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Abstract

Methods of estimating the local false discovery rate (LFDR) have been applied to different

types of datasets such as high-throughput biological data, diffusion tensor imaging (DTI),

and genome-wide association (GWA) studies. We present a model for LFDR estimation that

incorporates a covariate into each test. Incorporating the covariates may improve the perfor-

mance of testing procedures, because it contains additional information based on the bio-

logical context of the corresponding test. This method provides different estimates

depending on a tuning parameter. We estimate the optimal value of that parameter by

choosing the one that minimizes the estimated LFDR resulting from the bias and variance in

a bootstrap approach. This estimation method is called an adaptive reference class (ARC)

method. In this study, we consider the performance of ARC method under certain assump-

tions on the prior probability of each hypothesis test as a function of the covariate. We prove

that, under these assumptions, the ARC method has a mean squared error asymptotically

no greater than that of the other method where the entire set of hypotheses is used and

assuming a large covariate effect. In addition, we conduct a simulation study to evaluate the

performance of estimator associated with the ARC method for a finite number of hypothe-

ses. Here, we apply the proposed method to coronary artery disease (CAD) data taken from

a GWA study and diffusion tensor imaging (DTI) data.

1 Introduction

Methods of estimating the local false discovery rate (LFDR) [1], not suffering from the bias

inherent in estimating other false discovery rates [2], have been applied to various datasets

such as high-throughput biological data (e.g., gene expression, proteomics, and metabolo-

mics), diffusion tensor imaging (DTI), and genome-wide association (GWA) study [3–5]. As

an example, in a GWA study, the methods of estimating the LFDR are used in order to esti-

mate the probability that a single nucleotide polymorphism (SNP) is associated with a disease
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[6–10]. In addition, in DTI brain scans, the LFDR estimates have been used to estimate the

proportion of dyslexic-non-dyslexic differences [5, 11].

In many situations, the considered hypotheses are connected by a scientific context. How-

ever, ignorance of this scientific context in a data analysis can be misleading, because it may

introduce bias into the LFDR estimates [11]. For example, each test in a GWA study corre-

sponds to a specific genetic marker for which previous biological information may be available.

Moreover, in a DTI study, each test corresponds to a voxel, where the voxel location can be

incorporated as a scientific context.

1.1 Motivating example

We consider coronary artery disease (CAD) data [12], where N = 394, 839 SNPs passed the

quality control (QC) filtering methods explained in Section 3.2.1. The aim of this study is to

identify whether each SNP is associated with a disease. We have two components (zi, xi) associ-

ated with each hypothesis for i = 1, . . ., N, where zi is an observed test statistic and xi presents

the minor allele frequency (MAF). For our data, all observed test statistics are used to identify

the disease-associated SNPs. Fig 1(A) the N = 394, 839 SNPs used to estimate the LFDR (Sec-

tion 2). A total of 44 disease-associated SNPs with LFDR estimates lower than 0.2 are

identified.

A set of hypotheses or features used to determine the posterior probability of a null hypoth-

esis is called a reference class, and the problem of finding such a set is an example of the refer-

ence class problem (e.g., Bickel [13]). For example, considering all SNPs when estimating the

LFDR for a specific MAF, instead of considering the different subsets of SNPs, is called the

combined reference class (CRC) method (Section 2). From Fig 1(A), consider the example of xi
= 0.0306 and zi = −4.3971, with an estimated LFDR of 0.1973 that is close to the threshold of

0.2. For this MAF, we define a reference class of SNPs in such a way that the MAFs are within

a symmetric window around xi = 0.0306, with width 2Δ. Different window widths yield differ-

ent reference classes. Again, each subset of SNPs is used to estimate the LFDR. Fig 1(B) illus-

trates the LFDR estimates versus the reference class width. This figure shows that changing the

reference class width provides different LFDR estimates, raising the important question of

how we can estimate the optimal reference class in order to estimate the LFDR. For the consid-

ered CAD data, the reference class problem consists of deciding which SNPs should be used to

determine whether a SNP is associated with a disease.

The hypotheses can be divided into groups based on the characteristics of the problem. For

example, the CAD data can be divided into two distinct groups according to MAFs, low-fre-

quency SNPs (1%� xi� 5%) and common SNPs (xi> 5%). Thus, we need to determine

which reference class should be used to determine the posterior probability that the SNP is not

associated with the disease occurring at the MAF xi = 0.0306. Should we use the entire set of

SNPs, or the low-frequency SNPs [14]? In addition, SNPs can be divided into different classes,

such as non-synonymous SNPs, genic SNPs, SNPs in highly conserved regions, SNPs in link-

age disequilibrium with many (or few) other SNPs, or categorized SNPs based on their MAFs

[12].

1.2 Previous research on the reference class problem

Many methods have been proposed for incorporating covariates into statistical techniques for

testing multiple hypotheses. Bickel [15] considered the effect of selecting test statistics in esti-

mators of the weighted and unweighted FDR, and found that smaller reference classes of null

hypotheses yield lower estimated expected losses than larger reference classes do. Several

researchers have applied the idea of incorporating a group structure and weights to improve

The local false discovery rate estimated via a bootstrap solution to the reference class problem
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the statistical power of tests. This group structure can be used when testing multiple hypothe-

ses by assigning weights for the hypotheses or the p-values in each group. Benjamini and

Hochberg [16] used a p-value weighting method to evaluate different procedures. Genovese

et al. [17] demonstrated that a p-value weighting procedure can be employed to control the

FWER and FDR while increasing the statistical power of the test. Subsequently, Wasserman

and Roeder [18] introduced an optimal p-value weighting procedure to control the FWER.

