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Transport of pseudothermal 
photons through an anharmonic 
cavity
Dmitriy S. Shapiro

Under nonequilibrium conditions, quantum optical systems reveal unusual properties that might 
be distinct from those in condensed matter. The fundamental reason is that photonic eigenstates 
can have arbitrary occupation numbers, whereas in electronic systems these are limited by the Pauli 
principle. Here, we address the steady-state transport of pseudothermal photons between two 
waveguides connected through a cavity with Bose–Hubbard interaction between photons. One of 
the waveguides is subjected to a broadband incoherent pumping. We predict a continuous transition 
between the regimes of Lorentzian and Gaussian chaotic light emitted by the cavity. The rich variety 
of nonequilibrium transport regimes is revealed by the zero-frequency noise. There are three limiting 
cases, in which the noise-current relation is characterized by a power-law, S ∝ J

γ . The Lorentzian light 
corresponds to Breit-Wigner-like transmission and γ = 2 . The Gaussian regime corresponds to many-
body transport with the shot noise ( γ = 1 ) at large currents; at low currents, however, we find an 
unconventional exponent γ = 3/2 indicating a nontrivial interplay between multi-photon transitions 
and incoherent pumping. The nonperturbative solution for photon dephasing is obtained in the 
framework of the Keldysh field theory and Caldeira-Leggett effective action. These findings might be 
relevant for experiments on photon blockade in superconducting qubits, thermal states transfer, and 
photon statistics probing.

Experimental and theoretical studies of out of equilibrium cavity and circuit QED have shown remarkable pro-
gress during the last decade1–5. This research area covers a diverse class of driven-dissipative phenomena and 
quantum phase transitions6–9. There, observation of photon-photon correlations and quantum state transfer 
becomes possible in hybrid systems10–14 where transmission lines are coupled to nonlinear quantum oscillators, 
such as superconducting transmon qubits or anharmonic cavities. In particular, the photon-photon interac-
tion can be probed in the photon blockade effect as suggested in Ref.15, an optical counterpart of the Coulomb 
blockade in electronic devices. This is an intriguing phenomenon where a driven quantum anharmonic oscillator 
emits anticorrelated photon ’trains’ indicating their sub-Poissonian statistics16–18.

In this work, we explore the transport of incoherent photons through the cavity with anharmonicity (Kerr 
energy) smaller than the excitation frequency and bandwidth of the input signal. This is a bosonic counterpart 
of thermal or voltage biased electronic level with Coulomb interaction19,20. Our findings are motivated mostly by 
experiments on photons statistics21–23 and thermal states propagation24 that are relevant for various applications 
such as a microwave non-classical light emission25, thermometry26, and quantum states transfer27.

The moderate anharmonicity does not lead to a well-developed photon blockade, i.e., photon number in the 
cavity is proportional to the input drive and there is no saturation of the photon current. Nevertheless, it is known 
that even weak anharmonicity results in the antibunching of photons and their negative correlations28,29. In our 
studies, we find that wideband incoherent pumping induces bunching of photons. We predict a transition from 
Lorentzian to Gaussian pseudothermal light, as follows from second-order intensity correlator g (2) . However, 
the emitted light possesses a partial coherence. This results in intriguing behavior in the integral characteristics 
of the emitted (transmitted) photons such as their zero-frequency noise, written S. Contrary to g (2) that resolves 
short timescales, S is provided by photon counting during long time intervals. The unusual noise-current rela-
tions derived here represent an interplay between photon-photon interaction and strong incoherent drive which 
brings the system far from equilibrium.
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The aim of this work is twofold. First, we analyze nonequilibrium noise, Fano factor, decoherence, and trans-
mission spectrum of the cavity photons. We consider a wide range of behaviors ranging from the single-particle 
transfer with Breit-Wigner transmission to a many-body regime with unconventional shot noise. The second 
purpose is methodological. We apply the Keldysh path integral technique30,31, and adopt the concept of dissipative 
Caldeira-Leggett action32,33 to a driven oscillator with Bose-Hubbard interaction. Although these methods found 
their application in condensed matter theory a long time ago, in the cavity and circuit QED, they have started to 
gain attention much later. Nowadays, applications of Keldysh formalism to quantum optics is an active area of 
research4,34–37. In our methodology, a nonperturbative solution for quasi-classical fluctuations, which takes into 
account many-body effects and decoherence of transmitted photons is proposed.

The sketch of the hybrid system under consideration is shown in Fig. 1(a); it is implemented as two open 
waveguides coupled through an anharmonic cavity15. Alternatively, this can be a circuit QED setup, similar to 
that reported in Ref.38, where a multilevel transmon qubit is coupled to superconducting transmission lines.

In Fig. 1(a), the left waveguide is connected to a source of thermal photons, while outgoing light is measured 
by a photon detector in the right waveguide. The distribution function of incident states in the left waveguide 
is assumed flat NL,ω = F in the frequency range ω ∈ [ω0 −�; ω0 +�] and zero otherwise, as shown in Fig. 1; 
ω0 is the cavity mode frequency and � is the source linewidth. The outgoing states in the right waveguide can 
have Lorentzian or Gaussian nonequilibrium distribution functions. The Gaussian distribution is determined 
by a width κ depending nontrivially on F.

The number of photons F in a particular incident mode can be less or greater than unity. We assume the fol-
lowing ordering of the relevant frequencies

where ε is the anharmonicity, ŴL and ŴR are relaxation rates due to the coupling with the left and the right wave-
guides, and their sum Ŵ = ŴL + ŴR determines the bare relaxation rate. (We set Planck constant � = 1 hereafter.) 
The condition (1) is motivated by typical parameters of nonlinear optical cavities16 where the anharmonicity is 
induced by a coupling of the cavity mode with a trapped atom. Also, this condition is accessible in supercon-
ducting systems based on transmon qubits coupled to transmission lines14,17,18. According to (1), antiresonant 
processes (counter-rotating wave) are neglected and the quantum dynamics is determined by the following U(1) 
Hamiltonian with continuous symmetry,

The first term in (2) is Ĥac = ω0â
†â+ εâ†â(â†â− 1) ; it governs cavity field dynamics. â† and â are, respectively, 

boson creation and annihilation operators acting in a basis of Fock states |n� with different photon numbers, 
and the nonlinearity ε defines Bose-Hubbard interaction strength. ĤL =

∑

k EL,k b̂
†
kb̂k and ĤR =

∑

p ER,p ĉ
†
p ĉp 

describe photon dynamics in the left and right waveguides, respectively; b̂†k , b̂k and ĉ†p , ĉp are creation and 

(1)ω0 ≫ � ≫ ε,ŴL,R, κ ,

(2)Ĥ = Ĥac + ĤL + ĤR + ĤtL + ĤtR .

