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Among various risk factors for the initiation and progression of cancer, alternative polyadenylation (APA) is a remarkable
endogenous contributor that directly triggers the malignant phenotype of cancer cells. APA affects biological processes at a
transcriptional level in various ways. As such, APA can be involved in tumorigenesis through gene expression, protein
subcellular localization, or transcription splicing pattern. The APA sites and status of different cancer types may have diverse
modification patterns and regulatory mechanisms on transcripts. Potential APA sites were screened by applying several machine
learning algorithms on a TCGA-APA dataset. First, a powerful feature selection method, minimum redundancy maximum
relevancy, was applied on the dataset, resulting in a feature list. Then, the feature list was fed into the incremental feature
selection, which incorporated the support vector machine as the classification algorithm, to extract key APA features and build a
classifier. The classifier can classify cancer patients into cancer types with perfect performance. The key APA-modified genes
had a potential prognosis ability because of their significant power in the survival analysis of TCGA pan-cancer data.

1. Introduction

Cancer is one of the most threatening human diseases and
ranks second to infectious diseases and cardiovascular diseases.
According to statistical data provided by the World Health
Organization (WHO) in 2015, cancer accounts for more than
8.8 million deaths worldwide with more than 14 million new
cases and a high growth incidence [1]. Among various risk
factors of cancer initiation and progression, pathogenic
genetic variants and modifications, such as alternative polya-
denylation (APA), are remarkable endogenous contributors,
directly triggering the malignant phenotype of cancer cells [2].

APA is a specific RNA modification process contribut-
ing to gene expression regulation by generating RNA with
different 3′ terminals from a single gene with multiple polya-
denylation sites [3]. APA affects biological processes at a tran-
scriptional level in various ways. First, tissue-specific APA can
rapidly respond to extracellular cues, regulating the expression
level of certain genes as cellular “stress” responses [4]. As
evidence confirmed in pancreatic cancer, the APA of ZEB1
rapidly responds to genotoxic stress and promotes gene
expression, thereby improving the adaptability of tumor cells
in a flexible tumor microenvironment [5]. Second, APA may
regulate different metabolisms in living cells by affecting the
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subcellular localization of certain protein products. APA con-
tributes to the regulation of 3′UTR-dependent protein locali-
zation by modifying the 3′UTR, thereby affecting the
widespread trafficking mechanisms for different membrane
proteins, including CD47, CD44, and ITGA1 [6, 7]. Third,
considering that 3′UTR is involved inmultiple splicing events,
APA influences posttranscriptional splicing processes and fur-
ther induces the abnormal production of improper protein
isoforms [8–10]. In 2014, a report on the alternative intronic
polyadenylation of IL6 trans-signaling inhibitor confirmed
that different polyadenylation patterns of the same gene
(sgp130-E10) may produce different protein isoforms with
different biological functions [11]. With numerous regulatory
contributions to downstream biological processes, APA is also
regulated by various upstream biological mechanisms involv-
ing RNA-processing factors and RNA-binding proteins,
which constitute a complicated and functional interaction net-
work for posttranscriptional regulation [12].

APA is functionally related to tumorigenesis as a key
functional component of pathogen posttranscriptional regu-
lation [13–15]. APA can be involved in tumorigenesis at
three levels based on original physical functions: gene expres-
sion, protein subcellular localization, and transcription splic-
ing patterns [4]. For example, in gene expression regulation,
APA promotes the tumorigenesis of non-small-cell lung can-
cer by regulating the expression levels of various genes,
including PABPN1, CPEB1, and E2F1, and several prolifera-
tion markers, such as MKI67, TOP2A, and MCM2 [14].