Sun et al. [19] proposed a stratified false discovery control approach for genetic studies, in

which a large number of hypotheses include inherent stratification. In addition, Efron [11]

argued that analyzing separate reference classes can be legitimate from a frequentist viewpoint,

and Hu et al. [20] proposed a weighting scheme based on a simple Bayesian framework that

employs the proportion of null hypotheses that are true within each group. Such an approach

can control the FDR for p-values with certain dependence structures. The unknown propor-

tion of true null hypotheses is estimated within each group. Moreover, Zablocki et al. [8] used

a hierarchical Bayesian approach to incorporate a set of covariates, where the prior probability

that the null hypothesis test is true and the alternative distribution of the test statistic are both

modulated by covariates. In contrast to Zablocki et al. [8], instead of specifying the hyperprior

distributions required for a hierarchical Bayesian approach, we follow Karimnezhad and Bickel

[21] and use an empirical Bayes approach to estimate an optimal reference class to improve

the LFDR estimate.

In this study, we assume the prior probability to be a function of covariates (Section 2.1).

Then, we propose an adaptive reference class (ARC) method for estimating the LFDR, using a

bootstrap approach to estimate the optimal reference class (Section 2.2). We compare the per-

formance of the proposed ARC method and the CRC method using the mean squared error

(MSE) as the performance criterion. We prove that, under certain assumptions, the ARC

method has an MSE that is asymptotically no greater than that of the CRC method (see S1

File). In addition to the asymptotic results, we conduct a simulation study to investigate the

finite dataset performances of the LFDR estimators for each method in Section 3.1. Both the

Fig 1. CAD data for LFDR estimates under the HB model versus the MAF xi (A) and reference class width (B) for a fixed MAF xi = 0.0306.

The horizontal line represents the threshold of 0.2. The vertical lines in (A) indicate the symmetry around xi = 0.0306 with Δ = 0.04.

https://doi.org/10.1371/journal.pone.0206902.g001
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asymptotic and simulation results show that, under certain assumptions, the ARC method per-

forms well compared with the CRC method. We present an application of the ARC method on

both CAD data and DTI data in Section 3.2 in order to demonstrate the practical importance

of deciding between the ARC and CRC methods. Finally, we conclude the paper with a brief

discussion in Section 4. The proof for the main theorem is included in S1 File.

2 Materials and methods

Suppose N null hypotheses H01,. . ., H0N are considered simultaneously. For example in GWA

study, let H0i denote the null hypothesis that the ith SNP is not associated with the disease.

Under the genetic additive model [22], each SNP yields a Wald χ2 test statistic Wi. Under the

ith null hypothesis, it holds that Wi � w
2
1
, while under the ith alternative hypothesis, we have

Wi � w
2
1;d

, where δ 2 (0,1) is an unknown noncentrality parameter, following the models

employed in [23] and [24]. Under the ith null hypothesis, assume that Zi* N(0, 1), where Zi
represents the z-transform that converts the Wald χ2 statistic into a standard normal statistic.

In addition, for DTI data, let H0i denote the null hypothesis that there is no dyslexic-non-dys-

lexic difference for the ith voxel. Under the ith null hypothesis, assume that Zi* N(0, 1), where

Zi represents the z-transform which converts two-sample t-test satistic into a standard normal

statistic.

The observed statistics z = (z1,. . ., zN)T are considered realizations of Z = (Z1,. . ., ZN)T. Let

Ai be an indicator variable for the event that the ith alternative hypothesis Hai is true. Assume

that Ai’s are independent and identically distributed (i.i.d.) Bernoulli(1 − π0) variables, where

π0 is the prior probability that the ith null hypothesis is true. Let f0(zi) and f1(zi) be the null and

alternative density, respectively.

The posterior probability that the ith null hypothesis is true, given Zi = zi is the LFDR [1],

and is denoted as C(zi), where

CðziÞ ¼ PðAi ¼ 0jZi ¼ ziÞ ¼
p0f0ðziÞ
f ðzi; p0Þ

; ð1Þ

where f(zi; π0) denotes the mixture density of Zi given by

f ðzi; p0Þ ¼ p0f0ðziÞ þ ð1 � p0Þf1ðziÞ: ð2Þ

If the null hypothesis is true, then the null density f0(zi) of the statistic Zi is the standard nor-

mal, and is called the theoretical null hypothesis [1]. The model defined in Eq (2) with the fol-

lowing method of estimation is called the histogram- based (HB) model [25]. By assuming the

theoretical null hypothesis and applying the Poisson regression, the mixture density f(zi;π0) is

estimated by fitting a high-degree polynomial to the histogram counts, denoted by bf iðzÞ,
where the estimate of the proportion of true null hypothesis is denoted by bp0ðzÞ. The LFDR

estimate bC iðzÞ is computed by substituting bp0ðzÞ and bf iðzÞ into Eq (1). This model and estima-

tion method are an example of the CRC method.

2.1 Proposed model

The described model in Eq (1) extends to the situation that incorporates a covariate related to

the scientific context of each hypothesis test. For the CAD dataset, the covariate represents the

MAF in the CAD data, while for the DTI data, the location is incorporated as a covariate. Let X
= (X1,. . ., XN)T be i.i.d. random variables. Any test statistics are transformed to the standard

normal statistic Zi, for i = 1,. . ., N. The observed statistics vector z = (z1,. . ., zN)T is considered

a realization of Z = (Z1,. . ., ZN)T. Let Ai be the event that the ith alternative hypothesis Hai is

The local false discovery rate estimated via a bootstrap solution to the reference class problem
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true. Assume that Ai|Xi = xi* Bernoulli(1 − π0(xi)), where π0(xi), the prior probability that the

ith null hypothesis is true, is an unknown function of the given covariate Xi = xi. We denote the

posterior probability that the ith null hypothesis is true, given Zi = zi and Xi = xi by

Cðzi; xiÞ ¼ PðAi ¼ 0jZi ¼ zi;Xi ¼ xiÞ ¼
p0ðxiÞf0ðziÞ
f ðzi; p0ðxiÞÞ

; ð3Þ

where the mixture density of Zi conditional on the covariate Xi = xi is given by

f ðzi; xiÞ ¼ p0ðxiÞf0ðziÞ þ ð1 � p0ðxiÞÞf1ðzi; xiÞ; ð4Þ

where f0(zi) denotes the null density of Zi and f1(zi;xi) is the alternative density of Zi. The mix-

ture density in Eq (2) is a special form of Eq (4), where the effect of the covariates is ignored.