Figure 1.   (a) Sketch of the setup. The incoherent drive source emits photons into the left waveguide. The 
difference in filling color transparencies stands for a difference in light intensities. The standing wave between 
blue mirrors is the cavity mode. The current J is measured in the output detector. (b) The spectrum of the 
incident and outgoing photon states. Incident photons have flat spectrum NL,ω = F of the bandwidth � (gray 
color), nonequilibrium outgoing distribution function have Gaussian shape of width κ . Fluctuating potential 
φ(t) is induced by the Bose-Hubbard interaction.
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annihilation operators acting in spaces of modes labeled by a quasimomentum k and p in a respective waveguide. 
Couplings between the cavity and waveguide modes are assumed weak, hence, the respective Hamiltonians 
are postulated in the form corresponding to the rotating wave approximation, ĤtL = tL

∑

k b̂
†
kâ+ (H.c.) and 

ĤtR = tR
∑

p ĉ
†
pâ+ (H.c.) , where tL and tR are coupling amplitudes. Broad spectra of EL,k and ER,p determine 

densities of states, νL and νR , at the cavity mode ω0 and relaxation rates, ŴL = πνL|tL|2 and ŴR = πνR|tR |2.
The measured photon current is defined as the average number of photons nt0 that have passed during the 

measurement time t0 , J = 1
t0
�n̂t0 � . Brackets denote an average for a quantum mechanical operator Ô with a 

nonequilibrium density matrix ρ̂ , �Ô� = Tr[Ôρ̂] . The trace is calculated with the help of the nonequilibrium 
Keldysh technique and path integrals over complex boson fields. For the limit (1), the wideband drive induces 
the current J = 2F ŴLŴR

Ŵ
 that does not depend on the interaction ε . The average photon number in the cavity, 

�â†â� = F ŴL
Ŵ

 , does not saturate as F increases. This value of �â†â� might be associated with effective temperature 
Teff ∼ F ŴL

Ŵ
ω0 , however, the incident photons are not distributed by the Bose-Einstein law and the cavity has 

non-Gibbs density matrix.
Zero frequency noise of the photon current is defined as the second cumulant of counted photons during 

t0 interval, S = 1
t0

(

�n2t0 � − �nt0 �2
)

 . Below we show that the noise-current relation, S(J), and transmission prob-
ability function Tω , which appears in a photonic counterpart of the Landauer formula, depend nontrivially on ε . 
These quantities, as well as g (2)-correlator and Fano factor, demonstrate the richness of Lorentzian-to-Gaussian 
crossover in a pseudothermal light.

Results
Non‑equilibrium effective action.  We reduce the description to the Keldysh effective action Seff [φ] for 
the Hubbard-Stratonovich real field φ(t) . It decouples the Bose-Hubbard interaction term. The dynamics of 
φ(t) determines the decoherence of transmitted photons. A particular configuration of φ(t) has a contribution 
∼ eiSeff [φ] in the partition function. The dynamics of φ(t) is influenced by different multi-photon transitions in 
the cavity shown in Fig. 2. The particle number operator n̂ = â†â does commute with the cavity Hamiltonian, 
[Ĥac , n̂] = 0 . Hence, its Fock states |n� are the same as those of the harmonic oscillator, i.e., they can be repre-
sented through the canonical coordinate and Hermite polynomials. The wavefunctions in canonical coordinates 
should not be confused with multi-mode field configurations in the real space. Contrary to harmonic oscillator, 
the eigenvalues spectrum of Ĥac is a non-equidistant, En = ω0n+ εn(n− 1) . It is shown that a description of 
multi-photon transitions in the nonlinear single-mode cavity is reduced to an effective theory for φ(t) . It has a 
stochastic behavior, which resembles Kubo model39 of an oscillator with random modulated frequency. For the 
sake of compactness, the results of this Section are presented for the symmetric setup with ŴL = ŴR = Ŵ/2 . We 
find that the stationary part of φ(t) is a nonequilibrium saddle point of the action. Its value defines a shift of the 
cavity mode frequency by the occupation number F and the anharmonicity, ωac = ω0 + 1

2 (F − 2)ε . A nonper-
turbative solution for the decoherence follows from Gaussian theory for fluctuations near the saddle point. In our 
approach, we distinguish the fields φ+(t) and φ−(t) residing on the upward and backward branches of the Keldysh 
contour K . Hence, the stochastic and quantum phases are introduced as �(t) = 1

2

∫ t
(φ+(t′)+ φ−(t′))dt′ and 

ϕ(t) = 1
2

∫ t
(φ+(t′)− φ−(t′))dt′ , respectively. Their dynamics is governed by the action of Caldeira-Leggett 

type32,33,

(3)iSCL[�,ϕ] =
�

iω2

ε
�−ωϕω

dω

2π
+ i

2

�

ω2dω

2π

�

�−ω ϕ−ω

�


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Figure 2.   Sketch of multi-photon transitions in the cavity with a negative anharmonicity ε < 0 . Eigenstates 
|n� have non-equidistant spectrum En = ω0n+ εn(n− 1) where n is the respective photon number. A 
multi-photon transition from |0� to |n� is accompanied by the absorption of n photons of the frequency 
ωn = ω0 + ε(n− 1) . The decrease of ωn with n for ε < 0 is illustrated by a change of color from blue to 
magenta.
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where Fourier transformed phases read as �ω =
∫

�(t)eiωtdt and ϕω =
∫

ϕ(t)eiωtdt . The first term is the 
’kinetic’ part, whereas the second term is Caldeira-Leggett dissipative part. It is written as a matrix with Keldysh 
causality structure.

In the equilibrium situation, the many-body density matrix is ρ̂ = 1

Tr[e−iβĤ ]
e−iβĤ , where β is the inverted 

temperature. The fluctuation-dissipation theorem holds in this case. It states that the Keldysh component αK
ω  

and retarded (advanced) components αR(A)
ω  in the effective action (3) are related as αK

ω = (αR
ω − αA

ω)(1+ 2NB,ω) , 
where NB,ω = 1

2 coth
βω
2 − 1

2 is bosonic occupation number. In our situation with flat distribution functions, we 
find that dissipative terms vanish in the limit of large � , αR

ω = (αA
ω)

∗ = 4i
π�3 εŴF

2 . Oppositely, the fluctuational 
Keldysh term does not vanish and depends non-linearly on the occupation number F, αK

ω = 4ŴF(F+2)
4Ŵ2+ω2  . The 

distribution function in the anharmonic cavity is found, Nac,ω = 1
Ŵ
(ŴLNL,ω + ŴRNR,ω) . The inequality 

αK
ω  = (αR

ω − αA
ω)(1+ 2Nac,ω) demonstrates a break of the fluctuation-dissipation theorem in our nonequilibrium 

regime.

Decoherence.  Caldeira-Leggett action is reduced to a Langevin equation40 ddt�(t) = εξ(t) for the stochastic 
phase of transmitted photons. The random force in the r.h.s. has the following correlator, �ξ(t)ξ(0)� = 1

4α
K (t) , 

where αK (t) = F(F + 2)e−2Ŵ|t| is the time-resolved Keldysh part from (3). The non-Gaussian effects of the noise 
can be sensitive to the dynamics of ϕ ; this is beyond the scope of our consideration. The non-Gaussian effects 
might be important in the limit of large ε > ω0 when the anharmonic cavity becomes a two-level system.

