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Abstract: The discharge of improperly treated oil/water emulsion by industries imposes detrimental
effects on human health and the environment. The membrane process is a promising technology for
oil/water emulsion treatment. However, it faces the challenge of being maintaining due to membrane
fouling. It occurs as a result of the strong interaction between the hydrophobic oil droplets and
the hydrophobic membrane surface. This issue has attracted research interest in developing the
membrane material that possesses high hydraulic and fouling resistance performances. This research
explores the vapor-induced phase separation (VIPS) method for the fabrication of a hydrophilic
polysulfone (PSF) membrane with the presence of polyethylene glycol (PEG) as the additive for
the treatment of oil/water emulsion. Results show that the slow nonsolvent intake in VIPS greatly
influences the resulting membrane structure that allows the higher retention of the additive within
the membrane matrix. By extending the exposure time of the cast film under humid air, both surface
chemistry and morphology of the resulting membrane can be enhanced. By extending the exposure
time from 0 to 60 s, the water contact angle decreases from 70.28 + 0.61° to 57.72 + 0.61°, and the clean
water permeability increases from 328.70 + 8.27 to 501.89 + 8.92 (L-m~2-h~!-bar~!). Moreover, the oil
rejection also improves from 85.06 + 1.6 to 98.48 + 1.2%. The membrane structure was transformed
from a porous top layer with a finger-like macrovoid sub-structure to a relatively thick top layer with
a sponge-like macrovoid-free sub-structure. Overall results demonstrate the potential of the VIPS
process to enhance both surface chemistry and morphology of the PSF membrane.

Keywords: oil/water emulsion; environmental pollution; membrane development; polyethylene
glycol; vapor-induced phase separation
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1. Introduction

Oil and gas industries remain the major supplier of energy for continuous economic and industrial
development [1]. However, the discharge of improperly treated oil/water emulsion generated during
oil and gas production and processing remains the major concern [2]. This issue leads to the global
implementation of wastewater treatment, reuse, and discharge limits imposed by regulations [3,4].
Conventional techniques for the treatment of oil/water emulsion such as dissolved air floatation,
adsorption, coagulation, centrifugation, and many others are inefficient for the separation of small-size
oil droplets (<10 pm) from water in the form of stable oil/water emulsion [5]. More importantly,
they generate secondary pollutants, apart from the high cost and complexity of their operations [6,7].
Those challenges render them incapable of meeting the imposed discharge limits, as well as the
economic sustainability [8,9].

Membrane-based technology has emerged as a promising option for the treatment of challenging
oil/water emulsion wastewater due to its high separation efficiency, and economic and environmental
advantages [10,11]. The technology is in a state of rapid development mainly to overcome the
challenges imposed by membrane fouling [12,13]. Membrane fouling causes an increase in hydraulic
resistance (flux decline) due to pore blockage and/or cake layer deposition [14,15]. To restore the
membrane performances, frequent chemical cleaning is often applied. However, apart from the
health and environmental risk of the chemicals, they also shorten the membrane lifetime (membrane
degradation) [16], affecting both capital and operational expenditures [17]. Nonetheless, it can be
properly addressed by controlling the oil droplets/membrane surface interaction via either surface
modification [4] and/or membrane surface patterning [12,18]. The former involves the improvement in
the membrane surface wetting property (hydrophilicity), to facilitate repellence of the hydrophobic
oil droplets and hinder the formation of the cake layer and/or pore blockage [3]. The latter involves
creation of macro/micro patterns on the membrane surface that promote turbulence flow of the oil
droplets induced by fluid eddies to drive the oil droplets away from the membrane surface [12].

Membrane surface chemistry modifications have gained significant research interest due to their
effectiveness, facile approach, and the availability of many optional additives [19,20]. Additives such
as polyethylene glycol (PEG) and PEG-containing materials are attractive due to their abundance in
carboxyl and alcohols groups, high availability, and their low cost [21]. They can be incorporated
into the membrane material via surface grafting, surface coating, or in-situ surface segregation
techniques [21,22].

Surface grafting suffered from difficulties in controlling the polymerization parameters for proper
grafting density, as well as high cost and environmental sustainability [23]. On the other hand, surface
coating suffers from poor adhesion of the hydrophilic-coated layer, which make it vulnerable from peeling
off over time, apart from the cost and environmental sustainability issue [19]. However, in-situ surface
segregation has recently been adopted by many researchers due to its economic and environmental
sustainability [23]. It involves the blending of the additive with the membrane base polymer during
dope solution preparation [21,24].