The quantities π0(xi) and f1(zi;xi) are unknown. The ARC method is applied to estimate the

LFDR in Eq (3). Under the CRC method, the effects of the covariates defined in Eq (1) are

ignored, while under the proposed ARC method, some assumptions are considered locally in

order to estimate the LFDR C(zi; xi), defined in Eq (3).

2.2 Adaptive reference class (ARC) method

Under the ARC method, certain assumptions only hold locally within a symmetric window for

each covariate. Let a symmetric window of width 2Δ be centered at given covariate Xi = xi.
Such a symmetric window is denoted by zDi , where

zDi ¼ fzj : jxj � xij � D; j ¼ 1; . . . ;Ng: ð5Þ

Let Δ0 denote the smallest considered value of the tuning parameter Δ. The reference class zDi
contains components zj such that their covariates are within a distance Δ of xi. Denoting the

expected dimension of the reference class zDi by dDi , we have

dDi ¼ NPðjXj � xij � D; j ¼ 1; . . . ;NÞ: ð6Þ

Here, dDi increases with number of null hypothesis tests N, provided that the probability is pos-

itive. For each reference class zDi , we may apply any LFDR estimation approach such as the HB

model in Section 2. In contrast to the CRC method, instead of using the entire collection of

observed statistics z, only the reference class zDi is used to obtain the LFDR estimate bC iðzDi Þ.
The choice of tuning parameter Δ influences the LFDR estimate. Here, we choose the one that

results in the lowest error when estimating the LFDR, which is called the optimal tuning

parameter.

2.3 Optimal tuning parameter

The optimal tuning parameter Δ specifies the symmetric window width of a given reference

class, and is determined by minimizing the errors resulting from the bias and the variance. In

the following, we introduce several notational conventions.

Let the mean and variance of the estimator bC iðzDi Þ be defined as

mDðxiÞ ¼ EðbC iðzDi ÞjXi ¼ xiÞ;

s2
D
ðxiÞ ¼ E½ðbC iðzDi Þ � mDðxiÞÞ

2
jXi ¼ xi�;

ð7Þ

respectively. When Xi = xi, the prediction bias for the estimator bC iðzDi Þ is denoted by BDðxiÞ,

The local false discovery rate estimated via a bootstrap solution to the reference class problem
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with

BDðxiÞ ¼ E½ðbC iðz
D

i Þ � Cðzi; xiÞÞjXi ¼ xi�: ð8Þ

Determining the optimal choice of Δ depends on the choice of the loss function used to mea-

sure the errors in the estimation of the LFDR. A good estimator is accurate in the sense that its

estimates are as close to the true values as possible. Accuracy measures typically take into

account the difference between the estimated value and the true value. Using the MSE as a an

accuracy measure is a commonly used way to indicate how close the estimator is to the true

value by incorporating both the bias and the variance [26]. Hence, using the MSE provides our

criterion for defining the optimal tuning parameter Δ. The MSE for the estimator bC iðzDi Þ con-

ditional on Xi = xi is defined as

MSEðbC iðz
D

i ÞjXi ¼ xiÞ ¼ E½ðbC iðz
D

i Þ � Cðzi; xiÞÞ
2
jXi ¼ xi�: ð9Þ

It can be shown that the portion of MSE that depends on Δ is given by

errðbC iðz
D

i ÞjXi ¼ xiÞ ¼ s
2

D
ðxiÞ þ B2

D
ðxiÞ: ð10Þ

Here, we employ the errors resulting from the bias and the variance in Eq (10) to determine

the optimal Δ. Denoting the optimal Δ by D
?

0i, we have

D
?

0i ¼ arg inf
D�D0

errðbC iðz
D

i ÞjXi ¼ xiÞ: ð11Þ

To estimate D
?

0i, it is necessary to estimate the variance and the prediction bias of the LFDR

estimator, which we do using the bootstrap approach.

2.4 Bootstrap estimation of the optimal tuning parameter

We re-sample N pairs from {(z1, x1),. . ., (zN, xN)} until B bootstrap samples are obtained that

contain the specific pair (zi, xi), where zi 2 z and xi 2 x. These samples are denoted by

ðz?
1
; x?

1
Þ; . . . ; ðz?B; x

?
BÞ. The bth bootstrap sample ðz?b; x

?
bÞ contains pairs ðz?bj; x

?
bjÞ, for j = 1,. . ., N

and b = 1,. . ., B. From Eq (5), the bth bootstrap reference class is defined as

zDi;b ¼ fz
?

bj : jx?bj � xij � D; j ¼ 1; . . . ;Ng: ð12Þ

The estimate of C(zi; xi) based on the bth bootstrap reference class is denoted by bC iðzDi;bÞ. The

random variables bC iðzDi;1Þ; . . . :; bC iðzDi;BÞ provide the estimators bmðD;BÞ and bs2ðD;BÞ, which we

use to estimate μΔ(xi) and s2
D
ðxiÞ, respectively, where

bmðD;BÞ ¼
1

B

XB

b¼1

bC iðz
D

i;bÞ and bs2ðD;BÞ ¼
1

B � 1

XB

b¼1

bC iðz
D

i;bÞ � bmðD;BÞ
� �

2: ð13Þ

In order to estimate the prediction bias in Eq (10), we need to estimate π0(xi). We propose

using a reference class zD0

i;b , which contains the observed statistics zjs the covariates of which are

within a distance Δ0 of xi. Thus, the estimator bmðD0;BÞ from Eq (13) can be used to estimate

π0(xi). Denoting the bootstrap estimator of the prediction bias by bBðD;D0;BÞ, we have that

bBðD;D0;BÞ ¼ bmðD;BÞ � bmðD0;BÞ: ð14Þ

The estimator of errðbC iðzDi ÞjXi ¼ xiÞ in Eq (10) is denoted by cerrðD;D0;BÞ, and is computed

by simply summing the bootstrap variance in Eq (13) and the squared bootstrap prediction

The local false discovery rate estimated via a bootstrap solution to the reference class problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0206902 November 26, 2018 6 / 15

https://doi.org/10.1371/journal.pone.0206902


bias in Eq (14). Let the optimal D
?