The decoherence of photons is determined by the envelope z(t) = �ei�(0)−i�(t)� = e−D(t) where 
D(t) = 1

4

∫ t
0

∫ t′

0 αK (t′′)dt′′dt′ is the phase autocorrelation function. It reads

The same structure of a correlator appears in the Kubo model. There is Gaussian decay at short timescale with the 
rate κ = 1

2ε
√
F(F + 2) , which increases with the anharmonicity and is nonanalytic by F due to the square root.

The behavior of z(t) plays a central role in our findings because it determines all characteristics of the outgo-
ing light. We note that the Gaussian decay of the envelope appears in the spin-boson model with the sub-Ohmic 
dissipative environment with 1/ω spectrum41. The effective sub-Ohmic spectrum of phase fluctuations in our 
problem is due to multi-photon transitions.

Intensity correlator.  The second-order correlator of outgoing photons, which can be probed in Hanbury-
Brown and Twiss interferometry42, is

Thus, the emitted signal is chaotic pseudothermal light that can be Lorentzian or Gaussian depending on the 
anharmonicity ε and mean photon current. Namely, the Lorentzian light with g (2)(t) ≈ 1+ e−2Ŵt occurs at 
J ≪ J∗ε  , whereas the Gaussian, g (2)(t) = 1+ e−2κ2t2 , at J ≫ J∗ε  is found. The value of J∗ε  is related to the ratio 

between the anharmonicity and relaxation as J∗ε = Ŵ
2

(
√

1+ 4Ŵ2

ε2
− 1

)

.

The correlator at zero time g (2)(0) > 1 is related to the bunching and g (2)(0) < 1 to the antibunching of emit-
ted photons43. In our case, g (2) = 2 that is consistent with that pseudothermal photons are bunched. This occurs 
because the incoherent drive with a flat spectrum resembles the high-temperature limit of Bose-Einstein distri-
bution where photon number fluctuations in a single mode are proportional to mean photon number squared.

However, the presence of coherence in the emitted light suppresses positive correlations. As shown below this 
is reflected in the emergence of the shot noise and in the suppression of the Fano factor. This is also indicated by 
the fast decay of g (2)(t) to the unity, which is associated with a coherent light. The decay occurs at the timescale 
t ∼ 1/κ , which becomes very short at large F and ε.

Transmission spectrum.  It is found that the single-photon Breit-Wigner transmission function 
τω = Ŵ2

(ω−ωac)2+Ŵ2 (exactly-solvable ε = 0 limit) is modified by the stochastic phase as Tω =
∞
∫

−∞
z(t)τ (t)eiωtdt . 

Here, τ(t) is time-resolved τω . Similarly to g (2) , the Lorentzian transmission spectrum τω is changed to Gaussian 
at J ≫ J∗ε  which reads

This is a nonperturbative result with respect to the interaction and incoherent drive. This transmission describes 
nonequilibrium and many-body photon transfer.

The crossover between Lorentzian and Gaussian spectra in Tω , when F increases, is shown in Fig. 3; results 
are obtained after numerical integration. It should be noted that the photon-photon interaction redistributes 
the spectral weight of Tω around ωac , keeping its integral value constant. The latter explains that fact that the 
anharmonicity does not change the current in the wideband input drive regime.

Noise.  Correlations in the output field are determined by g (2)(t) . A relevant information is given by a short 
timescale of t0 ≪ 1/Ŵ . Distinctly, the zero-frequency noise44 contains information about the long timescale, 

(4)z(t) = exp
[

− κ2

2Ŵ2
(2Ŵt + e−2Ŵ|t| − 1)

]

.

(5)g (2)(t) = 1+ z2(t)e−2Ŵt .

(6)Tω =
√
πŴ

2κ
exp

(

− (ω − ωac)
2

4κ2

)

.
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t0 ≫ 1/Ŵ . The indicated change of the asymptotic behaviors in z(t) or Tω is reflected in the richness of a low-
frequency noise-current relation S(J).

The Lorentzian emitted light shows the quadratic noise-current relation,

This scaling resembles a situation of equilibrium radiation in a cavity at a very high temperature where the vari-
ation, ��n2�� = �n2� − �n�2 , and average photon number are related as ��n2�� ∼ �n�2 . The upper boundary for the 
current J∗ε  can be large or small compared to Ŵ depending on the ratio ε/Ŵ . As shown in Fig. 4(a), the region 
of small ε corresponds to a Lorentzian light with the exponent γ ≈ 2 in the noise-current relation represented 
as S ∝ Jγ . We note that the quadratic dependence and the Lorentzian spectrum of Stherm at finite ω (see Section 
“Generating functional method” and Eq. (39) for details), is analogous to a modulation noise in quantum point 
contacts45.

In the many-body regime with Gaussian light the following expression is found

The absence of the quadratic scaling in S(J) indicates the shot noise behavior. Also, this means that the Gaussian 
pseudothermal light has a partial coherence. In the limit of strong anharmonicity, ε ≫ Ŵ , the scale J∗ε ∼ Ŵ3

ε2
 is 

small compared to Ŵ . Consequently, the ratio Ŵ/J in the square root of (8) can be both large or small compared 
to unity. This shows that two different asymptotical regimes of the Gaussian noise do exist, they are associated 
with Ŵ/J → 0 and Ŵ/J → ∞ limits. These limits have a continuous crossover between each other at Ŵ/J ∼ 1.

If the drive is sufficiently strong, such that J ≫ Ŵ holds, then we arrive at the linear shot noise-current relation 
Sshot =

√
π

2
√
2

Ŵ
ε
J . We note that the scalings similar to Sshot ∝ J and Stherm ∝ J2 were discussed in Refs.46,47. Namely, 

the photon current emitted by a coherent source and propagated through a random media shows a linear noise-
current relation if the scattering region is absorbing, and quadratic if it is amplifying.

At low currents, Ŵ ≫ J ≫ J∗ε  , the ratio Ŵ/J in (8) dominates over the unity and we arrive at unconventional 
scaling of the noise, S′shot ∝ J3/2 . This is one of the remarkable findings of this work. The change of the scaling 
exponent in S ∝ Jγ from γ = 2 to γ = 3/2 as ε increases can be understood as emerging of a partial coherence in 
the propagated light. The difference between these nonequilibrium fixed points is illustrated by blue and orange 
curves in Figs. 5(a) and 5(b). In the limit of weak anharmonicity, ε ≪ Ŵ , the asymptotic behavior of S ∝ J3/2 
does not appear. Here, we obtain a simple crossover between the thermal-like behavior and the shot noise. It 
is demonstrated as blue curves, which start at γ = 2 and saturate smoothly at γ = 1 . Parameter domains cor-
responding to different asymptotic limits are collected in Table 1.