Zhu et al. [21] developed a hydrophilic polysulfone (PSF) membrane using poly(ethylene
glycol) methacrylate (PEGMA) as an additive via the surface segregation technique. They reported
a water flux of up to 110 (L-m~2h™!) for treatment of 500 ppm of polyethylene glycol solution.
However, the technique is largely restricted by the excessive additive leached out during the phase
separation [25]. As the additive is hydrophilic, it rapidly migrated to the nonsolvent (water) bath,
leaving behind a small amount entrapped within the membrane matrix after solidification [21].
Therefore, an effective strategy is required to hinder the excessive additive leached out, thus improving
its density within the membrane matrix and/or surface for improved membrane performances [23].
However, controlling membrane formation offers a facile approach to overcome this challenge.
It involves manipulation of both kinetic and thermodynamic properties of the cast film [26,27].

Nonsolvent-induced phase separation (NIPS) and vapor-induced phase separation (VIPS),
or sometimes called vapor-nonsolvent-induced phase separation (V-NIPS), have been proved to
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offer an additional degree of freedom in controlling the resulting membrane properties [28]. The former
involves immediate immersion of the cast film into the nonsolvent bath that typically leads to the
formation of a porous top layer supported by a finger-like, highly porous macrovoid asymmetric
sub-layer structure [29]. The latter involves slow absorption of the nonsolvent (water vapor) by the
cast film when exposed to humid air, which leads to the formation of a top skin layer and sponge-like
symmetrical sub-structure [30]. The VIPS method offers more control over the membrane formation.
The slow nonsolvent penetration allows the formation of an immobile top layer that can restrict rapid
PEG chains leached out during the nonsolvent immersion step [21]. It then facilitates entrapment of
the additive within the membrane matrix and can eventually increase the surface hydrophilicity [23].

Zhu et al. [21] developed a hydrophilic PSF membrane via the V-NIPS technique on the
PSF/PEGMA/DMACc system. They found that the PEGMA surface density shifted regularly by
adjusting the cast film humid air exposure time. The water flux increased from 110 to 512 (L-m~2-h~1)
by adjusting the humid air exposure time from 0 to 5 min. Such an improvement was attributed to the
formation of a top immobile layer that trapped the PEGMA chains and restricted their migration into
the nonsolvent bath during the subsequent immersion step. Dehban et al. [31] studied the effect of
humid air exposure time on the performance of poly phenyl sulfone ultrafiltration membranes via the
V-NIPS approach. They reported that pore size and permeate flux shifted regularly by adjusting the
humid air exposure time. Water flux and mean pore radius increased from 17.12 to 20.79 (L-m~2-h~!)
and from 0.96 to 1.44 nm, respectively, by adjusting the exposure time from 0 to 15 s.

To our best knowledge, the application of VIPS for the development of a hydrophilic PSF membrane
from the PSF/PEG/DMAC system is limited and worth investigating. This study employed the VIPS
approach to develop a hydrophilic PSF membrane using the PEG as an additive for oil/water emulsion
filtration. Detailed surface structure and chemistry characterization of the membranes prepared by
exposing the cast film to humid air at a range 0, 30, and 60 s were conducted to prove the hypothesis.
The hydraulic and fouling resistance performances of the resulting membranes were evaluated by
treating the oil/water emulsion feed in a crossflow filtration setup over five filtration cycles.

2. Materials and Methods

2.1. Membrane Preparation

The dope solution constitutes PSF (Mw = 78.0 X 103 g/mol, Sigma Aldrich, St. Louis, MO, USA),
dimethylacetamide (DMAc, 99.8% purity, Sigma Aldrich), lithium chloride (LiCl, Mw = 42.38 g/mol,
ACROS Organics, Geel, Belgium), and PEG (Mw = 10,000 kg/mol, Sigma Aldrich) as polymer, solvent,
pore former, and hydrophilic additive, respectively. The distilled water was used as the nonsolvent.
The Novatexx 2413 (Freedenberg-filter, Weinheim, Germany) nonwoven was used as the baking
support to avoid membrane shrinkage [32].