0i be denoted as bD?
0i, which is given by

bD?

0i ¼ arg inf
D�D0

cerrðD;D0;BÞ: ð15Þ

After estimating the optimal tuning parameter bD?
0i (see Algorithm 1), the optimal reference

class z
bD?

0i
i is estimated from Eq (5). The class contains zjs, the covariates of which are within a

distance bD?
0i of xi. Then, the optimal reference class z

bD?
0i

i is used to estimate the LFDR in Eq (3).

This LFDR estimate is denoted as bC iðz
bD?

0i
i Þ. The estimation methods detailed above yield two

estimators. The estimator bC iðzÞ is related to the CRC method and bC iðz
bD?

0i
i Þ is computed using

the ARC method. We compare the performance of two estimators using the MSE.

Algorithm 1 Pseudo-code of the estimation of the optimal tuning parameter for one simu-

lated dataset.

Input: Test statistics and covariates (z1, x1),. . ., (zN, xN); number of
bootstrap samples B; smallest value of the tuning parameterΔ0; tuning
parameter Δ � Δ0
For i = 1,. . .N

• Build bth bootstrap samples ðz?b; x
?
bÞ ¼ fðz

?
bj; x

?
bjÞ; . . . ; ðz?bj; x

?
bjÞg, b = 1,. . ., B and

j = 1,. . ., N including pair (zi, xi) For b = 1,. . ., B

• Determine bootstrap reference class zD0

i;b and zDi;b in Eq (12)

• Estimate LFDR bC iðzDi;bÞ and bC iðz
D0

i;b Þ using HB method

• Compute bmðD;BÞ, bs2ðD;BÞ, bmðD0;BÞ, bBðD;D0;BÞ and cerrðD;D0;BÞ in Eqs (10),
(13) and (14)

• Minimize cerrðD;D0;BÞ over Δ � Δ0
Output: Estimate optimal tuning parameter bD?

0i.

Let π0(xi) denote the true prior probability that the ith null hypothesis is true. In GWA

study, the null hypothesis means no disease association, and in the DTI study, it means no dif-

ferences between dyslexic and non-dyslexic children. For a given x0, we suppose that the

unknown prior probability π0(Xi) is a step function of the covariate Xi, given by

p0ðXiÞ ¼
p01 if Xi � x0;

p02 if Xi > x0;

(

ð16Þ

where the prior probabilities π01 and π02 are both unknown, and π01� π02. This function splits

the N tests into two distinct groups, such that in each group, the test statistics are i.i.d. More-

over, the simplified function in Eq (16) will have a biologically meaningful interpretation. As

an example, in CAD data, the N SNPs can be divided into two distinct groups; disease-associ-

ated and not disease-associated. The two groups may have different choices of prior probabili-

ties. In addition, under the assigned values of x0 and Δ0, the observed vector of covariates x
may be partitioned into three regions

R1ðx0;D0Þ ¼ fxj : xj � x0 � D0g;

R2ðx0;D0Þ ¼ fxj : x0 � D0 < xj < x0 þ D0g;

R3ðx0;D0Þ ¼ fxj : xj � x0 þ D0g;

ð17Þ

for j = 1,.., N. Therefore, the following theorem ensures us that, under the assumptions

The local false discovery rate estimated via a bootstrap solution to the reference class problem
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explained above for π0(Xi) Eq (16) and the region of covariates Eq (17), the proposed ARC

method has an MSE that is asymptotically no greater than that of the CRC method. The proof

of the theorem is given as a series of lemmas (see S1 File).

Theorem 1 Let bC iðzÞ be a weakly consistent estimator ofC(zi) when N becomes large. If
xi 2 R1ðx0;D0Þ, then

lim
N!1

lim
B!1
½MSEðbC iðz

bD?
0i

i ÞjR1ðx0;D0ÞÞ � MSEðbC iðzÞjR1ðx0;D0ÞÞ� � 0:

where B is the number of bootstrap samples.
Remark 1 The step function of the covariates in Eq (16) and the partitioning of the covariates

in Eq (17) affect the weak consistency of bmðD0;BÞ Eq (13) as an estimator of π0(Xi) in Eq (16)

(see S1 File, Lemma 2). Then, for xi 2 R2ðx0;D0Þ, the bootstrap mean bmðD0;BÞ is not a weakly
consistent estimator of π0(Xi).

Remark 2 For xi 2 R3ðx0;D0Þ, similar results to Theorem 1 can be derived.

3 Results

3.1 Simulation study

The aim of the simulation analysis presented here is to compare the finite dataset perfor-

mances of the CRC and ARC methods when estimating the LFDR in Eq (3). In this section,

each test statistic is assigned a prior probability that is a function of the covariate.

We assume that the proportion of disease-associated tends to be very small. Then, we

present several simulation studies, each with a different value of x0 2 [0.05, 0.40]. The data-

sets are simulated as follows. In each simulation, we randomly generate 1000 datasets, each

corresponding to an artificial case-control study. For each dataset, we simultaneously gener-

ate both the auxiliary information and the observed Wald χ2 test statistics, denoted by xi
and wi, respectively. Each observed covariate xi is generated randomly from the uniform

distribution between 0 and 1.