Fano factor.  It is instructive to analyze the Fano factor, the ratio of the low-frequency noise and current, 
F = S/J . In mesoscopic physics, F  defines an effective charge that is transmitted coherently. This applies, e.g., 
to single-electron transistors48, to helical electrons scattering49,50 and to multiple Andreev reflection in super-

(7)Stherm = J2

2Ŵ
, J ≪ J∗ε .

(8)S =
√
π

2
√
2

JŴ

ε
√
1+ Ŵ/J

, J ≫ J∗ε .

Figure 3.   Transmission spectrum Tω as a function of the frequency and F. The curve at equilibrium regime 
F = 0 represents Lorentzian τω of the width Ŵ . The increase of F turns the nonequilibrium regime on and 
Tω become Gaussian with κ > Ŵ . Maxima of Tω at each F are located at shifted frequency Fε/2 ; here, 
ŴL = ŴR = Ŵ/2 and ε/Ŵ = 2.
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Figure 4.   (a) Results for scaling exponent γ in noise-current relation S ∝ Jγ as functions of the photon current 
J and anharmonicity ε . Color map represents logarithmic derivative γ = d ln S

d ln J
 . Contours of constant γ show a 

crossover between Lorentzian and Gaussian pseudothermal light. The Lorentzian light corresponds to single-
particle transport with Breit-Wigner transmission and γ = 2 , and the Gaussian is to many-body transport and 
the shot noise. The fractional γ = 3/2 asymptotic appears at low currents and large anharmonicity ε/Ŵ > 1 . 
(b) Color map for Fano factor F = S/J . The white dashed curve is J∗ε  . The black solid line stands for F = 1 
contour.

Figure 5.   (a) Noise-current relation S ∝ Jγ for weak ( ε/Ŵ =0.1), intermediate ( ε/Ŵ = 1) and strong ( ε/Ŵ =
10, 100, 500) anharmonicity (Bose-Hubbard interaction strength). The logarithmic scale demonstrates three 
different regimes of the photon transport: quadratic thermal behavior at weak interaction, and fractional power-
law S ∝ J3/2 at small currents that changes to conventional shot noise S ∝ J as J increases. (b) Scaling exponent 
γ that demonstrates a change of fixed point from γ = 2 to γ = 3/2 as the interaction increases.

Table 1.   Noise regimes classification

Interaction
Thermal noise, Stherm ∝ J2 . 
Lorentzian light

Fractional scaling, S′
shot

∝ J3/2 . 
Gaussian light

 Conventional scaling, Sshot ∝ J . 
Gaussian light

weak, ε ≪ Ŵ J ≪ Ŵ2

ε
– J ≫ Ŵ2

ε

strong, ε ≫ Ŵ J ≪ Ŵ3

ε2
Ŵ3

ε2
≪ J ≪ Ŵ J ≫ Ŵ
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conducting junctions51. In our optical system, it can be associated with the emergence of positive ( F > 1 ) and 
negative ( F < 1 ) correlations between photons52,53.

In the regime of conventional shot noise we find universal result Fshot =
√

π
8
Ŵ
ε
≪ 1 that does not depend 

on the drive amplitude. The unconventional shot noise S′shot ∝ J3/2 corresponds to Fano factor F ′
shot =

√

π
8
ŴJ
ε2

 
which is also smaller than unity. The regime of Lorentzian light yields Ftherm = J

2Ŵ which can be less or greater 
than unity. Thus, the Fano factor represents the complexity of nonequilibrium properties of the emitted light. 
Its color plot, the contours with F = 1 (black curve), and J∗ε  (white dashed curve) are presented in Fig. 4(b).

Discussion and outlook
Studies of driven-dissipative optical systems with Bose-Hubbard interaction is a large research area. In par-
ticular, incoherent drive effects were explored in experiments on the photon blockade17,18 and thermal states 
propagation24. The photon blockade is characterized by the antibunching of photons and their sub-Poissonian 
statistics. The thermal states propagation is an alternative regime, which is characterized by a suppressed pho-
ton blockade. In that experiment24, the bunching effect and super-Poissonian statistics of emitted photons were 
observed. In this work, we investigated how the incoherent pump influences the photon transport in a wideband 
limit and arbitrary excitations number. Namely, the central question of this work is how does a photonic coun-
terpart of thermal transport through an electronic quantum dot with a non-equidistant spectrum look like? This 
question seems actual in view of increasing interest to novel phenomena and phases in nonequilibrium cavity 
and circuit QED where the fluctuation-dissipation relation and detailed balance condition are violated.

The bandwidth of the drive signal is assumed to be greater than characteristic relaxation rates. In this limit, 
we found that the increase of the Bose-Hubbard interaction and incoherent pump induce an intriguing transition 
from effectively thermal fluctuations to partially coherent nonequilibrium noise. A complexity of this transition 
is demonstrated in Fig. 5(b) where cross-sections of the phase diagram from Fig. 4(a) are shown for particular 
values of the interaction.

First, the Lorentzian transmission function and noise spectrum are transformed into Gaussian. The latter 
is a signature of many-body interaction in the anharmonic cavity and the consequence of transmitted photons 
decoherence. The time-resolved intensity correlator g (2) and photons dephasing reveal transitions from exponen-
tial to Gaussian decay laws demonstrating a certain similarity with Kubo model of an oscillator with stochastic 
frequency and also with the spin-boson model with sub-Ohmic 1/ω spectrum.

Second, the low-frequency noise S and the Fano factor are nonlinear functions of the drive amplitude, or, the 
average transmitted current. The scaling exponent in the noise-current ratio, S ∝ Jγ , can have three universal 
values. They indicate (i) single-photon transfer and effectively thermal state noise with γ = 2 , and (ii) partial 
coherence in strongly nonequilibrium limit with the shot noise ( γ = 1 ) and suppression of the Fano factor 
that becomes smaller than unity, and (iii) unconventional noise-current relation with the fractional exponent 
γ = 3/2 . In the regime (iii), that is found for low currents, the fluctuations of outgoing states are contributed 
by two competing components, the coherent emission and pseudothermal dissipative dynamics in a large Fock 
space of the cavity mode. This regime is supposed to be relevant for experiments reported in the Ref.24, where 
the difference between fluctuations in thermal radiation and the Poissonian regime was observed, and also in 
Refs.21–23, where the statistics of incident photons was measured by a continuous wave mixing.

In our solution, we found a single maximum in the transmission spectrum at the frequency ωac . This is in 
contrast to the case of the coherent drive at a particular frequency, where multi-photon supersplittings54 are 
clearly observed in experiments14. Their absence in our solution is explained by the averaging over a large amount 
of multi-photon transitions induced by the wideband and noisy drive.

The effective Caldeira–Leggett action proposed here describes fluctuations in the Gaussian (quadratic) order 
approximation. This approach provides a quasi-classical theory for noise represented as symmetrized correlators 
due to the Keldysh time ordering. The non-Gaussian fluctuations effects are the intriguing direction of recent 
studies related to non-linear quantum environment35 and dynamical Coulomb blockade55; in particular, the 
possibility of different time orderings on the Keldysh contour becomes important in the description of quantum 
noise and nonsymmetrized correlators.