More than 30% of mRNAs have specific APA sites inde-
pendent of cell types [4]. Considering that the expression
profiles of different cancer types vary, we can infer that the
APA sites and status of different cancer types may have
diverse modification patterns and regulatory mechanisms
on transcripts. Therefore, in this study, we adopted several
machine learning algorithms to screen the potential APA
sites at the whole genomic level in multiple tumor types
and tried to find out the key APA-modified genes that might
distinguish different tumor types. The TCGA-APA dataset
was first analysed by the feature selection method, minimum
redundancy maximum relevancy (mRMR) [16]. A feature list
was obtained. Then, the incremental feature selection (IFS)
[17], incorporating a support vector machine (SVM) [18],
was applied on such a list to extract essential APA features.
Most of the key genes corresponding to essential APA fea-
tures showed a significant power in the survival analysis of
TCGA pan-cancer data. Furthermore, the SVM classifier
with the extracted essential APA features gave a perfect per-
formance. This study possibly identified tumor-specific APA
targets, revealed the irreplaceable role of APA modification
patterns for tumorigenesis in multiple tumor types, and pro-
posed APA sites and status as potential tumor biomarkers for
the first time.

2. Materials and Methods

2.1. Datasets. The TCGA-APA dataset was downloaded from
Synapse under the accession number of syn7888354 [19]. In
the original dataset, 9396 APAs were obtained in 5765

patients with cancer, but several values were missing. APAs
with missing values in more than 50% of samples and
patients with cancer with missing values in more than 50%
of APAs were removed. A total of 7544 APAs and 5709
patients were finally obtained from 17 cancer types. The
remaining missing values were imputed using K-NN
methods (K = 3) by R/Bioconductor package impute. The
categories of 17 cancer sites and their corresponding sample
sizes are listed in Table 1.

2.2. Feature Selection. First, mRMR [16] was conducted to
rank input features, that is, APA sites, to choose a refined
feature set that had better discriminatory power than the
original whole set. mRMR is a widely utilized filter-based
feature selection method proposed by Peng et al. [16] on
the basis of two criteria: (1) relevancy between feature
and category must be large and (2) redundancy between
features themselves must be small [20–22]. Given a dataset
with m features, the mRMR follows the above criteria to
select features one by one and added them into a feature
list, which is empty initially. In detail, for each of the
remaining features, its relevance to targets (class labels)
was evaluated by mutual information and its redundancies
were assessed to already-selected features. The feature with
maximum relevance and minimum redundancy is selected
and added to the current feature list. The obtained feature
list was called the mRMR feature list. The mRMR program
we used was downloaded from http://home.penglab.com/
proj/mRMR/index.htm. Default parameters were used to
perform such a program.

Second, IFS [17] and SVM [18] were integrated to select
discriminatory features and their combination. A series of
feature subsets was generated on the basis of the ranked fea-
tures from mRMR. Then, the classification performance of

Table 1: Summary of the used dataset.

Index Cancer type
Sample
size

1 Bladder urothelial carcinoma (BLCA) 249

2 Breast invasive carcinoma (BRCA) 837

3
Cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC)

191

4 Glioblastoma multiforme (GBM) 152

5 Head and neck squamous cell carcinoma (HNSC) 422

6 Kidney chromophobe (KICH) 66

7 Kidney renal clear cell carcinoma (KIRC) 446

8 Kidney renal papillary cell carcinoma (KIRP) 195

9 Brain lower-grade glioma (LGG) 486

10 Liver hepatocellular carcinoma (LIHC) 183

11 Lung adenocarcinoma (LUAD) 486

12 Lung squamous cell carcinoma (LUSC) 220

13 Ovarian serous cystadenocarcinoma (OV) 407

14 Prostate adenocarcinoma (PRAD) 370

15 Skin cutaneous melanoma (SKCM) 225

16 Stomach adenocarcinoma (STAD) 282

17 Thyroid carcinoma (THCA) 492
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SVMs on the samples consisting of the generated feature sub-
sets was evaluated. In the end, the feature subset with the best
performance called optimum APA features, such as APA-
modified genes, was selected.