In each simulation, the true prior probability π0(xi) is determined according the given

value of x0 as a function of the observed covariate in Eq (16). From (16), let �p0 ¼ Eðp0ðXiÞÞ

for i = 1,. . ., N, where �p0 2 ½0:60; 0:95�. To generate the observed statistics, we generate

each Ai* Bernoulli(1 − π0(xi)) independently. To generate the observed χ2 test statistics, if

Ai = 1, the observed statistics are sampled from w2
1;d

with a noncentrality parameter δ. For

each given value of x0, a different value of δ 2 [1.5, 7] is assigned. The Wald χ2 test statistics

when Ai = 0 are sampled from w2
1
. The Wald χ2 test statistics are then transformed into z-

values.

Each dataset has N pairs (zi, xi). The total number of pairs N is equal to 300, 000. In each

simulation, a pair (zi, xi) is selected randomly from each dataset to estimate C(zi; xi). For a

given covariate xi, the estimators of the LFDR are computed using the two methods. Under the

ARC method, Δ0 has to be specified in advance in order to determine bD?
0i. We consider the

range Δ0 2 (0, x0), and set B = 1000. Thus, under the HB model described in Section 1.1, we

compute the estimators bC iðzÞ and bC iðz
bD?

0i
i Þ. The conditional MSE approximations used to

measure the performances of the estimators are given by

dMSEðbC ijRrðx0;D0ÞÞ ¼
1

#fxi 2 Rrðx0;D0Þg

X

xi2Rrðx0 ;D0Þ

bC i � Cðzi; xiÞÞ
2 r ¼ 1; 2; 3;

�
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and the marginal MSE approximations are computed as follows:

dMSE bC i

� �
¼

1

1000

X1000

i¼1

bC i � Cðzi; xiÞ
� �

2;

where bC i ¼
bC iðzÞ for the CRC method and bC i ¼

bC iðz
bD?

0i
i Þ for the ARC method. The relative

MSE of the two estimators is a convenient measure for comparing the MSEs. The conditional

and marginal relative MSEs are denoted by

ReMSEcond ¼
dMSEðbC iðz

bD?
0i

i ÞjRrðx0;D0ÞÞ

dMSEðbC iðzÞjRrðx0;D0ÞÞ
and ReMSEmarg ¼

dMSEðbC iðz
bD?

0i
i ÞÞ

dMSEðbC iðzÞÞ
; ð18Þ

respectively. From Fig 2, we observe that the performance of the ARC method depends on the

Δ0 values and the region of the covariates. When �p0 2 ½0:60; 0:95�, increasing the value of Δ0

results in a smaller MSE approximation for the ARC method in the regions R1ðx0;D0Þ and

R3ðx0;D0Þ that follow the results in Theorem 1. Then, increasing �p0, Fig 2(D) shows that the

Fig 2. The log2 value of the relative MSE conditional on regions and marginal versus different values of Δ0; for (A) �π 0 ¼ 0:60, (B)

�π0 ¼ 0:80, (C) �π 0 ¼ 0:90 and (D) �π 0 ¼ 0:95, where �π 0 ¼ Eðπ0ðXiÞÞ for i = 1, . . ., N.

https://doi.org/10.1371/journal.pone.0206902.g002
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MSE approximation for the proposed ARC method is greater than that of the CRC method in

the region R2ðx0;D0Þ, for some Δ0.

Fig 2 shows that the ARC method has a smaller marginal MSE approximation than that of

the CRC method. From Table 1, if we consider the true prior probabilities for all SNPs to be

independent of the covariate, that is, π0(xi) = π0 for i = 1,. . ., N, then the CRC method has a

smaller MSE than that of the ARC method. In such cases, the CRC method should be used

instead of the ARC method to analyze the data.

3.2 Real data analysis

We apply both the ARC and CRC methods to the CAD and DTI datasets, and compare the dis-

ease-associated SNPs and dyslexic-non-dyslexic difference voxels under each method, respec-

tively. The purpose of this comparison is to demonstrate the practical difference between the

methods rather than to determine which method performs better.

3.2.1 CAD data analysis. The CAD dataset originating from the United Kingdom

includes 500, 568 SNPs genotyped for 2, 000 cases, and 3, 000 combined on 22 autosomal

chromosomes. The control individuals come from two groups: 1500 individuals from the

1958 British Birth Cohort (58C), and 1500 individuals selected from UK blood services

(UKBS) controls. Following [12], we use quality control filtering methods to exclude SNPs

based on the exact Hardy-Weinberg equilibrium (HWE) test as well as individuals or

SNPs with many missing genotypes. The following three filters are applied sequentially. For

the first filter, an SNP fails when the proportion of missing data proportion is greater than

0.05 or when the minor allele frequency (MAF) is smaller than 0.05 and the missing data

proportion is greater than 0.01. For the second filter, SNPs with p-values smaller than 0.05

using the exact HWE test in the combined controls are rejected. Finally, for the third filter,

we reject SNPs with p-values smaller than 5 × 10−7 using trend tests and general genotype

tests between each case and the combined controls. We also excluded SNPs with MAFs

smaller than 0.01. A total of N = 394839 SNPs passed these quality control filtering

methods and are used to identify disease-associated SNPs. We apply both the ARC and the

CRC methods to the CAD data and compare the disease-associated SNPs under each

method.

The CAD related data introduced in Section 1.1, with N = 394, 839 SNPs, is employed in

the following statistical analysis. Under the CRC method, all observed statistics z are consid-

ered to estimate the LFDR, where 44 disease-associated SNPs are identified with LFDR lower

than 0.2. The MAF is incorporated as a covariate. Under the ARC method, the optimal refer-

ence class is estimated for each MAF, which depends on the choice of Δ0. Fig 3(A) presents the

LFDR estimates under the CRC method versus the ARC method when Δ0 = 0.001. The results

show that, 160 SNPs are disease-associated based on the ARC method, while the CRC method

detects 44 disease-associated SNPs. From Fig 3(B), we find that changing Δ0 has a direct effect

on the number of disease-associated SNPs. Under the ARC method, increasing the value of Δ0

brings the proportion of disease-associated SNPs closer to the corresponding proportion

under the CRC method.