Summary
To conclude, we investigated steady-state photon transport in the anharmonic single-mode oscillator. It can be 
transmon qubit or nonlinear optical cavity incoherently driven and coupled to the input and output waveguides. 
We predict a rich behavior of the noise and intensity correlators in the nonequilibrium. The nonequilibrium 
conditions reveal intriguing effects due to the photon-photon interaction, they include pseudothermal fluc-
tuations with partial coherence, Gaussian transmission spectrum with effectively sub-Ohmic dephasing, and 
unconventional shot noise with fractional power-law scaling.

The assumption of the wideband noisy drive field allows for a compact analytical solution. The decoherence 
due to the photon-photon interaction is described within a nonperturbative approach reduced to Caldeira-
Leggett effective action. In this many-body problem, a stochastic phase of transmitted photons depends on 
various multi-photon transitions. We expect that the nontrivial behavior of the noise might not have a direct 
analogy in condensed matter systems.

The methodology is based on the Keldysh field theory. The solution for a system far from equilibrium is 
obtained. Our results give an insight into photon transport in the cavity and circuit QED, where the interaction 
and nonequilibrium dynamics appear on an equal footing. They can be generalized, in particular, for driven-
dissipative Bose-Hubbard lattices56,57. It is suggested that these findings are experimentally accessible by meth-
ods based on photon counting6,17, homodyne detection of intensity correlations16,18,24, dispersive readout and 
spectroscopy13,14.
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Methods
In this part of the paper, we present the methodology of calculations. We start from a formulation of non-
equilibrium field theory that corresponds to a microscopic Hamiltonian (2). It is based on the Keldysh Green 
functions approach and Hubbard-Stratonovich transformation decoupling the non-Gaussian interaction term. 
In particular, the Landauer formula for photon current is derived within the Keldysh formalism. Then, the 
Caldeira-Leggett action is formulated and applied to calculations of decoherence, transmission function, noise 
spectrum, and g (2)-correlator.

Effective functional.  Keldysh approach.  The nonequilibrium field theory is started from the partition 
function given by the path integral, Z =

∫

D[�̄ ,�]T exp(iS[�̄ ,�]) , where S =
∫

K
(i�̄∂t� −H)dt is the ac-

tion determined on Keldysh time contour K . Here, T  stands for Keldysh time ordering along K . The vector with 
all path integral complex variables is � = [b(t, k), a(t), c(t, k)]T , and �̄ = [b̄(t, k), ā(t), c̄(t, k)]T is its conjugate. 
Let us consider first the Keldysh action of the anharmonic cavity

By the virtue of Hubbard-Stratonovich real field φ we decouple the interaction term in (9) as follows

The last term in the exponent corresponds to fluctuating potential φ(t) that randomly modulates oscillator 
frequency. As a result of this transformation, the cavity action becomes the following:

With the use of this representation, the total action is formulated through matrix Green functions. Here, a trans-
formation to the usual time axis t ∈ [−∞,∞] doubles the number of variables, �(tK) → [�+(t),�−(t)] and 
φ(tK) → [φ+(t),φ−(t)] , where these fields reside on upward or backward parts of the Keldysh contour labeled 
by ± indices. This is associated with Keldysh τ̌-space parametrized by Pauli matrices τ̌x,y,z and identity matrix τ̌0.

After the standard Keldysh rotation to classical and quantum components for complex fields, 
�c,q(t) = 1√

2

(

�+(t)±�−(t)
)

 , and for real fields, φc,q(t) = 1
2

(

φ+(t)± φ−(t)
)

 , we arrive at the following rep-
resentation of the total action:

Each element of the matrix is a block in τ̌-space that possesses causality structure. Let us consider the left wave-
guide’s block:

The retarded (advanced) Green functions are GR(A) = 1/(ω − EL,k ± i0) ), they differ by the sign of the infinitesi-
mal frequency shift i0 along the imaginary axis. The Keldysh component 2i0fL,k encodes a distribution function 
NL,k of incident photons as fL,k = 2NL,k + 1 . The similar definition applies for Ǧ−1

R  . The local in time inverted 
Green function of the cavity

is nonstationary because it involves φc(t) and φq(t) . The nondiagonal elements tL,R τ̌x in (12) mix the cavity and 
waveguides’ fields corresponding to k and p modes. After the integration over bk and cp , we obtain the effective 
action for the anharmonic cavity,

where the inverted Green function

becomes a nonlocal in time due to the self-energy �̌(t) =
∫

dω
2π e

−iωt�̌ω . It has the causality structure, 

�̌ω =
[

0 �A
ω

�R
ω �K

ω

]

 , the retarded and advanced components are �R(A)
ω = ±iŴ where the total relaxation 

Ŵ = ŴL + ŴR is a sum of the rates determined by the couplings to left and right waveguides, ŴL,R = πνL,R |tL,R |2 . 

(9)iSac = i

∫

K

(

ā(t)(i∂t − (ω0 − ε))a(t)− εā(t)a(t)ā(t)a(t)
)

dt .

(10)exp
(

− i

∫

K

εā(t)a(t)ā(t)a(t)dt
)

=
∫

D[φ] exp
(

∫

K

i

4ε
φ2(t)dt − i

∫

K

ā(t)φ(t)a(t)dt
)

.

(11)iSac →
∫

K

i

4ε
φ2(t)dt − i

∫

K

ā(t)
(

i∂t − (ω0 − ε + φ(t))
)

a(t)dt .

(12)iS =
�

i

ε
φc(t)φq(t)dt + i

�

�̄(t)













Ǧ−1
L −tL τ̌x 0

−t∗L τ̌x Ǧ−1
ac [φ] −t∗Rτx

0 −tR τ̌x Ǧ−1
R













�(t)dt , �(t) =
�

�c(t)

�q(t)

�

.

(13)Ǧ−1
L = δk,k′

[

0 i∂t − EL,k − i0

i∂t − EL,k + i0 2i0fL,k

]

.

(14)Ǧ−1
ac [φ] = (i∂t − ω0 + ε − φc(t))τ̌x − φq(t)τ̌0

(15)iSac[ā, a,φ] = i

∫

ā(t)Ǧ −1
ac [φ(t)]a(t)dt ,

(16)Ǧ
−1

ac [φ] = δ(t − t ′)Ǧ−1
ac [φ(t ′)] + �̌(t − t′)
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The Keldysh component, �K
ω = 2iŴ(2Nac,ω + 1) , brings information on the nonequilibrium distribution func-

tion in the cavity mode Nac,ω = ŴL
Ŵ
NL,ω + ŴR

Ŵ
NR,ω.

The integration over the cavity fields ā, a provides the effective action for the fluctuating potential

The trace and logarithm here are determined over discretized time axis. As long as this action is non-Gaussian 
due to the matrix logarithm, we apply Gaussian expansion near a saddle point.