SVM is a supervised learning model that can be used to
analyse data, recognize feature patterns, and perform classifi-
cation and regression analysis [18, 23–30]. The SVM con-
structs a hyperplane with a maximum margin between two
groups of samples in a high-dimensional or infinite-
dimensional space. SVM is also used to fit nonlinear data
by mapping nonlinear data in a low-dimensional space to a
high-dimensional space by a kernel trick. SVMs can also be
extended for a multiclass problem by learning multiple
binary SVM classifiers, and each classifier is used to classify
one class from other classes. To quickly implement SVM,
the tool “SMO” in Weka [31] was adopted in this study.
The training procedures of this type of SVM are optimized
by the sequential minimal optimization algorithm [32].
Default parameters were used. The kernel was a polynomial
function, and the regularization parameter C was set to 1.

2.3. Performance Measurement. Performance measurement
is an effective experimental estimation to assess the generali-
zation performance of machine learning and can be used as
an evaluation measurement to estimate the generalization
performance of a learned model. In comparing different
models, performance measurements should be objective
and reflect the accuracy of models. Matthew’s correlation
coefficient (MCC) [33–38] for measuring multiclass classifi-
cation performance is applied and formulated as follows:

MCC = cov X, Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where �xj and �yj are the means of xj and yj, respectively; Y is
the truth label; and X is the predicted label. When MCC is 1,
the classifier is extremely optimal. When MCC is 0, the
learned classifier is not different from a random one. If
MCC is −1, the classifier is the worst.

3. Results

In this study, we adopted several machine learning algo-
rithms to analyse the TCGA-APA data. The purpose was to
extract essential ATA features that can correctly distinguish
different cancer types. The entire procedures are illustrated
in Figure 1.

3.1. Results of mRMR. The mRMR was first applied to the
TCGA-APA data. All APA features were deeply analysed
and sorted in the mRMR feature list. The obtained feature list
is provided in Table S1.

3.2. Results of IFS with SVM. Based on the mRMR feature list,
the IFS method constructed feature subsets with step ten; that

is, the first ten features comprised the first feature subset;
then, the second feature subset further added the next ten
features, and so on. On each feature subset, an SVM classi-
fier was built with samples represented by features in the
subset. 10-fold crossvalidation was conducted to evaluate
the performance of each SVM classifier. The accuracy of
each cancer type, overall accuracy, and MCC were counted,
which are available in Table S2. To give an overview of the
performance of the SVM classifier on different numbers of
top features, an IFS curve is plotted in Figure 2(a), in which
MCC was set as the y-axis and the number of features as
the x-axis. It can be observed that the SVM classifier with
lots of APA features always gave a good performance.
When the top 60 features were used, the SVM classifier
can provide perfect performance with MCC = 1; that is,
all cancer patients were classified into the correct cancer
type. To investigate whether such perfect performance can
be obtained with fewer features, we constructed all possible
feature subsets containing 1-60 features. Likewise, an SVM
classifier was built on each of these feature subsets. Also,
10-fold crossvalidation was adopted to assess each SVM
classifier. Obtained measurements are also provided in
Table S2. An IFS curve was also plotted, which is shown in
Figure 2(b). It can be observed that when the top 45 features
were adopted, the SVM classifier also provided the perfect
performance with MCC = 1. Thus, the top 45 APA features
were deemed as the optimum features. Furthermore, a
perfect SVM classifier was built on these features, which
can be a useful tool to discriminate different tumors.

3.3. Results of Survival Analysis on Top Ten Features.Accord-
ing to the results in Table S2, the SVM classifier with the top
10 features could reach MCC of 0.9217. This result indicated
that the top ten APA features had significant APA patterns
with a strong power on discriminating different tumors.
These ten features are listed in Table 2. The selected APA-
modified genes can discriminate different cancer types so
that they would have prognostic power in a pan-cancer
manner. Here, relying on the TCGA pan-cancer gene
expression data and phenotype data (clinical information)
[39], we firstly divided the samples into two parts according
to the expression levels (expression quartiles). Using both
the high-expression group and low-expression group
datasets, we examined each of the top 10 genes for the
survival analysis efficacy. The red survival curve shows the
group of samples with a higher gene expression level, and
the blue survival curve shows the group of samples with a
lower expression level. In summary, the TCGA pan-cancer
datasets were used to examine each of the top 10 genes
based on survival analysis efficiency and are shown in
Figure 3.