Table 1. MSE of the ARC method relative to the CRC method when there is no covariate effect. The true prior

probabilities are constant, π0(xi) = π0. The log2 value is given for the marginal relative MSE. Under the ARC method,

Δ0 is 0.01.

π0 0.60 0.80 0.90 0.95

ReMSEmarg 0.9030 0.8156 1.3729 2.0908

https://doi.org/10.1371/journal.pone.0206902.t001
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3.2.2 DTI data analysis. Schwartzman et al. [5] used advanced MRI technology, DTI, to

measure water diffusion in the human brain by scanning the brain. DTI is used to map and

characterize the three-dimensional diffusion of a water molecule randomly moving in brain

tissue to provide information regarding the direction of diffusion. The measured diffusivity;

that is, the diffusion coefficient, relates the diffusive flux to a concentration gradient [27], and

has units of (mm2/s). In this study, 12 children were tested and divided equally in each group

(i.e., dyslexic or non-dyslexic group). Each child received DTI brain scans in N = 15443 loca-

tions, with each represented by its own voxel’s response. The aim is to determine the dyslexic-

non-dyslexic difference at the ith voxel (location), in relation to reading development in chil-

dren aged 7-13 [28]. Each test corresponds to a specific voxel. We have two components (zi, xi)
associated with each hypothesis for i = 1,. . .,N, where zi is an observed test statistic that com-

pares the dyslexic children with those who are not (see in Section 2), and xi is the location (i.e.,

the distance from back of brain to the front). We apply both the ARC and CRC methods to the

DTI data and compare the dyslexic-non-dyslexic difference voxels under each method. The

DTI brain scans data with a total of N = 15443 locations, each represented by its own voxel’s

response, is employed in the following statistical analysis.

Let Wi ¼ Zi
2. The observed statistics w = (w1, w2,. . ., wN)T are considered as a realization of

W = (W1, W2,. . ., WN)T. Under the ith null hypothesis, it holds that Wi* χ1, while under the

ith alternative hypothesis Wi* χ1,δ, where δ 2 (0, inf) is an unknown noncentrality parameter,

according to the models employed in [23, 24]. Therefore, the LFDR in Eq (1) is defined as fol-

lows

CðwiÞ ¼ PðAi ¼ 0jWi ¼ wiÞ ¼
p0g0ðwiÞ

gðwi; p0; dÞ
; ð19Þ

where g0(wi) * χ1 (i.e., null density), and g(wi; π0, δ) denotes the mixture density given by

gðwi; p0; dÞ ¼ p0g0ðwiÞ þ ð1 � p0Þg1ðwi; dÞ; ð20Þ

Fig 3. CAD data analysis. (A) presents the LFDR estimate under the ARC method for Δ0 = 0.001 versus that for the CRC method and (B)

illustrates the proportion of disease-associated SNPs under the ARC method when the LFDR estimate is less than 0.2 versus Δ0 2 (0, 0.50).

https://doi.org/10.1371/journal.pone.0206902.g003

The local false discovery rate estimated via a bootstrap solution to the reference class problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0206902 November 26, 2018 11 / 15

https://doi.org/10.1371/journal.pone.0206902.g003
https://doi.org/10.1371/journal.pone.0206902


where g1(wi; δ) represents the unknown alternative density. Under the CRC method, all

observed statistics w are considered to estimate the LFDR using the type II maximum likeli-
hood estimation (MLE) model [24]

lðp0; dÞ ¼
XN

i¼1

logðp0g0ðwiÞ þ ð1 � p0Þg1ðwi; dÞÞ; ð21Þ

where bp0 ¼ 0:923 and bd ¼ 3:7, and 119 dyslexic-non-dyslexic difference voxels are identified

with LFDR lower than 0.2. Then, the brain location is incorporated as a covariate. Under the

ARC method, the optimal reference class is estimated for each location, which depends on a

choice of Δ0. Fig 4(A) presents the LFDR estimates under the CRC method versus the ARC

method when Δ0 = 20. We observe from Fig 4(B), that changing Δ0 has a direct effect on the

number of dyslexic-non-dyslexic difference voxels. Under the ARC method, increasing the

value of Δ0 brings the proportion of dyslexic-non-dyslexic difference voxels closer to the corre-

sponding proportion under the CRC method.

4 Discussion and conclusion

In this study, we employ a novel approach that incorporates a covariate (i.e., a scientific con-

text corresponding to each hypothesis test) to improve the LFDR estimate when identifying

alternative hypotheses. Using this approach, both the test statistic distribution under the alter-

native hypothesis and the prior probability that the null hypothesis is true, are modulated by

the covariate. In the case where the prior probability π0(Xi) is the step function given in Eq

(16), Theorem 1 states that the ARC method has an MSE asymptotically no greater than that

of the CRC method. It would be interesting to investigate whether this result holds for a gen-

eral prior probability. We leave this topic for future research. In addition, the simulation indi-

cates that the ARC method performs in comparison to the CRC method for a finite number of

hypotheses. Our simulation results confirm that for regions R1ðx0;D0Þ and R3ðx0;D0Þ, the

Fig 4. Brain data analysis. (A) presents the LFDR estimate under the ARC method for Δ0 = 20 versus that for the CRC method and (B)

illustrates the proportion of dislexic-non-dyslexic difference voxels under the ARC method when the LFDR estimate is less than 0.2 versus Δ0 2

(0, 50).

https://doi.org/10.1371/journal.pone.0206902.g004
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LFDR estimator associated with the ARC method has a smaller MSE approximation than that

of the CRC method (see Fig 2). Moreover, we could not prove the weak consistency of

bmðD0;BÞ as an estimator of π0(xi) in region R2ðx0;D0Þ (see S1 File, Lemma 2). The ARC

method was applied to both CAD and DTI datasets, as illustrated in Figs 3 and 4. Regardless of

LFDR estimation methods (i.e., HB and MLE), by increasing the value of the tuning parameter

Δ0, the proportion of significant null hypotheses decreases, and approaches the proportion

based on the CRC method. This suggests that further investigation may be necessary on how

the tuning parameter Δ0 can be controlled to improve results.