Saddle point equation.  A configuration of φc(t) that determines a saddle point of Seff  is given by the zero vari-
ation with respect to φq , δ

δφq
Seff [φc ,φq] = 0 . Applying this to (17), we find 

∫

φcdt − iεTrǦac[φc] = 0 . Here, we 
use the standard notation for trace Tr(f (t − t ′)) = f (0)

∫

dt =
∫

dω
2π fω

∫

dt , where the time integral stands for 
a large constant that cancels out in the saddle point equation. In our system, the saddle point configuration is 
associated with the static part of the field, φ0 . An explicit form of this equation is

In our case of flat NL,ω = F in the range ω ∈ [ω0 −�; ω0 +�] with � ≫ Ŵ, ε , and the absence of incident 
modes in the right waveguide, i.e., NR,ω = 0 , the integral in (18) gives a constant that does not depend on φ0 . 
The equation (18) becomes linear and we find φ0 = ε + Fε ŴL

Ŵ
.

Thus, the photon Green function at the saddle point is found after the inversion of Ǧ −1
ac [φ] from (16) with 

φ = φ0:

Caldeira‑Leggett approach for fluctuations.  Non-stationary configurations of the field, δφc(t) = φc(t)− φ0 , 
determine many-body transitions which induce decoherence. Let us go back to the effective action Seff  . It is non-
Gaussian because of the matrix logarithm. We apply quasi-classical second-order expansion of the logarithm by 
stochastic, δφc , and quantum, φq , fluctuations:

This approximation for Seff provides Caldeira-Leggett action (3) which rules fluctuational and dissipative dynam-
ics of φ(t) . For nonequilibrium distributions indicated above, we find from (20) that the retarded and advanced 
parts in (3) read

They are not universal, i.e., they depend on the bandwidth and vanish as 1/�3 . The Keldysh part, however, is 
non-zero

This fact demonstrates a break of fluctuation-dissipation relation out of the equilibrium, i.e., 
αK
ω  = (2Nac,ω + 1)

(

αR
ω − αA

ω

)

.
We note that the action SCL determines stochastic Langevin equation 

(

1
ε
+ 1

2α
R
ω

)

δφc,ω = ξω where the sto-
chastic force ξ has the correlator given by �ξ−ωξω� = 1

4α
K
ω  . Addressing the photons decoherence in Keldysh 

formalism, we introduce stochastic �(t) =
t
∫

−∞
δφc(t

′)dt′ and quantum ϕ(t) =
t
∫

−∞
φq(t

′)dt′ phases. In our case 

with vanishing αR , the Langevin equation for the transmitted photon phase is reduced to

that corresponds to a frictionless drift.

Calculations of transmission functions.  Non‑interacting limit. Lorentzian spectrum. Analogy with Lan‑
dauer formula.  We address a photon transport in a spirit of the Landauer formula determined by the transmis-
sion probability Tω . We start from a single-particle problem at ε = 0 . This limit is exactly solvable. After that, we 
study the case of ε  = 0 taking into account many-body interaction utilizing Caldeira-Leggett action (3).

Let us define the photon current as time derivative of the photon number operator n̂R =
∑

p ĉ
†
p ĉp in the 

right waveguide as J = d
dt �n̂R� =

i
�
�[Ĥ , n̂R]� . We note, that tunnelling Hamiltonians can be represented as 

(17)iSeff [φc ,φq] =
∫

i

ε
φcφqdt − Tr ln

(

Ǧ
−1

ac [φc ,φq]
)

.

(18)φ0 − ε − εŴ

π

∫

Nac,ωdω

(ω0 − ε + φ0)2 + Ŵ2
= 0 .

(19)

Ǧac,ω[φ0] =





G
K

ac,ω G
R

ac,ω

G
A

ac,ω 0



 , G
R(A)

ac,ω = 1

ω − (ω0 − ε + φ0)± iŴ
, G

K
ac,ω = −2iŴ(Nac,ω + 1)

(ω − (ω0 − ε + φ0))2 + Ŵ2
.

(20)
Tr ln

(

Ǧ
−1

ac [φ(t)]
)

= Tr ln
(

Ǧ
−1

ac [φ0] − δφc τ̌x − φqτ̌0
)

≈ Tr ln
(

Ǧ
−1

ac [φ0]
)

− 1

2
Tr

(

Ǧac[φ0]
(

δφc τ̌x + φqτ̌0
)

)2
.

(21)αR(A)
ω = ±16i

πŴ�3
εF2Ŵ2

L + O[�−4] .

(22)αK
ω = 16

ŴLF(Ŵ + ŴLF)

Ŵ
(

4Ŵ2 + ω2
) .

(23)
d

dt
�(t) = εξ(t)
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ĤtL = tLB̂
†â+ t∗L â

†B̂ and ĤtR = tRĈ
†â+ t∗R â

†Ĉ where B̂ =
∑

k b̂k and Ĉ =
∑

p ĉp are ’local’ operators of wave-
guide fields. In this representation, the photon current reads as

We employ Keldysh Green functions technique to calculate these averages. In the non-interacting case, the 
action reads

The inverted Green functions of the cavity mode is Ǧ−1
0,ω = (ω − ω0)τ̌

x . Green functions of left and right 
waveguides are, respectively, ǧL,ω = −

∑

k ǦL,ω,k and ǧR,ω = −
∑

p ǦR,ω,p . They act in space of variables 
ψ = [Bω , aω , Cω] . The summations over k and p are found after replacements 

∑

k,p → νL,R
∫

dE.
Considering single-particle action S(0) , distribution functions NL,R,ω can be arbitrary. Inverting G−1

ω  from 
(25), we find cavity-to-right waveguide propagator

We use these expressions in the current (24): �Ĉ†â� =
∫

ig<0R,ω
dω
2π  and �â†Ĉ� = �Ĉ†â�∗ where the ’greater’ Green 

function g<0R,ω = 1
2

(

gK0R,ω − gR0R,ω + gA0R,ω
)

 is introduced. As a result, we arrive at the Landauer formula for the 
photon current

The transmission probability has the Lorentzian form τω = 4ŴLŴR

(ω−ω0)2+Ŵ2  . It reproduces unitary transmission 
τω=ω0 = 1 at the resonance and symmetric relaxation rates ŴL = ŴR = Ŵ/2 , the well-known result of the input-
output theory58.

