID-19 [10]. 

2.2. Tissue damage 

SARS-CoV-2 causes hypercytokinemia and exacerbated systemic 
inflammation is known to be the leading cause of death [11]. The release 
of cytokines including interferon gamma (IFN-γ), inducible protein 
(IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage in
flammatory protein (MIP)-1A, interleukin (IL)-2, IL-6, IL-7, and tumor 
necrosis factor (TNF) results in capillary leak, pulmonary edema, ARDS, 
and acute cardiac injury, and leads to death [12]. 

3. Characteristics of mesenchymal stem cells 

In stem cell therapy, either differentiated cells or stem cells capable 
of differentiation are transplanted into an individual with the objective 
of yielding specific cell types in the damaged tissue and restoring its 
function [13]. Stem cells can remain undifferentiated for a long period 
and can differ between one lineage (unipotent), multiple lineages 
(multipotent), or all 3 germ layers (pluripotent) [14]. Mesenchymal 
stem cells (MSCs) can differentiate into cells from all 3 germ layers [15]. 

Mesenchymal stem cells must be plastic-adherent when maintained 
in standard culture conditions using tissue culture flasks. Expression of 
CD105, CD73 and CD90 can be demonstrated by flow cytometry on ≥95 
% of the MSC population. The cells must be able to differentiate to os
teoblasts, adipocytes and chondroblasts under standard in vitro differ
entiating conditions. Furthermore, these cells must lack expression 
(≤2% positive) of CD45, CD34, CD14 or CD11b, CD79a or CD19 and 
major histocompatibility complex (MHC) class II [16]. As they are MHC 
class II negative cells; allogenic transplantation of MSCs does not require 
immunosuppressive treatment [17]. 

Mesenchymal stem cells can be isolated from a variety of tissues, 
including bone marrow, adipose tissue, intervertebral disc, amniotic 
fluid, dental tissues, human placenta, and cord blood [18]. 

They have a role in the regulation of tissue homeostasis and are being 
used for regenerative purposes such as bone and cartilage repair, skin 
wound healing, neuronal, and heart tissue regeneration [19]. These cells 
are important carrier cells in gene therapy, they can also repair damaged 
endometrium and inhibit graft versus host responses [20]. They may be 
used as a potential treatment for patients who suffer from infertility 
caused by intrauterine adhesions. In addition, MSC therapy is an effec
tive treatment for myocardial infarction, osteoporosis, bone cysts, lupus 
nephritis, diabetes, liver cirrhosis, liver failure, spinal cord injury and 
Parkinson’s disease [21–24]. 

Allogenic MSC products are cryopreserved, allowing them to be off- 
the-shelf products in order to use in acute tissue injury syndromes such 
as stroke, sepsis, or myocardial infarction, because it is not feasible to 
supply sufficient quantities of autologous MSCs in these patients. 
However, cryopreservation and thawing can effect the potency of MSCs. 
Fresh MSCs are more potent than frozen cells [25]. 

MSCs can secrete a variety of cytokines and enhance the resolution of 
pulmonary edema [26–28]. Mesenchymal stem cells have 

immunomodulatory effects on both innate and adaptive immune cells. 
To ensure activation and phagocytosis of alveolar macrophages, MSCs 
secrete keratinocyte growth factor, prostaglandin E2, IL-6 and IL-13, 
they can alter cytokine release of dendritic cell subsets and reduce the 
release of INF-γ from natural killer cells. IL-10, transforming growth 
factor (TGF)-β, and tryptophan catabolizing enzyme indolamine 2, 
3-dioxygenase secreted from MSCs may suppress proliferation of T 
cells and change the cytokine secretion profile of T cell subsets as well 
[29]. 