The homogeneously mixed dope solution was prepared by dissolving 18 wt% PSF, 1 wt% PEG,
and 0.1 wt% LiCl (acting as pore former) in 80.9 wt% DMAc and stirred at 60 °C for 24 h. The solution
was degassed and casted using a 0.22 mm wet casting thickness on the nonwoven support. Thereafter,
the liquid film was exposed to humid air (70% relative humidity) at room temperature (of 22 °C)
for 0, 30, and 60 s before immersion into the nonsolvent bath. The as-prepared membranes were
denoted according to the exposure time range as PSF/PEG-0 (considered as the NIPS-based membrane),
as well as PSF/PEG-30 and PSF/PEG-60 (both considered as VIPS-based membranes), respectively.
They were stored in fresh nonsolvent when not in use. Figure 1 depicts the process flow diagram for
membrane fabrications.
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Figure 1. Illustration of membrane fabrication via vapor-nonsolvent-induced phase separation
(V-NIPS) approach.

2.2. Feed Preparation

Stabilized oil/water emulsion was synthesized using crude oil (obtained from a crude oil well
in Malaysia), distilled water, and sodium dodecyl sulfate (SDS, 98% purity, Sigma Aldrich) as the
oil, water, and surfactant, respectively. The SDS-to-oil ratio of 1:99 (w/w) [33] was mixed in water
to obtain 1000 ppm stabilized emulsion via mechanical agitation at a stirring rate of 3500 rpm for
24 h. The synthesized oil/water emulsion was stable for about 2 months without any sign of settling
or oil floatation. A small volume of feed samples was later analyzed using a particle size and zeta
potential analyzer (Malvern, Zetasizer Nano ZSP, Malvern, United Kingdom) to map the oil droplet
size distribution.

2.3. Membrane Characterization

Field emission scanning electron microscopy (FESEM, ZEISS EVO ® 1515, Jena, Germany) was
used to characterize the morphology of the prepared membranes. The samples were fractured in
liquid nitrogen and coated with platinum prior to their surface and cross-sectional characterization
with FESEM. A capillary flow porometer (Porolux 1000, Berlin, Germany) and goniometer (Ramé-Hart
260, Succasunna, NJ, USA) were used to determine the pore size distribution and contact angle of the
membrane samples, respectively. The X-ray photoelectron spectrometer (XPS, K-Alpha™, Thermo
Scientific, Waltham, MA, USA) and Fourier-transform infrared spectrometer (FTIR, PerkinELmer, Inc.,
Waltham, MA, USA) were used to investigate the surface chemical compositions and surface functional
groups, respectively. Finally, the oil concentration of the sample’s permeance was determined using a
UV-VIS spectrometer (Shimadzu UV-2600, Kyoto, Japan) at a wavelength of 227 nm.

2.4. Filtration Setup

The filtration tests were run under a constant 0.2 bar trans-membrane pressure (AP) in a crossflow
filtration setup, as depicted in Figure 2. A feed pump was installed in the system to continuously
circulate the feed while a valve was installed to control the operating pressure measured through the
pressure gauge, where Qr is the feed flowmeter and was maintained at 418 mL-min~!, and Qg and Qp
are the retentate and permeate flowmeter, respectively. Qp data were used to evaluate the performance
of the membrane over time, and their data have been provided in the results and discussion section.
The membrane sample was cut and installed in the filtration cell with an effective area of 0.0037 m?
and compacted for 60 min prior to the clean water permeability (CWP) test.



Polymers 2020, 12, 2519 50f 16

Retentate |

Pressure gauge

Filtration cell
] === \ [ embran e

Feed pump

™

' ‘

Oily wastewater Permeate

Figure 2. Crossflow filtration setup for oil/water emulsion filtration. After volume measurement, the
permeate was turned to the feed contained to maintain the feed condition.

The sequence of filtration tests was conducted as follows: After 60 min of membrane compaction,
the flux reached a nearly constant value for three consecutive samples collected every 10 min and
recorded as the CWP. After measurement, the permeate was recycled back to the feed to maintain the
feed condition (i.e., oil concentration). Only a small volume of the permeate was kept for analysis.
The feed was then switched to oil/water emulsion and the filtration was continued for 90 min while
permeate samples were collected every 10 min, followed by water cleaning for 10 min prior to CWP
re-evaluation. This procedure was regarded as one complete filtration cycle. The filtration was further
continued for another four cycles to fully evaluate the performance of the membranes, as well as to
evaluate the membrane fouling.

The CWP and the oil/water emulsion permeabilities (L (L-m~2-h~!-bar~!)) were calculated using
Equation (1), while oil rejection performances (R, %) were calculated using Equation (2).