Interacting case: Gauge transformation.  In this part, we present a generalization on the many-body problem 
where ε  = 0 addressing the situation of flat distribution functions NL,ω = F and NR,ω = 0 . The action with 
stochastic potential becomes local in time due to flat distributions

In contrast to the action in the non-interacting limit S(0) , the Green function Ǧ−1
0  in the interacting case is 

replaced with Ǧ−1
ac [φ] = (i∂t − ω0 + ε − φ0 − δφc(t))τ̌x − δφq(t)τ̌0 . The locality in time gives an advantage in 

analytic calculations. Namely, it is possible to get rid of time-dependent δφc(t) and φq(t) by the gauge transfor-
mation. This transformation from ψ = [B, a, C]T to new fields, ψ ′ = [B′, a′, C′]T , is distinct on upward and 
backward parts of K and reads

It provides a nonperturbative solution for photon decoherence. A dynamics of these new fields ψ ′ is ruled by the 
action S(0) found for ε = 0 . Hence, the solution for cavity-to-right waveguide propagator ǧacR at ε  = 0 is obtained 
from non-interacting result ǧ0R from (26) when the gauge inversed to (29) is applied:

This function is not stationary due to the fluctuating potential. After the averaging ǧacR(t, t ′) with respect to SCL , 
we arrive at the stationary Green function that depends on the time difference

The relevant modification appears in the envelope related to stochastic fluctuations z(t) = �e−i(�(t)−�(0))� . 
The average with Gaussian action SCL yields z(t) = exp(−D(t)) where the symmetrized autocorrelation func-
tion is D(t) = 1

2 (��(t)�(0)� + ��(0)�(t)�)− ��2(0)� . With the use of Langevin equation (23), we find that 
D(t) = 1

4

∫ t
0

∫ t′

0 αK (t′′)dt′′dt′ . The integration with Keldysh component αK (t) = F(F + 2)e−2Ŵ|t| , found after 
the Fourier transform of (22), gives

(24)J = it∗R�â†Ĉ� − itR�Ĉ†â� .

(25)

iS(0) = i

�

dω

2π
ψ̄ωG

−1
ω ψω , G

−1
ω =













ǧ−1
L,ω −tL τ̌x 0

−t∗L τ̌x Ǧ−1
0,ω −t∗Rτx

0 −tR τ̌x ǧ−1
R,ω













, ǧ−1
L,R,ω =





0 −i 1
πνL,R

i 1
πνL,R

2i
πνL

(2NL,R,ω + 1)



 .

(26)ǧ0R,ω = −2iπνRt
∗
R







(ω−ω0)(2NR,ω+1)−2iŴL(NR,ω−NL,ω)

Ŵ2+(ω−ω0)2
1/2

ω−ω0+iŴ

−1/2
ω−ω0−iŴ 0






.

(27)J =
∫

τω(NL,ω − NR,ω)
dω

2π
.

(28)iS = i

�

dt
�

B̄t āt C̄t

�













ǧ−1
L −tL τ̌x 0

−t∗L τ̌x Ǧ−1
ac [φ] −t∗Rτx

0 −tR τ̌x ǧ−1
R























Bt

at

Ct











.

(29)ψ±(t) = e−i�(t)∓iϕ(t)ψ ′
±(t) .

(30)ǧacR(t, t
′) =

(

cosϕ(t) cosϕ(t ′)− i sin(ϕ(t)+ ϕ(t ′))
)

e−i(�(t)−�(t′))ei(ε−φ0)(t−t′)ǧ0R(t − t ′).

(31)�ǧacR(t, t ′)� = z(t − t ′)e−i��(t)ϕ(t′)�+i�ϕ(t)�(t′)�ǧ0R(t − t ′) .
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Combinations of classical-quantum retarded and advanced correlators in (31) are due to the mixing of fields on 
different parts of the contour K ; they read ��(t)ϕ(0)� = iεtθ(t) and �ϕ(t)�(0)� = −iεtθ(−t) . In our Gaussian 
theory, classical-quantum terms yield simply a complex phase e−iε(t−t′) that results in a shift of the cavity mode 
frequency

a quantum counterpart of the nonlinear frequency shift in a classical anharmonic oscillator.

Gaussian spectrum.  The result (31) provides the expression for the transmission function in the time domain

Here, τ(t) is Fourier transformed Lorentzian transmission with the maximum at ωac . The Fourier transform of 
(34) reads Tω =

∫

zω−ω′τω′ dω
′

2π  . Analytic calculation of this integral is challenging. Nevertheless, we find asymp-
totic expressions for the strongly nonequilibrium regime with the use of the saddle point method. In this solution, 
the correlator in the exponent of z(t) is approximated as D(t) ≈ κ2t2 . Here, new relaxation rate 

κ = ε

√

ŴL
Ŵ

(

F + ŴL
Ŵ
F2

)

 appears. It shows that the coherence loss rate grows non-linearly as F increases. The 

Fourier transformation gives the transmission spectrum of Gaussian shape: Tω = 2
√
πŴLŴR

Ŵκ
exp

(

− (ω−ωac)
2

4κ2

)

 . 
This result applies to a regime of strong driving or strong interaction, such that the condition κ ≫ Ŵ is satisfied. 
Let us analyze this condition for the symmetric case of ŴL = ŴR = Ŵ/2 . The decay rate can be equivalently 
expressed through the current as κ = ε

Ŵ

√

JŴ + J2 where J = FŴ/2 does not depend on anharmonicity in our 
problem with the wide spectrum of the incoherent drive. The condition κ ≫ Ŵ is resolved as J ≫ J∗ε :

The scale J∗ε  corresponds to the lower boundary for the current at a given ε when it drives the system out of the 
equilibrium and induces Gaussian chaotic light emission. If the current is small, J ≪ J∗ε  , then the system is in 
a fixed point related to thermal behavior, as shown in the phase diagram in Fig. 4(a). We learn from (35) that 
there is two asymptotics in J∗ε  that distinguish weak, ε ≪ Ŵ , and strong, ε ≫ Ŵ , interaction limits. Both of them 
overlap with the Lorentzian and Gaussian sectors.

Photon current and cavity photon number.  As it follows from (27), the photon current at NL,ω = F and NR,ω = 0 
reads

The average photon number in this limit,

is obtained as �â†â� =
∫

iG <
ac,ω

dω
2π  where the ’greater’ Green function is G <

ac,ω = 1
2 (G

K
ac,ω − G

R
ac,ω + G

A
ac,ω) . We 

note that the frequency shift due to the anharmonicity can be represented via (37) as ωac = ω0 − ε + �â†â�ε . 
As it should be, the same value can be found from a mean-field approach for Bose-Hubbard interaction where 
â†ââ†â → â†â�â†â�.

The current given by (36) is not modified by the interaction in the case of flat distribution functions. As fol-
lows from the representation of the current through 〈g<acR(t, t)〉 at coincident times, we find J = Fz(0)

∫

dω
2π τω 

from (34). As long as z(0) = 1 for any interaction, J does not depend on ε . The same logic applies to �â†â� which 
also does not change as ε increases.

Calculations of the noise and intensity fluctuations.  Generating functional method.  We start cal-
culations of noise from the non-interacting limit and then generalize for the interacting case. Cumulants of 
transmitted photons can be calculated through variations of the generating functional logarithm, lnZ[η] . The 
generating functional is given by the path integral

(32)D(t) = ŴLε
2

2Ŵ3

(

F + ŴL

Ŵ
F2

)

(

2Ŵ|t| + e−2Ŵ|t| − 1
)

.