Supporting information

S1 File. The proof of Theorem 1 proceeds by a series of lemmas.

(PDF)

Acknowledgments

The Biobase by [29] and locfdr by [3] packages of R facilitated the computational work. We

thank two anonymous reviewers for comments leading to the improvement of the paper. This

study makes use of the data generated by the Wellcome Trust Case-Control Consortium. A

full list of the investigators who contributed to the generation of this dataset is available from

www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award

076113.

Author Contributions

Conceptualization: Mayer Alvo, David R. Bickel.

Investigation: Farnoosh Abbas-Aghababazadeh, David R. Bickel.

Methodology: Mayer Alvo, David R. Bickel.

Project administration: Mayer Alvo, David R. Bickel.

Resources: Mayer Alvo, David R. Bickel.

Supervision: Mayer Alvo, David R. Bickel.

Validation: Farnoosh Abbas-Aghababazadeh.

Visualization: Farnoosh Abbas-Aghababazadeh.

Writing – original draft: Farnoosh Abbas-Aghababazadeh.

Writing – review & editing: Farnoosh Abbas-Aghababazadeh, Mayer Alvo, David R. Bickel.

References
1. Efron B, Tibshirani R, Storey JD, Tusher V. Empirical Bayes analysis of a microarray experiment. Jour-

nal of the American Statistical Association. 2001; 96(456):1151–1160. https://doi.org/10.1198/

016214501753382129

2. Bickel DR. Correcting false discovery rates for their bias toward false positives. Working Paper, Univer-

sity of Ottawa, deposited in uO Research at http://hdlhandlenet/10393/34277. 2016;.

3. Efron B. Size, power and false discovery rates. The Annals of Statistics. 2007; p. 1351–1377. https://

doi.org/10.1214/009053606000001460

4. Ploner A, Calza S, Gusnanto A, Pawitan Y. Multidimensional local false discovery rate for microarray

studies. Bioinformatics. 2005; 22(5):556–565. https://doi.org/10.1093/bioinformatics/btk013 PMID:

16368770

The local false discovery rate estimated via a bootstrap solution to the reference class problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0206902 November 26, 2018 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0206902.s001
http://www.wtccc.org.uk
https://doi.org/10.1198/016214501753382129
https://doi.org/10.1198/016214501753382129
http://hdlhandlenet/10393/34277
https://doi.org/10.1214/009053606000001460
https://doi.org/10.1214/009053606000001460
https://doi.org/10.1093/bioinformatics/btk013
http://www.ncbi.nlm.nih.gov/pubmed/16368770
https://doi.org/10.1371/journal.pone.0206902


5. Schwartzman A, Dougherty RF, Taylor JE. Cross-subject comparison of principal diffusion direction

maps. Magnetic Resonance in Medicine. 2005; 53(6):1423–1431. https://doi.org/10.1002/mrm.20503

PMID: 15906307

6. Noble WS. How does multiple testing correction work? Nature biotechnology. 2009; 27(12):1135–1137.

https://doi.org/10.1038/nbt1209-1135 PMID: 20010596

7. Adkins DE, Åberg K, McClay JL, Bukszár J, Zhao Z, Jia P, et al. Genomewide pharmacogenomic study

of metabolic side effects to antipsychotic drugs. Molecular psychiatry. 2011; 16(3):321–332. https://doi.

org/10.1038/mp.2010.14 PMID: 20195266

8. Zablocki RW, Schork AJ, Levine RA, Andreassen OA, Dale AM, Thompson WK. Covariate-modulated

local false discovery rate for genome-wide association studies. Bioinformatics. 2014; 30(15):2098–

2104. https://doi.org/10.1093/bioinformatics/btu145 PMID: 24711653

9. van den Oord EJ. Controlling false discoveries in genetic studies. American Journal of Medical Genetics

Part B: Neuropsychiatric Genetics. 2008; 147(5):637–644. https://doi.org/10.1002/ajmg.b.30650

10. Liao J, Lin Y, Selvanayagam ZE, Shih WJ. A mixture model for estimating the local false discovery rate

in DNA microarray analysis. Bioinformatics. 2004; 20(16):2694–2701. https://doi.org/10.1093/

bioinformatics/bth310 PMID: 15145810

11. Efron B. Simultaneous inference: When should hypothesis testing problems be combined? The Annals

of Applied Statistics. 2008; p. 197–223. https://doi.org/10.1214/07-AOAS141

12. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven

common diseases and 3,000 shared controls. Nature. 2007; 447:661–678. https://doi.org/10.1038/

nature05911 PMID: 17554300

13. Bickel DR. Minimax-Optimal Strength of Statistical Evidence for a Composite Alternative Hypothesis.

International Statistical Review. 2013; 81(2):188–206. https://doi.org/10.1111/insr.12008

14. Mei S, Karimnezhad A, Forest M, Bickel DR, Greenwood C. The performance of a new local false dis-

covery rate method on tests of association between coronary artery disease (CAD) and genome-wide

genetic variants. PLoS ONE. 2017; 12:e0185174. https://doi.org/10.1371/journal.pone.0185174 PMID:

28931044

15. Bickel DR. Error-rate and decision-theoretic methods of multiple testing: which genes have high objec-

tive probabilities of differential expression? Statistical Applications in Genetics and Molecular Biology.