AV

L= A At AP @)
CP

R= (1— —)x 100 )
Cr

where AV is the permeate volume collected (L), At is the filtration time (h), AP is the trans-membrane
pressure (bar), A is the membrane effective area (m?), C, is the permeate oil concentration (ppm),
and Cy is the feed oil concentration (ppm). The C, of the samples collected from the membranes were
evaluated using a UV-VIS spectrometer (Shimadzu UV-2600, Kyoto, Japan) at a wavelength of 227 nm.

2.5. Membrane Fouling Resistance Test

The antifouling property of the membranes were analyzed by evaluating the fouling indices,
namely permeance recovery (PR, %), reversible fouling (RF, %), irreversible fouling (IrE, %), and residual
permeability (RP, %) using Equations (3)—(6), respectively. The initial CWP is denoted as CWP,;,
while the CWP of the subsequent filtration cycles is denoted as CWPy;,, in which 7 is the number of
filtration cycles. Lastly, F,; denotes the oil/water emulsion permeability.

CWP wi+n

PR =
CWPy,;

x 100% 3)

CWPwi+n - Foi
RF = ——— x100% 4
cwp,, < 100% @)
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CWPy; = CWPyi
CWP,,;

RP = PR- RF (6)

IrF =

x 100% (5)

3. Results and Discussion
3.1. Membrane Characteristics

3.1.1. Morphology

The SEM images in Figure 3 show the influence of humid air exposure time on the resulting
membranes morphologies. Clear changes in the membrane surface and cross-sectional morphologies
are observed as a result of different fabrication conditions. The PSF/PEG-0 was prepared via the NIPS
as the exposure time was set at 0 s by immediate immersion in the nonsolvent bath after casting.
It has a typical structure normally exhibited by membranes fabricated via instantaneous demixing.
The PSF/PEG-0 cross-sectional morphology shows an asymmetric structure with a thin skin on the
top layer acting as the separation layer, supported by a highly porous finger-like sub-structure and
a small portion of the sponge-like at the bottom [34,35]. By contrast, membranes formed by the
delayed demixing mechanism show a sponge-like macrovoid-free sub-structure with a dense and thick
skin layer.

PSE/PEG-0

PSF/PEG-30

NCTC 5.0kV 6.0mm x2.00k SE(L)

PSF/PEG-60

NCTC 5.0kV 6.3mm x2.00k SE(L)

Figure 3. FESEM images of top surface (A) and cross-sectional (B) morphology of the membranes at
2000x and 900x magnification, respectively.

The VIPS-based membranes have a somewhat symmetric cross-section morphology. Unlike the
PSF/PEG-60 that has no macrovoid, the PSF/PEG-30 exhibits some macrovoids not fully suppressed
at the sub-layer (Figure 3B). They are originated from the formation of a cluster of water-rich zones
that rapidly enter the cast film through a pre-formed surface pore. The symmetric morphology



Polymers 2020, 12, 2519 7 of 16

of the VIPS-based membrane can be ascribed by the nature of membrane formation mechanisms.
When exposed to humid air, the uptake of water could cause phase separation in the upperpart of
the cast film to form an immobile structure of the membrane [24,34]. During immersion into the
nonsolvent bath to complete the phase separation, it only slightly altered the overall structure of the
film of PSF/PEG-30 to allow formation of a few macrovoids. The final structure of the PSF/PEG-60
membrane seemed to be formed during the exposure time to humid air. Even though the phase
inversion was not completed, the cast film viscosity was so high that further exchange of the solvent
and nonsolvent during the immersion did not change the overall structure of the formed membrane.

The surface SEM image of the PSF/PEG-0 clearly shows the surface pore within the range of
microfiltration, further characterized in Section 3.1.2. Formation of the microfiltration range of the
PSF membrane was facilitated by the presence of the PEG additive that promote instantaneous
demixing [36,37]. Conversely, for the VIPS membranes, the pore sizes are much smaller and are
not clearly visible from the surface SEM images. It is also worth noting that some concave shape
can be seen on the PSF/PEG-30, most likely originating from the cast film that sank into the voids
in the nonwoven support. A similar phenomenon most likely also occurred for the PSF/PEG-60,
but the surface flattened given the prolonged time. Formation of a small surface pore size of the VIPS
membrane occurred—as for the cross-sectional morphology—because of the pre-formation of the
overall membrane structure during the exposure to humid air. The phenomenon of VIPS-based PSF
membrane formation is slightly different than for the PVDF polymer. The pore size of VIPS-based
PVDF membranes is typically larger than that of the NIPS-PVDF membranes [25,38].