Mesenchymal stem cells can produce both the membrane bound and 
soluble human leukocyte antigen –G (HLA-G) isoforms. HLA-G can 
inhibit the proliferation of hyperacute T cells and can prevent the dif
ferentiation of monocytes to dendritic cells [30]. Cytokines such as 
TNF-α, IL1-α, β, IL-6, IL-7, IL-8, IL-9, GM-CSF, and IFN-γ, can be blocked 
through the HLA-G mediated inhibition of dendritic cells and T cells. 
Soluble HLA-G 5–7 isoforms, can induce the secretion of IL-10 and 
TGF-β1, and leads to the inhibition of CD8 + T cell proliferation [31,32]. 
It was demonstrated that HLA-G can increase the production of antiin
flammatory cytokine IL-10 and TGF-β1. It was shown that endocytosis of 
soluble HLA-G with KIR2DL4 is required for the inhibition of NK cells 
and cytokine production [33]. On the other hand, it has been reported 
that HLA-G homodimers are required for the secretion of TNF-α, IL-4, 
and IL-6 [34]. In a study conducted by Zhang and et al., a high mem
brane expression of HLA-G was demonstrated in a patient with 
COVID-19 [35]. It was hypothesized that HLA-G may have a role in the 
modulation of the hyperinflammation induced by the SARS-CoV-2. High 
expression of surface HLA-G may be associated with a worse clinical 
course of COVID-19 and this may be explained with the exhaustion of 
cytotoxic CD8 + T lymphocytes and NK cells expression by the HLA-G, 
HLA-E, their soluble forms and their specific receptors [36]. 

Microbial pathogen associated molecular patterns (PAMPS) directly 
interact with toll-like ligand receptors (TLRs) expressed on both pa
renchyma and leukocytes, leading to the initiation of the inflammatory 
response and leukocyte migration. The expression of TLRs on the cell 
surface of MSCs suggests their inherent role in modulating early immune 
response. The microenvironment of MSCs has an important role in the 
modulating effects of MSCs on the immune system. Mesenchymal stem 
cells can show both pro- and anti-inflammatory effects according to 
these environmental stimuli. Through balancing this pro- and anti- 
inflammatory effects MSCs may regulate immune system, tissue repair 
and regeneration [37]. 

Possible mechanisms of MSCs’ actions in COVID-19 are shown in 
Fig. 1. 

Mesenchymal stem cells have been observed to reduce inflammation 
in a swine lung injury model caused by the influenza virus [38]. 
Furthermore, MSCs have been shown to regulate LPS-induced acute lung 
inflammation by paracrine regulation of macrophage-derived cytokine 
storm [39,40]. 

Mesenchymal stem cells have been showed to improve lung function 
in inflammatory chronic lung diseases such as asthma, chronic 
obstructive pulmonary disease (COPD) and pulmonary hypertension, 
silicosis and idiopathic pulmonary fibrosis [41]. Increased forced expi
ratory volume has been observed in COPD patients after receiving bone 
marrow-derived MSCs [42]. Similar to patients with COPD, patients 
with silicosis had some benefits such as an increase in lung perfusion 
after receiving MSCs [43]. In addition to improvements observed after 
MSC administration in chronic inflammatory lung diseases, it has also 
some benefits in acute inflammatory lung diseases [44]. A randomized 
phase II START study demonstrated that treatment of allogeneic MSCs 
for moderate to severe ARDS clinic did not cause toxic effects in patients. 
In this study, only one of the sixty patients receiving MSC treatment 
died, which was deemed irrelevant [45]. Although MSCs appear safe, 
larger studies are needed to prove their efficacy and safety in the acute 
or chronic inflammatory lung diseases. 
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4. COVID-19 patient’s treatment 

Several agents such as lopinavir-ritonavir, remdesivir, favipiravir, 
and hydroxychloroquine have been tested in clinical trials for the 
treatment of COVID-19 [46,47]. 