2004; 3(1):1–20. https://doi.org/10.2202/1544-6115.1043

16. Benjamini Y, Hochberg Y. Multiple hypotheses testing with weights. Scandinavian Journal of Statistics.

1997; 24(3):407–418. https://doi.org/10.1111/1467-9469.00072

17. Genovese CR, Roeder K, Wasserman L. False discovery control with p-value weighting. Biometrika.

2006; 93(3):509–524. https://doi.org/10.1093/biomet/93.3.509

18. Wasserman L, Roeder K. Weighted hypothesis testing. arXiv preprint math/0604172. 2006;.

19. Sun L, Craiu RV, Paterson AD, Bull SB. Stratified false discovery control for large-scale hypothesis test-

ing with application to genome-wide association studies. Genetic epidemiology. 2006; 30(6):519–530.

https://doi.org/10.1002/gepi.20164 PMID: 16800000

20. Hu JX, Zhao H, Zhou HH. False discovery rate control with groups. Journal of the American Statistical

Association. 2010; 105(491). https://doi.org/10.1198/jasa.2010.tm09329 PMID: 21931466

21. Karimnezhad A, Bickel DR. Incorporating prior knowledge about genetic variants into the analysis of

genetic association data: An empirical Bayes approach. IEEE/ACM Transactions on Computational

Biology and Bioinformatics. 2018;.

22. Lewis CM. Genetic association studies: design, analysis and interpretation. Briefings in Bioinformatics.

2002; 3(2):146–153. https://doi.org/10.1093/bib/3.2.146 PMID: 12139434

23. Bukszár J, McClay JL, van den Oord EJCG. Estimating the posterior probability that genome-wide

association findings are true or false. Bioinformatics. 2009; 25:1807–1813. https://doi.org/10.1093/

bioinformatics/btp305 PMID: 19420056

24. Yang Y, Aghababazadeh FA, Bickel DR. Parametric estimation of the local false discovery rate for iden-

tifying genetic associations. IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB). 2013; 10(1):98–108. https://doi.org/10.1109/TCBB.2012.140

25. Efron B. Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of the

American Statistical Association. 2004; 99(465):96–104. https://doi.org/10.1198/016214504000000089

26. Walther BA, Moore JL. The concepts of bias, precision and accuracy, and their use in testing the perfor-

mance of species richness estimators, with a literature review of estimator performance. Ecography.

2005; 28(6):815–829. https://doi.org/10.1111/j.2005.0906-7590.04112.x

The local false discovery rate estimated via a bootstrap solution to the reference class problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0206902 November 26, 2018 14 / 15

https://doi.org/10.1002/mrm.20503
http://www.ncbi.nlm.nih.gov/pubmed/15906307
https://doi.org/10.1038/nbt1209-1135
http://www.ncbi.nlm.nih.gov/pubmed/20010596
https://doi.org/10.1038/mp.2010.14
https://doi.org/10.1038/mp.2010.14
http://www.ncbi.nlm.nih.gov/pubmed/20195266
https://doi.org/10.1093/bioinformatics/btu145
http://www.ncbi.nlm.nih.gov/pubmed/24711653
https://doi.org/10.1002/ajmg.b.30650
https://doi.org/10.1093/bioinformatics/bth310
https://doi.org/10.1093/bioinformatics/bth310
http://www.ncbi.nlm.nih.gov/pubmed/15145810
https://doi.org/10.1214/07-AOAS141
https://doi.org/10.1038/nature05911
https://doi.org/10.1038/nature05911
http://www.ncbi.nlm.nih.gov/pubmed/17554300
https://doi.org/10.1111/insr.12008
https://doi.org/10.1371/journal.pone.0185174
http://www.ncbi.nlm.nih.gov/pubmed/28931044
https://doi.org/10.2202/1544-6115.1043
https://doi.org/10.1111/1467-9469.00072
https://doi.org/10.1093/biomet/93.3.509
https://doi.org/10.1002/gepi.20164
http://www.ncbi.nlm.nih.gov/pubmed/16800000
https://doi.org/10.1198/jasa.2010.tm09329
http://www.ncbi.nlm.nih.gov/pubmed/21931466
https://doi.org/10.1093/bib/3.2.146
http://www.ncbi.nlm.nih.gov/pubmed/12139434
https://doi.org/10.1093/bioinformatics/btp305
https://doi.org/10.1093/bioinformatics/btp305
http://www.ncbi.nlm.nih.gov/pubmed/19420056
https://doi.org/10.1109/TCBB.2012.140
https://doi.org/10.1198/016214504000000089
https://doi.org/10.1111/j.2005.0906-7590.04112.x
https://doi.org/10.1371/journal.pone.0206902


27. Sundgren P, Dong Q, Gomez-Hassan D, Mukherji S, Maly P, Welsh R. Diffusion tensor imaging of the

brain: review of clinical applications. Neuroradiology. 2004; 46(5):339–350. https://doi.org/10.1007/

s00234-003-1114-x PMID: 15103435

28. Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JD, Wandell B. Children’s reading perfor-

mance is correlated with white matter structure measured by diffusion tensor imaging. Cortex. 2005; 41

(3):354–363. https://doi.org/10.1016/S0010-9452(08)70272-7 PMID: 15871600

29. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open soft-

ware development for computational biology and bioinformatics. Genome biology. 2004; 5(10):R80.

https://doi.org/10.1186/gb-2004-5-10-r80 PMID: 15461798

The local false discovery rate estimated via a bootstrap solution to the reference class problem

PLOS ONE | https://doi.org/10.1371/journal.pone.0206902 November 26, 2018 15 / 15

https://doi.org/10.1007/s00234-003-1114-x
https://doi.org/10.1007/s00234-003-1114-x
http://www.ncbi.nlm.nih.gov/pubmed/15103435
https://doi.org/10.1016/S0010-9452(08)70272-7
http://www.ncbi.nlm.nih.gov/pubmed/15871600
https://doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
https://doi.org/10.1371/journal.pone.0206902