The membrane thickness shows an increasing trend; as the exposure time raised from 0 to 30 and
60 s, the membrane thickness increased from 218.3 + 1.3 to 234.3 + 1.3 and 235.7 + 1.7 pm, respectively.
The slow uptake of water during the humid exposure of the cast film resulted in delayed demixing,
which favors the pre-formation of an immobile top layer. Therefore, longer exposure time resulted in
an increase in the thickness of the immobile top layer that eventually hindered the rapid exchange of
solvent and nonsolvent when immersed in the nonsolvent bath [23,39]. Similar results were reported
by Venault et al. [23] on the influence of humid air exposure time on the morphology and thickness
of PSF membranes. The membrane was transformed from a finger-like to sponge-like sub-structure,
as well as a gradual shift in the membrane thickness as a function of humid air exposure time.

3.1.2. Mean Flow Pore Size and Pore Size Distribution

The mean pore size of the membranes gradually shifted to become smaller as the humid air
exposure time was prolonged from 0 to 30 and 60 s, as illustrated in Figure 4. The NIPS-based PSF/PEG-0
exhibited a mean flow pore size of 0.126 um, while the VIPS-based PSF/PEG-30 and PSF/PEG-60 had
mean flow pore sizes of 0.057 and 0.032 pum, respectively. These results can be explained by considering
both thermodynamic and kinetic effects of PEG and the humid air exposure time. Addition of PEG
into the dope solution enhances the rate of liquid-liquid demixing due to the decrease in the polymer
solution thermodynamic stability, while from the kinetic aspect, it slows down the liquid-liquid
demixing rate due to the increase in the cast film viscosity. However, one of the effects supersede the
other based on the phase separation condition [31]. For the NIPS-process, immediate immersion of the
cast film favors instantaneous demixing with the presence of the hydrophilic additive that behaves like
a nonsolvent [21]. Therefore, the NIPS-membrane (PSF/PEG-0) has a microfiltration range of pore size.
In contrary to the VIPS-membrane, water uptake during exposure to humid air leads to an increase
in cast film viscosity, to the extent of forming an immobile gel-like film. The high viscosity of the
cast film resulted in delayed demixing that typically produced dense membranes or that of small
pore size [25,35]. As the exposure time was extended, the viscosity of the cast film was increased.
It was observed that the dense membrane was formed when the exposure time was extended beyond
60 s. Formation of a gel-like cast film prevented the further growth of nuclei during immersion in the
nonsolvent bath resulting in a membrane with smaller mean flow pore size.
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Figure 4. Pore size distribution of the resulting membranes.
3.1.3. Surface Hydrophilicity

The membranes surface hydrophilicity measured via the water contact angle decreases from the
NIPS-membrane to the VIPS membrane and as the humid air exposure time was prolonged (Figure 5).
By adjusting the exposure time from 0 to 30 s, the water contact angle decreased from 70.28 + 0.61°
to 67.09 + 0.48°. By further adjustment to 60 s, the water contact angle decreased to 57.72 + 0.61°.
The decrease in water contact angle can be justified by the increase in PEG residue near the surface.
This finding proves our hypothesis on the formation of an immobile structure of cast film during the
exposure to humid air that entraps the PEG additive within the polymer matrix and reduces its leaking
to the coagulation bath.

74 A

68 -

Contact angle (°)
(=)
%)
H

56 -

50 A

PSF/PEG-0 PSF/PEG-30 PSF/PEG-60
Figure 5. Water contact angle of the developed membranes.

The finding of the decrease in water contact angle at longer exposure time can be attributed to an
increase in PEG near the membrane surface, as also reported elsewhere [40], thanks to the immobile
top layer that entrapped the PEG chains [35]. The entrapment of hydrophilic additive allows the
formation of an hydration layer between water molecules and carboxylic groups, and alcohols groups
of PEG chains that act as a physical barrier for oil droplets/membrane surface interaction [25]. Such a
membrane is expected to pose better performance for the treatment of oil/water emulsion. In another



Polymers 2020, 12, 2519 9of 16

study, Zhu et al. [21] also reported a gradual decrease in water contact angle for PEGylated PSF
with the increase in humid air exposure time. By raising the exposure time from 0 to 1 and 3 min,
the water contact angle decreases from 65° to 61° and 45°, respectively. In their approach, the PEG was
cross-linked in situ.