Hydroxychloroquine (HCQ) is an antimalarial drug and it seems to 
block viral entry into host cells and suppress cytokine production 
including IL-6 and TNF-α. In addition, it inhibits the lysosomal activity 
and autophagy in host cells [48]. In a case-control study of 36 adults 
with COVID-19, use of HCQ (200 mg three times per day for 10 days) 
was associated with a higher rate of undetectable SARS-CoV-2 RNA on 
nasopharyngeal specimens at day 6 compared with no specific treatment 
(70 versus 12.5 %, (P < 0.001) [47]. Ventricular arrhythmias, QT pro
longation are cardiac toxicities that can be seen during the use of anti
malarial drugs and these adverse effects may worsen the clinical course 
of COVID-19. [49]. Favipiravir is an antiviral agent that inhibits the RNA 
polymerase of RNA viruses. In a randomized clinical trial, 120 patients 
with mild-moderate COVID-19 received favipiravir treatment and 7 
day’s clinical recovery rate was 71.43 % [47]. Lopinavir is a protease 
inhibitor used to treat HIV infection. In a randomized trial of 199 pa
tients with severe COVID-19, the addition of lopinavir–ritonavir to 
standard care didn’t decrease the time to clinical improvement 
compared with standard care alone. Mortality at 28 days was similar in 
the lopinavir–ritonavir group and the standard-care group (25 % vs 19 
%) [46]. Remdesivir inhibits viral RNA polymerases. In hospitalized 
patients with severe COVID-19 who received remdesivir, clinical 
improvement was observed in 68 % of the patients [50]. 

Bamlanivimab, etesevimab, casirivimab and imdevimab are mono
clonal antibodies against SARS-CoV-2. Two combination products, 
bamlanivimab plus etesevimab and casirivimab plus imdevimab, are 
available through Food and Drug Administration (FDA) Emergency Use 
Authorizations (EUAs) for the treatment of mild to moderate COVID-19 
in nonhospitalized patients who are at high risk for progressing to severe 
disease and/or hospitalization. However, FDA has recently revoked the 
EUA for bamlanivimab because of the increasing number of reports of 
SARS-CoV-2 variants that are resistant to bamlanivimab alone [51]. 

It is difficult to maintain adequate blood supply during the 
pandemic. Recently, human red blood cells have been produced in vitro 
using hematopoietic stem cells, embryonic stem cells and induced 
pluripotent stem cells [52]. There have been no licensed cell-based 
therapeutic interventions for COVID-19, according to the International 
Society for Stem Cell Research (ISSCR). On the other hand, MSCs have 
been used in a limited number of cases with COVID-19 [12]. Safety and 
efficacy of MSCs have been demonstrated in regenerative medicine, 

graft versus host disease (GVHD), pulmonary, cardiovascular, neuro
logical, liver, kidney, and rheumatological diseases [53,54] but there is 
limited data about the outcome of MSC transplantation in COVID-19 and 
these are based on case series. Previous case reports revealed that 
intravenous administration of MSCs could prevent hypercytokinemia 
and enhance endogenous repair by the regenerative ability of the stem 
cells. Mesenchymal stem cell therapy has been reported to induce a 
reduction in serum levels of proinflammatory cytokines and chemokines 
owing to immunosuppressive capabilities [55,56]. According to the 
mass cytometry streaming results, COVID-19 causes total dysfunction of 
lymphocytes. Mesenchymal stem cells reverse the lymphocyte subsets 
mostly through dendritic cells. They are ACE-2 negative, therefore they 
have a natural immunity against SARS-CoV-2 [55]. 

In a previous case study from China, a female patient with COVID-19 
had improvement in the results of laboratory tests and regression in the 
lesions observed in thorax computed tomography (CT) 21 days after the 
transfusion of umbilical cord-derived MSCs. Similarly, it was reported 
that a critically ill 65-year-old female patient with COVID-19 had pro
gression even receiving lopinavir/ritonavir, IFN-α, oseltamivir, moxi
floxacin, methylprednisolone, and immunoglobulin recovered after 
three umbilical cord-derived MSC infusions (5 × 107 cells/infusion), at 
three-day intervals. Before the administration of umbilical cord-derived 
MSCs, laboratory tests showed an abnormal ratio of white blood cells, 
neutrophils, and lymphocytes in peripheral blood. Twenty-four hours 
following the administration of umbilical cord-derived MSCs; C reactive 
protein (CRP), liver function, and other clinical symptoms began to 
improve, and the patient did not need mechanical ventilation. After 
administration of the second transfusion, white blood cell, neutrophil 
and lymphocyte counts were observed to return to normal levels along 
with the T subgroups. Two days after the third transfusion, the SARS- 
CoV-2 test was negative. In the sequential CT evaluation before and 
after cell administration, resolution of the pneumonia was observed. 
Also, no adverse effects were observed due to the umbilical cord-derived 
MSC infusion, indicating that the treatment was well tolerated [57]. 