4. Discussion

4.1. Optimal APA-Associated Genes in Multiple Tumor Types.
In this study, we extracted several important APA features as
mentioned in Results of IFS with SVM. In addition, accord-
ing to “Results of Survival Analysis on Top Ten Features,”
the top ten features can really indicate different cancer types.
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Here, we analysed the genes related to these APA features. All
these identified genes were reported and validated to have
different APA patterns in most of our 17 candidate tumor
types. These results validated the efficacy and accuracy of
our prediction. The detailed analysis of the APA pattern of
the 10 optimal genes in different candidate tumor types is
presented as follows. All such 10 optimal genes have been
reported to be directly related to APA during tumorigenesis.
The major regulatory effects of APA on such genes have been
shown at three levels (Figure 4): directly affecting the expres-
sion levels and regulating related microRNAs and APA itself
as a typical biomarker.

4.1.1. Genes Directly Regulated by APA at Expression Level in
Multiple Tumor Types. The first examined APA-modified

gene is COPS7A, which contains six potential APA sites
[40]. The transcripts of COPS7A have quite different APA
sites in various tissues; thus, the gene has different APA-
modified patterns in various tumor types [40]. Based on
mRNA sequencing data from the TCGA database, recent
publications have confirmed that COPS7A has a specific
expression pattern in multiple tumor types, supporting our
inference from an independent aspect [41]. As a detailed
case, variant bAug10 with two unique APA sites, or the tran-
script of COPS7A, is specifically expressed in the colon and
the ovary that distinguish tumor types derived from the two
tissues from other tumor types [40]. This result validated
the efficacy and accuracy of our prediction.

DPM2 is another predicted gene with a unique APA sta-
tus in multiple tumor types. APA regulates the specific

5709 cancer patients
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GBM
HNSC
KICH

KIRC
KIRP
LGG
LIHC
LUAD
LUSC

OV
PRAD
SKCM
STAD
THCA

TCGA-APA data

Minimum redundancy 
Maximum relevancy

Feature list

Incremental feature 
selection 

Feature 
subsets

Support vector 
machine

10-fold cross-
validation

Classifier
Important APA-
associated genes

Figure 1: Entire procedures for the analysis of TCGA-APA data in different cancer types. The data is first analysed by the minimum
redundancy maximum relevancy (mRMR) method, yielding a feature list. Then, incremental feature selection (IFS), incorporating a
support vector machine, is applied on the list to extract important APA-associated genes and build an efficient classifier.
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biological function of the polyadenylation signal sequence
and further contributes to the biosynthesis of dolichol
phosphate-mannose in multiple mammalian cell subtypes

[42]. Considering that dolichol phosphate mannose has dif-
ferent expression patterns in multiple cancer types, such as
glioma and head and neck cancer, we can regard the APA
status of DPM2 as a potential biomarker for the identification
of different tumor types [43].

TEAD2, another predicted gene with an APA-modified
pattern, may also have different APA modification patterns
in various tumor types. A specific pattern of polyadenylation
(AATAAA) on TEAD-2 regulates the expression of our pre-
dicted gene TEAD-2 involved in early mouse development,
implying that this gene is regulated by APA modification
[44]. In terms of the contribution of TEAD-2 to tumorigen-
esis, the APA modification of TEAD-2 may be functionally
related to liver cancer development [45], suggesting that this
gene may be a potential biomarker for the identification of a
particular tumor type.

The next gene in our top-ranked prediction list is
HMGB2, which is a member of the nonhistone chromosomal
high-mobility group protein family. A specific study on non-
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Figure 2: IFS curves to illustrate the performance of the support vector machine on different numbers of top features. (a) IFS curve with step
10; (b) IFS curve with 1-60 features. The perfect performance is obtained when the top 45 features are used.