3.1.4. Fourier-Transform Infrared Spectra

Figure 6 illustrates the FTIR spectra of surface functional groups of the membranes, ascribing
the presence of residual PEG in the VIPS-based PSF membrane qualitatively. For all the membranes,
peaks attributed to the stretching vibrations of SO, groups and aromatic rings that form the structural
components of the PSF polymer were observed at 1150 and 1587 cm™!, respectively [20], while peaks
ranging from 2800 to 3400 cm~! and 1330 to 1420 cm™!, respectively, attributed to carboxylic and
alcohols groups of PEG were also observed [41,42].

-OH of PEG Carboxylic acid of PEG
0, .

7
W |

# 5 . PSF/PEG-60
|lmi'r"|r“~\f | ~PSFIPEG-0
A

Transmittance (%)

Y N TYY "PSE/PEG-0

500 1000 1500 2000 2500 3000 3500 4000
Wavelength (cm™)

Figure 6. FTIR spectra of the membrane’s functional groups.

The peaks attributed to carboxylic and alcohols groups became more prominent by adjusting the
humid air exposure time from 0 to 60 s. Moreover, the C-O stretching observed at 1050 and 1101 cm™!
also became more prominent for the VIPS-based membrane. This finding suggests that more PEG chains
are trapped within the membrane matrix from the VIPS-based membrane. It ascribes the impact of the
VIPS method in limiting the excessive leaching out of PEG during the immersion in the nonsolvent bath.
Similar findings were also reported by Daramola et al. [20] and Zhu et al. [21] on the enhancement of
PEG chains surface coverage with prolonged humid air exposure time. Thanks to the uptake of water
from humid air, the preformation of the top immobile layer helps to trap the PEG chain within the
membrane matrix and hinders its excessive leach out during the NIPS step. Eventually, it makes the
membrane surface more hydrophilic [23].

3.1.5. Surface Chemical Composition

The results of elemental composition from the Energy-dispersive X-ray spectroscopy mapping
summarized in Table 1 show that the oxygen level increased by adjusting the humid air exposure time.
It further confirms the entrapment of the PEG chain by application of the VIPS for PSF membrane
fabrication. The oxygen element in Table 1 originates from the carboxylic and alcohols groups of the
PEG. The increase in the oxygen content demonstrates the increasing amount of PEG entrapped in the
membrane matrix, which was also promoted by the extent of the exposure time, as also reported by
others [24,28]. By adjusting the exposure time from 0 to 30 s, the oxygen level increased from 24.64 to
25.86 wt%. It further increased to 26.26 wt% by adjusting the exposure time to 60 s. The finding further
confirms the results in Figures 5 and 6. A similar result was also reported by Nawi et al. [25], in which
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an increasing oxygen concentration from 2.22 to 3.25 wt% was found by adjusting the exposure time
from 0 to 5 min, respectively, for VIPS-based PVDF membranes.

Table 1. Energy-dispersive X-ray spectroscopy surface elemental composition of the membranes.

Composition (wt%)

Membrane

C (0] S
PSF/PEG-0 70.58 24.64 4.78
PSE/PEG-30 69.40 25.86 4.74
PSF/PEG-60 69.02 26.26 4.72

To further confirm the impact of exposure time on surface elemental compositions, two selected
membrane samples (PSF/PEG-0 and PSF/PEF-60) were further characterized by XPS, as depicted in
Figure 7. The result shows an increase in oxygen content for PSF/PEG-60. The surface concentration of
O 1s increases from 16.99 to 17.96 mol% by adjusting the exposure time from 0 (NIPS-based membrane)
to 60 s (VIPS-based membrane), respectively, while the O 1s to C 1s ratio increases from 0.208 to 0.229,
as shown in Table 2. The findings suggest that more PEG chains cover the membrane surface by
prolonging the cast film humid air exposure time, as also reported elsewhere [21].

PSF/PEG-60
60,000 1 —— PSF/PEG-0
C1ls
50,000 -
- 40,000 +
E O1s
o -
] 30,000
S
20,000 -
10,000 o
0 T T T T T Y
0 200 400 600 800 1000 1200 1400

Binding energy (eV)

Figure 7. XPS wide-scan spectra of polysulfone (PSF)/PEG-0 and PSF/PEG-60 membranes.

Table 2. XPS surface elemental percentages of the membranes.