In the study conducted by Leng et al., MSCs was applied to 7 
confirmed COVID-19 cases, including 1 critical severe type, 4 severe 
type and 2 common type. In the same study, 3 severe type cases 
constituted the placebo control group. A single dose of 1 × 106 cells/ 
kilogram body weight MSCs in 100 mL of saline were given to each 
patient intravenously. 2~4 days after MSC infusion, all the symptoms 
(fever, fatigue, dyspnea, and hypoxemia) resolved in all patients. No 
acute infusion-related allergic reaction or secondary infection was 
observed after MSC treatment. In the critically severe patient, both fever 
and dyspnea disappeared on the 4th day after MSCs treatment. The 

Fig. 1. Possible mechanism of mesenchymal stem cells in COVID-19.  
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lesions observed in thorax CT reduced on the 9th day after MSC treat
ment. In severe patients, regulatory T cells as well as dendritic cells 
increased after MSC transfusion. On the otherhand, only one patient in 
the control group showed improvement, one case showed symptoms of 
ARDS and the other patient died [55]. 

One small clinical study evaluated human umbilical cord-derived 
MSC transfusion in severe COVID-19 patients who did not respond to 
standard treatments after 7–10 days. Standard treatments are supple
mental oxygen, umifenovir / oseltamivir, and if indicated, antibiotics 
and glucocorticosteroid treatments. In this randomized controlled study; 
due to lack of sufficient umbilical cord-derived MSC, it was impossible to 
randomize the participants. Umbilical cord-derived MSC transfusion 
was given to 12 of 41 patients eligible for the study and 29 patients 
received standard therapy only. Demographics, laboratory results, and 
disease condition among the study arms were balanced. All 12 patients 
who received umbilical cord-derived MSC transfusion did not require 
mechanical ventilation and were discharged from hospital, while 4 pa
tients who received only standard therapy progressed to severe illness 
requiring mechanical ventilation and 3 of them died. The results were 
not statistically significant and the evaluation of the study is limited by 
the small sample size and lack of randomization [58]. Another 
non-randomized controlled phase 1 trial was planned to observe the 
safety of umbilical cord-derived MSC in the treatment of moderate to 
severe COVID-19 patients with lung involvement. Eighteen hospitalized 
patients with COVID-19 were included in the study (n = 9 for each 
group). Patients in the treatment group received three cycles transfusion 
of umbilical cord-derived MSCs (3 × 107 cells per infusion) on days 0, 3 
and 6. The two groups received a standard COVID 19 treatment proto
col. Adverse clinical events, duration of symptoms, laboratory data, 
hospitalization time, sequential thorax CT images, PaO2 / FiO2 ratio, 
cytokine level changes and anti-SARS-CoV-2 IgG and IgM antibody 
levels were analyzed. No serious umbilical cord-derived MSC 
infusion-related adverse events were observed. Two patients who 
received umbilical cord-derived MSC experienced mild facial flushing 
and fever and one patient experienced mild hypoxia of no clinical sig
nificance 12 h after umbilical cord-derived MSC infusion. One patient in 
the treatment group and 4 patients in the control group required me
chanical ventilation. All patients recovered and discharged. The trial 
indicates that intravenous umbilical cord-derived MSC transfusion is 
safe and well tolerated in patients with moderate to severe COVID-19 
[59]. 

5. Risks of mesenchymal stem cell treatment in COVID-19 
patients 

Mesenchymal stem cell transfusion appears to be safe. Possible risks 
include the failure of cells to function as expected, the potential of MSCs 
to proliferate or transform into incorrect cell types, product contami
nation, tumor growth, infections, thrombus development, and admin
istration site reactions [60]. 