(33)ωac = ω0 − ε + Fε
ŴL

Ŵ
,

(34)T(t) = z(t)τ (t) , τ(t) = 2
ŴLŴR

Ŵ
e−Ŵ|t|−iωact .

(35)J∗ε = Ŵ

2

�

�

1+ 4
Ŵ2

ε2
− 1

�

≈











Ŵ2

ε
, ε ≪ Ŵ ;

Ŵ3

ε2
, ε ≫ Ŵ .

(36)J = 2F
ŴLŴR

Ŵ
.

(37)�â†â� = F
ŴL

Ŵ
,
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Here, η is generating variable and J parametrizes current from (24) through fields a and C on opposite 
branches (labeled by τz = ±1 ) of the contour K as J = ψ̄Jψ . The integration over ψ̄ ,ψ in (38) results in 
lnZ[η] = Tr ln(1+GηJ) . Photon current J is found as first variation of lnZ[η] by η , where it is set to zero η → 0 . 
This gives J =

∫

dω
2π itr

(

GωJ
)

 that is reduced to Landauer formula (27); here, “ tr ” stands for trace over τ̌ , L, R, 
and oscillator indices. In order to find the spectrum of the symmetrized noise, S(0)ω = 1

2 (�δJ−ωδJω� + �δJωδJ−ω�) , 
we need to find second variation of lnZ[η] by η−ω and ηω . In our particular case of flat NL,ω , the spectrum is 
Lorentzian

Asymptotic behavior of the noise‑current relation.  Hereafter, we express F through the current J according to 
(36) and suppose that ŴL and ŴR can be unequal. This allows analyzing zero-frequency noise-current ratio, S(J), 
where both S and J are measured by the output detector. The zero-frequency noise found in (39) has quadratic 
scaling, Stherm = J2

2Ŵ at J ≪ J∗ε  , that corresponds to Lorentzian light emitted into the output waveguide.
The decoherence is important at J ≫ J∗ε  when pseudothermal output light becomes Gaussian and the thermal 

noise is changed to shot noise. Technically, the inclusion of the stochastic �(t) in the noise calculation is per-
formed with the gauge transformation, similarly to that applied for the transmission function T(t). Symmetrized 
correlator of the noise, S(t) = 1

2 (�δJ(t)δJ(0)� + �δJ(0)δJ(t)�) , reads S(t) = z2(t)S(0)(t) where S(0)(t) = 1
2 J

2e−2Ŵ|t| 
is time-resolved Lorentzian correlator found in the non-interacting limit (39). The shot noise expression follows 
from the Fourier transform of S(t) where the correlator in the exponent of z(t) is Gaussian D(t) ≈ κ2t2 . The 
low-frequency result, S ≡ Sω=0 , is given by S = J2

∞
∫

0

e−2Ŵ|t|−2κ2t2 . Assuming κ ≫ Ŵ , that is equivalent to J ≫ J∗ε  , 

we calculate this integral and arrive at one of central results

Let us analyze it in details. If the interaction is weak, ε ≪ Ŵ , then we always have ŴR/J ≪ 1 according to J∗ε ∼ Ŵ2

ε
 

from (35). Thus, in the nonequilibrium regime at weak anharmonicity, we find conventional shot noise from 
(40) with a linear noise-current ratio Sshot =

√

π
2
ŴR
ε
J at J ≫ Ŵ2

ε
 . This result is considered as a nonequilibrium 

fixed point with the exponent γ = 1.
For strong interaction, ε ≫ ŴL,R , the thermal noise sector in Fig. 4(a) shrinks because of the vanishing 

J∗ε ∼ Ŵ3

ε2
 . This means that we can go to low current domain where J ≪ ŴR . Here, the noise-current relation (40) 

has the following asymptotic

This non-analytical dependence occurs at small J ∼ J∗ε  , i.e., it is parametrically close to zero current line J = 0 in 
Fig. 4(a) at large ε . This feature is also demonstrated in Fig. 5(b) for ε > Ŵ where orange and red curves drop rap-
idly from γ = 2 to γ = 3/2 . Then, curves saturate to conventional shot noise with γ = 1 as the current increases.

There are smooth crossovers between Stherm , S′shot and Sshot at intermediate ε ∼ Ŵ as a consequence of fluctua-
tions in zero-dimensional cavity. At weak anharmonicity, there is no S′shot behavior. Instead, there is a crossover 
from Stherm to Sshot at J ∼ Ŵ2

ε
 . It is shown in Fig. 5(b) where blue curve decays smoothly from γ = 2 to γ = 1.

Intensity correlators.  Time-resolved intensity-intensity correlator in the right waveguide,

is an indicator for bunching or antibunching of photons in the output field. In our solution we assumed that 
anomalous term �Ĉ(t)Ĉ(0)� is zero, and this four-point correlator is defined through the two-point one, 
g (2)(t) = 1+ |g (1)(t)|2 , according to the Wick theorem applicable in our quasi-classical solution. We find 
g (1)(t) = z(t)ǧRR(t)/ǧRR(0) where ǧRR(t) ∝ e−Ŵt is the Lorentzian propagator while z(t) involves ε and F.

Time dependence of the correlator shows exponential decay in the non-interacting limit g (2)(t) = 1+ e−2Ŵt 
at t > 0 . In the interacting case, we find

(38)Z[η] =
�

D[ψ̄ ,ψ]T exp(iS[ψ̄ ,ψ] + iηψ̄Jψ) , J =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 it∗R 0
0 0 0 0 0 0
0 0 −itR 0 0 0















, ψ(t) =















B+(t)
B−(t)
a+(t)
a−(t)
C+(t)
C−(t)















.

(39)S(0)ω = −1

2

∫

dω1

2π
itr
(

Gω1JGω+ω1J
)

= 8F2
Ŵ2
LŴ

2
R

Ŵ(ω2 + 4Ŵ2)
.

(40)S =
√

π

2

ŴR

ε

J√
1+ 2ŴR/J

.

(41)S′shot =
√
πŴR

2ε
J3/2 , Ŵ ≫ J ≫ Ŵ3

ε2
.

(42)g (2)(t) = �Ĉ†(t)Ĉ(t)Ĉ†(0)Ĉ(0)�
|�Ĉ†(0)Ĉ(0)�|2

,

(43)g (2)(t) = 1+ exp
[

− κ2

Ŵ2
(2Ŵt + e−2Ŵ|t| − 1)− 2Ŵt

]

.
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There is Gaussian law of the correlations decay g (2)(t) = 1+ e−2κ2t2 for t ≪ 1/Ŵ . For large timescale, t ≫ 1/Ŵ , 
there is exponential decay g (2)(t) = 1+ e−2 κ2

Ŵ
t . As follows from the condition κ ≫ Ŵ on the nonequilibrium, 

the decay rate in the latter case exceeds that from the non-interacting limit as κ
2

Ŵ
≫ Ŵ.
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