Table 2: Top 10 features selected by the mRMR method.

Feature index Gene name Score

1 NM_001164095|COPS7A|chr12|+ 0.91171

2 NM_001165415|LDHA|chr11|+ 0.73417

3 NM_001242795|NUP93|chr16|+ 0.68580

4 NM_003863|DPM2|chr9|- 0.66010

5 NM_153365|TAPT1|chr4|- 0.65060

6 NM_003377|VEGFB|chr11|+ 0.63976

7 NM_001256661|TEAD2|chr19|- 0.63742

8 NM_001114394|PAPD4|chr5|+ 0.62491

9 NM_001001701|C4orf3|chr4|- 0.61409

10 NM_002129|HMGB2|chr4|- 0.61438
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small-cell lung cancer transcriptome confirmed early in 2008
that the polyadenylation pattern may directly affect the pro-
gression of lung cancer [46]. The APA modification of
HMGB2 may also be involved in thyroid cancer cells [46].
Therefore, in candidate tumor types, HMGB2, an APA site-
targeting gene, may be differentially expressed or regulated
in many tumor types, validating the efficacy and accuracy
of our prediction.

4.1.2. Genes Regulated by APA via MicroRNA-Mediated
Processes. LDHA is another gene with a differentially APA-
modified pattern in candidate tumor types. With 14 potential
APA sites, LDHA is differentially APA modified in different

tissues [47]. A recent study on hepatocellular carcinoma cells
has confirmed that APA-modified LDHA may directly par-
ticipate in tumorigenesis by regulating the biological func-
tions of microRNAs, validating the specific contribution of
APAmodification to LDHA [47]. Therefore, in the candidate
tumor types, the APA pattern of LDHA may contribute to
the identification of LIHC on the basis of the abovemen-
tioned evidence.

The predicted gene PAPD4 is another specific bio-
marker for the identification of different tumor types. In
contrast to other predicted genes, PAPD4 can participate
in the polyadenylation of target mRNAs, indicating its spe-
cific contribution to APA [48]. In terms of the contribution

COPS7A LDHA NUP93 DPM2 TAPT1

VEGFB TEAD2 PAPD4 C4orf3 HMGB2

P = 0.005589 P = 0.000 P = 0.05275 P = 0.2718 P = 0.000
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Figure 3: Survival analysis of the top 10 features in pan-cancer cohorts. Among the top 10 genes, seven genes had significant survival risks in
the pan-cancer manner (red for the high-expression group, and blue for the low-expression group). Genes LDHA and TEAD2 are shown to
predict a poor prognosis, and genes COPS7A, TAPT1, PAPD4, C4orf3, and HMGB2 are shown to indicate a good prognosis.

COPS7A, DPM2, 
TEAD2, HMGB2

LDHA, PAPD4

NUP93, TAPT1, 
VEGFB, C4orf3

Genes regulated by APA at expression level
Genes regulated by APA via microRNA mediated processes
Genes with APA itself as a typical biomarker

Figure 4: Summary of the APA-associated genes’ regulatory methods on multiple tumor subtypes. Here, we summarized the three major
subgroups of contributions that APA-associated genes contribute to different cancer subtypes together with the number of genes among
the top 10 genes that contribute to each subgroup.
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of APA to PAPD4, a study in 2014 reported that the APA
modification of PAPD4 regulated by HBx may directly con-
tribute to the HBV-related dysregulation of miR-122 [49].
Biological processes, that is, HBV-related dysregulation of
miRNA, are functionally associated with hepatocellular car-
cinoma (LIHC), reflecting the cancer subtyping potential of
PAPD4 [50].