5.1. Thromboembolism risk 

Previous studies revealed that critically ill and severe COVID-19 
patients have high risk for disseminated intravascular coagulation 
(DIC) and thromboembolism [61,62]. Mesenchymal stem cell products 
express TF/CD142, which is a procoagulant tissue factor [63]. Recent 
studies showed that TF/CD142-expressing MSC products could provoke 
the pro-thrombotic state of COVID-19 [64,65]. Several studies reported 
DIC and thromboembolism occurred after the administration of 
TF/CD142-expressing MSCs. Bone marrow-derived MSCs have low 
TF/CD142 expression [66]. Adipose tissue-derived MSCs highly express 
TF/CD142, and a study revealed a significant increase in the coagulation 
activation markers for infusion of 4 × 106 cells/kg vs. controls in healthy 
volunteers with normal coagulation tests [67]. In the study conducted 
by Tatsumi et al. researchers demonstrated that the administration of 

adipose tissue-derived-MSCs may cause thrombus formation [68]. 
Similar findings were reported by other studies in which umbilical 
cord-derived MSCs were given through peripheral vein injection [69]. 
The expression level of TF/CD142 on MSCs is less important in intra
muscular administration compared to intravenous administration 
because in intramuscular administration, MSCs are directed to the 
extravascular area (avoiding blood contamination). So, higher cell doses 
can be used in intramuscular administrations compared to intravenous 
administrations. High doses should be avoided in hypercoagulable pa
tients. On the other hand, MSCs with low or absent TF/CD142 may be 
used through intravenous administration in hypercoagulable patients 
with relevant treatment protocols (e.g., with anticoagulation) [66]. 

5.2. Tumorigenicity 

Long-term culture, media, and growth factors may be related to an 
increased probability of malignant transformation. Analysis of telome
rase in MSCs at higher passages show decreased telomerase activity 
during in vitro culture. During long-term culture, MSCs lose their ability 
to differentiate and start to exhibit morphological changes [70,71]. 

A meta-analysis of 36 studies in which bone marrow-derived MSCs 
were used, showed that there was no relation between the use of MSCs 
and tumorigenic potential, and no serious adverse effects of the treat
ment were reported [72]. 

In the study conducted by Campioni et al., researchers expanded BM- 
derived hMSC samples from chronic lymphocytic leukemia (CLL) and 
acute lymphoblastic leukemia (ALL). They revealed that in ALL and in 
CLL, the BM-MSC has a normal karyotype, thus supporting a distinct 
origin from hematopoietic cells. The presence of cytogenetic aberrations 
in expanded HM-MSC derives from the persistence of contaminating 
hemopoietic cells. The presence of in vitro hMSC aneuploidy is associ
ated with lymphoid neoplasias carrying chromosome abnormalities, 
therefore hMSC should be characterized before clinical application [73]. 

5.3. Mesenchymal stem cell adverse reactions 

There is a risk of virus and prion transmission after the administra
tion of the cells [74]. In the study of Leng et al., no acute infusion-related 
allergic reaction or secondary infection observed after MSC adminis
tration [55]. 

Some of the other concerns about the MSC clinical use are about the 
manufacturing processes and cost. There are many variables in MSC 
production, such as isolation methods, media composition, and culture 
time. All of these production steps may have an impact on the efficacy of 
the MSC product, therefore, quality control and related assays need to be 
clearly defined. In addition, alternative manufacturing models should be 
considered in order to lower costs for health care systems [75]. 

In conclusion, MSCs are ACE-2 negative cells; therefore can escape 
from SARS-CoV-2. They prevent hypercytokinemia and help the reso
lution of the pulmonary edema and other damages caused during the 
course of COVID-19. In addition, MSCs enhance the regeneration of the 
lung and other tissues affected by SARS-CoV-2. The case series showed 
the beneficial effects of MSCs in COVID-19 treatment. However, there 
are some concerns about the safety of MSCs, particularly about the 
increased risk of DIC and thromboembolism due to the expression of TF/ 
CD142. Prospective, randomized, large scale studies are needed to 
reveal the optimum dose, administration route, time, efficacy, and safety 
of MSCs in COVID-19 treatment. 
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