Surface Elemental (mol%)

Membrane

O1s C1s S 2p O 1s/C1s
PSF/PEG-0 16.99 81.49 1.52 0.208
PSF/PEG-60 17.96 80.16 1.88 0.229

3.1.6. Clean Water Permeability

Figure 8 demonstrates the effect of humid air exposure time on the CWP. By adjusting the
exposure time from 0 to 30 and 60 s, the CWP increases from 328.7 + 8.27 (Lm~2h 1bar!) to
364.78 + 7.38 (L-m2-h~!-bar~!) and 501.89 + 8.92 (L-m~2-h~!-bar~1!), respectively. This finding suggests
an improvement in the hydration layer that enhances water molecules/membrane surface interactions,
and further confirmed the results shown in Figures 5-7. Dehban et al. [31] reported an increase in the
CWP from 5.71 (L-m~2-h~!-bar™?!) to 6.93 (L-m~2-h~!-bar~!) by adjusting the humid air exposure time
from 0 to 15 s. It is worth noting that the low filtration resistance attributed to large pore size (Figure 4)



Polymers 2020, 12, 2519 11 of 16

is overshadowed by the hydration impact. Another plausible explanation is due to the higher number
of pore population for the PSF/PEG-60 membrane that results in low intrinsic hydraulic resistance,
as suggested by others [43].

OPSF/PEG-0 DOPSF/PEG-30 OPSF/PEG-60
500 o T

400 o

300 +

200 +

100 +

Clean water permeability (L/(m?h bar))

Figure 8. Clean water permeability of the resulting membranes.

3.2. Oil/Water Emulsion Filtration

Figure 9 shows that PSF/PEG-60 sustains up to 248.92 + 10.54 (L-m~2-h~!-bar~!) permeability
even after the long-term fouling test (90 min) with just 10 min of water cleaning, while PSF/PEG-0
and PSF/PEG-30 maintain only a permeability of 123.85 + 1.82 and 169.46 + 3.08 (L-m~2-h~!-bar~!)
respectively. Even after the fifth filtration cycle, PSF/PEG-60 outperformed the rest by maintaining a
permeability of up to 139.46 + 0.81 (L-m~2-h~!-bar~!). On the other hand, PSF/PEG-0 and PSF/PEG-30
demonstrated only 45.16 + 0.41 (L.m~2h 1bar™!) and 69.93 + 0.28 (L-m~2-h~1-bar™1), respectively.
The superior performance of the PSF/PEG-60 can be attributed to its properties detailed earlier.
The hydrophilic nature of the surface facilitates a hydrogen bond with water to create a hydration
layer that inhibits interaction of oil droplets with the membrane surface. The low pore size hinders the
pore blocking by the oil droplets.

300 3 Cyclel Cycle 2 Cycle 3 Cycle 4 Cycle 5
250 +

200 o

PSF/PEG-60

Permeability (LMHbar?)

150 +
100 +
PSF/PEG-30
50 o _
PSF/PEG-0
0 T T T T T T Y
0 100 200 300 400 500 600 700

Filtration time (min)

Figure 9. Hydraulic performance of the membrane for oil/water emulsion filtration.
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Figure 9 also shows that most of the permeability loss occurs during the first 10 min of the filtration,
in which up to 50% of the permeability diminishes. This phenomenon can be ascribed by irreversible
adsorption of the foulant that commonly occurs when treating a fouling-prone feed, as also discussed
elsewhere [44,45]. Similarly, Nawi et al. [25] reported up to an 80% decline in permeability during the
first 10 min of oil/water emulsion filtration, while Elhady et al. [46] reported a permeability loss of up
to ~63% during oil/water emulsion filtration.

Figure 10 shows that the PSF/PEG-60 membrane demonstrates the highest oil rejection performance.
By adjusting the humid air exposure time from 0 to 30 and 60 s, the oil rejection gradually improved
from 85.06 + 1.6% to 97.12 + 2.2% and 98.48 + 1.2%, respectively. This is attributed to the decrease in
mean pore size with the increase in the humid air exposure time, and as such, the smaller oil droplets
could be rejected [21]. Based on the particle size distribution of the oil droplets in the oil/water emulsion
sample, the sizes of the droplets were distributed in a three-modal distribution at 0.25, 0.9, and 4.0 pum.
Those droplet sizes are indeed way smaller than the mean flow pore size of all membrane samples
(Figure 4). Another plausible explanation is the hydrophilic nature of the PSF/PEG-60 membrane in
comparison to the rest, as also reported elsewhere [47]. It is anticipated that, due to severe fouling
at higher oil concentration, the application of the membrane for oil/water emulsion filtration is only
applicable up to a certain threshold value. An economic trade-off is then expected between the high
concentration factor and the feasibility of the membrane, which will be addressed in a future study.