4.1.3. Genes with APA Itself as a Typical Biomarker. The next
predicted gene with differential APA patterns in different
tumor types is NUP93. The transcript information from the
NCBI AceView database supports NUP93 with five validated
APA-modified sites, confirming the potential of APA-
mediated transcription regulation on this gene [40]. In our
study, NUP93 was APAmodified in gastrointestinal diseases,
including pancreatic cancer; thus, the APA status of NUP93
may be a potential indicator for the identification of pancre-
atic cancer [51]. The APA status of NUP93 in glioma, in
addition to pancreatic cancer, is also tumor-specific [52,
53]. Therefore, with a unique APA status in pancreatic can-
cer and glioma, the predicted NUP93 may be an effective
indicator for the identification of different tumor types.

TAPT1 has specific APA patterns in multiple tumor
types. As a transmembrane protein, the APA modification
of this gene affects the stability of the encoded protein’s
transmembrane structure [54, 55]. In terms of the contribu-
tion of APA to TAPT1 in different tumor types, APA modi-
fication affects the 3′UTR of TAPT1 in hepatocellular
carcinoma cell lines [56], indicating that this specific pattern
of APA modification may contribute to the identification of
LIHC from other tumor types.

VEGFB is functionally modified by APA under multiple
physical and pathological conditions [57]. With five vali-
dated APA sites, the abnormal APA-modified transcripts of
VEGFB contribute to the pathogenesis of chronic liver dis-
ease and even LIHC, and this finding was consistent with
our prediction [58]. Similarly, the specific APA modification
of VEGFB may be involved in the functional regulation of
CPEB1 and CPEB4 [58], further contributing to the tumori-
genesis of multiple tumor types, including cervical, ovarian,
and glioma cancers [59]. Therefore, the specific pattern of
APA modification on our predicted VEGFB might also be
an applicable biomarker of different tumor types, validating
the efficacy and accuracy of our prediction.

C4orf3 is a predicted gene that may be functionally
related to APA-mediated tumorigenesis. It is APA modified
and forms a functional fusion transcript named KLHL2-
C4orf3 fusion transcript, which is merged by the second,
third, and fourth exons of KLHL2 and the first intron of
C4orf3 [60]. Therefore, the modified APA sites of C4orf3
may be a potential APA target of the fusion transcript
KLHL2-C4orf3. Considering that this fusion transcript is
functionally related to lung adenocarcinoma but not to other
tumor types, specific APA-modified patterns of C4orf3-
induced transcript or fusion transcript may be potential bio-
markers for the identification of lung adenocarcinoma [60].

4.2. Optimal APA-Associated Genes in Pan-Cancer Survival
Analysis. APA-modified genes can participate in multiple

cancer development and progression. As such, APA-
modified genes play important roles in pan-cancer tumori-
genesis, including potential prognosis power in pan-cancer
cohorts. Thus, the survival risk of each APA gene (Figure 4)
was evaluated on the basis of the TCGA pan-cancer gene
expression data and phenotype data [39]. For each APA gene,
the pan-cancer samples were divided into two groups based
on expression quartiles, where one group of the samples
had a high gene expression (red survival curve) and the other
group of the samples had a low gene expression (blue survival
curve). Of the 10 APA genes, 7 had significant survival risks
in a pan-cancer manner. LDHA and TEAD2 were oncogenes
whose high expression levels indicated a poor survival expec-
tation. By contrast, other genes, including COPS7A, TAPT1,
PAPD4, C4orf3, and HMGB2, have a tumor suppressor
effect, and their high expression levels characterize patients
with a good survival potential. Thus, 70% of our 10 APA
genes had satisfactory prognostic power in a pan-cancer
way, thereby supporting our analysis efficiency.

Overall, this study examined 10 potential gene bio-
markers with differential APA-modified patterns in different
tumor types. The 10 identified biomarkers were validated by
recent publications, reflecting the efficacy and accuracy of the
study. The presented computational approach might con-
tribute to the identification of potential APA target sites at
a whole genome level and provide a new approach to reveal
the significant role of APA-induced RNA modification
underlying tumorigenesis.

5. Conclusions

This study analysed the APA sites for multiple tumor types
using several computational methods. Several key APA-
modified genes were extracted, which can distinguish differ-
ent tumor types; that is, they can be potential tumor
biomarkers.
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