OPSF/PEG-0 @PSF/PEG-30 OPSF/PEG-60

100 + —F

h o
L]

80 +

60 4

40 o

Oil rejection (%)

20 o

0

Figure 10. Effect of humid air exposure time on oil rejection.
3.3. Membrane Fouling Resistance Analysis

Figure 11 shows that both VIPS-based membranes are better than the NIPS-based membrane.
As shown in Figure 10, most of the permeability was lost during the first cycle, leaving a small range of
the permeability for operation. However, after the third cycle, only a small increment in IrF is observed
for all membranes. When comparing PFS/PEG-0 and PSF/PEG-60, the RF increases from 8.26 + 0.95%
to 19.45 + 1.96%, respectively. On the other hand, the IrF decreases from 62.28 + 1.5% to 50.43 + 1.22%,
respectively, whereas PR increases from 37.72 + 1.5% to 49.57 + 1.22%. The increase in RF and PR
coupled with the decrease in IrF demonstrated an enhancement in fouling resistance, as suggested
by others [48]. The fouling resistance enhancement can be attributed to the increased PEG surface
density that continuously repelled the oil droplets and restricted their excessive interaction with the
membrane surface (via adsorption) [49]. It is worth noting that substantial hydraulic performance
was diminished during the first filtration cycle, suggesting the limitation still faced by the developed
membrane. Almost 60% of irreversible fouling was suffered by all membranes. Under this condition,
it substantially reduced the operability of the membrane system because of the intensive need of
chemical cleaning to restore the irreversible fouling.
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Figure 11. Membrane fouling analysis for oil/water emulsion filtration.

The higher performance demonstrated by PSF/PEG-60 can be attributed to the improved PEG
surface density that enhances the surface hydrophilicity. PSF/PEG-0 has the least hydraulic and
antifouling performances due to its lower surface hydrophilicity. Therefore, it has higher oil
droplets/surface interaction that leads to the accumulation of higher oil droplets. The accumulation of
oil droplets on the membrane surface leads to blockage of the membrane surface pores diminishing the
hydraulic performance [25]. Similarly, Zhu et al. [21] reported the improvement in fouling resistance
by adjusting the humid air exposure time from 0 to 5 min. They reported a decrease in the IrF from
~32.4% to 15.3% after filtration of a bovine serum albumin solution. On the other hand, the PR increases
from ~67.6% to 84.5%.

This study demonstrates the application of the VIPS method to develop membranes for oil/water
emulsion separation. The introduction of a simple step via exposure to humid air facilitates the
formation of a more porous and more hydrophilic membrane suitable for oil/water emulsion separation.
The developed membrane can be implemented for treatment of oil/water emulsion often found in
produced water, palm oil mill effluent, etc. The enhanced hydraulic performance and better fouling
resistance posed by PSF/PEG-60 would lead to a lower system footprint and simpler operation due to
fewer actions required for membrane fouling management.
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4. Conclusions

Overall results demonstrate that both the membrane structure, and hydraulic and fouling resistance
performances are affected by adjusting the cast film humid air exposure time to undergo VIPS-based
membrane synthesis. By adjusting the exposure time from 0 to 60 s, the membrane structure was
transformed from a porous, thin top layer with a finger-like macrovoid sub-structure to a relatively
thick top layer with a macrovoid-free sponge-like sub-structure. Moreover, the CWP and the PR
increased from 328.7 + 8.27 (L-m~2-h~!-bar™!) to 501.89 + 8.92 (L-m~2-h~!-bar~!) and from 37.72 + 1.5%
to 49.57 + 1.22%, respectively, while IrF decreased from 62.28 + 1.5% to 50.43 + 1.22%, respectively.
The findings justified improvements in both hydraulic and fouling resistance performances, thanks to
the preformation of the top immobile layer that trapped more PEG within the membrane matrix that
hinders its excessive leach-out during the NIPS step, and makes the surface more hydrophilic and
imposes the antifouling properties. As a result, it enhanced the water molecule/membrane surface
interactions (formation of hydration layer) and restricted oil droplets/membrane surface interactions.
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