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It is common for people to make bad decisions because of their emotions in

life. When these decisions are important, such as aeronautical decisions and

driving decisions, the mistakes of decisions can cause irreversible damage.

Therefore, it is important to explore how emotions influence decision-making,

so as to avoid the negative influence of emotions on decision-making as much

as possible. Although existing researchers have found some mechanisms of

emotion’s influence on decision-making, only a few studies focused on the

influence of emotions on decision-making based on electroencephalography

(EEG). In addition, most of them were focused on risky and uncertain

decision-making. We designed a novel experimental task to explore the

influence of emotion on spatial decision-making and recorded subjective data,

decision-making behavioral data, and EEG data. By analyzing these data, we

came to three conclusions. Firstly, we observed three similar event-related

potentials (ERP) microstates in the decision-making process under di�erent

emotions by microstate analysis. Additionally, the prefrontal, parietal and

occipital lobes played key roles in decision-making. Secondly, we found that

the P2 component of the prefrontal lobe presented the influence of di�erent

emotions on decision-making by ERP analysis. Among them, positive emotion

evoked the largest P2 amplitude compared to negative emotions and no

stimuli. Thirdly, we found some graphmetrics that were significantly associated

with decision accuracy by e�ective connectivity analysis combined with graph

theoretic analysis. In consequence, the finding of our study may shed more

light on the brain mechanisms underlying the influence of emotions on spatial

decision-making, thereby providing a basis for avoiding decision-making

accidents caused by emotions and realizing better decision-making.
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emotion, decision-making, spatial task, electroencephalography (EEG), microstate
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Introduction

As a high-level cognitive process, decision-making involves

extensive and complex human behavior (Neubert et al., 2015),

and is the core of human cognitive information processing

(Simon, 1978). Damasio pointed out that decision-makers

needed knowledge in the following aspects: the context in
which decisions were made, different response options, and the
immediate or long-term results of different options (Damasio,
2006). In this process, decision-makers are supposed to calmly

assess the potential consequences of their decisions and choose

options that maximize the benefits of these consequences

(Loewenstein and Lerner, 2003). Early studies of decision-

making generally assumed that people were rational. But

in the 1980s, this view was challenged (Vecchiato et al.,

2014).

Hebert Simon believed that decision-making theory was

incomplete until the mechanism of emotion’s effect on

decision-making was clarified (Simon, 1967, 1990). Damasio

defined emotion as the sum of changes in body and brain states

caused by brain systems responding to some specific perceptual

content, either actually occurring or recalled, associated with

a particular object or event (Damasio, 2006). He outlined the

neuroanatomical and cognitive framework of the influence

of emotions on decision-making and proposed the somatic

marker hypothesis. He believed that emotional responses

(somatic markers) produced by people in decision-making

could influence the decision-making behavior of subjects in

uncertain and complex situations (Tranel and Damasio, 1991).

Lopes et al. also pointed out that adding emotion into the

decision-making model could greatly improve the explanatory

power of the decision-making model (Lopes, 1987; Lopes and

Oden, 1999). Therefore, from the perspective of decision theory,

the influence of emotion on decision-making is an important

topic that cannot be ignored. From the perspective of practical

decision-making, emotion can jeopardize decision-making

relevance and cognitive functioning. A large range of strong

negative emotional consequences may provoke a temporary

impairment of the decision-making process, which may lead

to flight casualties and medical accidents (Causse et al., 2013;

Robertson and Long, 2018). Therefore, from the perspective of

practical decision-making, it is also very important to study the

influence of emotion on decision-making.

For the above reasons, related studies on the influence of

emotion on decision-making have gradually increased andmany

important results have been achieved (Lerner et al., 2015). Most

of the early studies were carried out by subjective and behavioral

data of subjects. For example, Heilman et al. (2010) induced

the emotions of fear and disgust, and found that cognitive

reappraisal of these negative emotions reduced risk aversion.

Similarly, Kugler et al. explored the influence of fear and anger

on risk-taking behaviors, and the results showed that compared

with anger, fear would increase the choice frequency of risk

avoidance, while anger reduced the choice frequency of risk

avoidance (Kugler et al., 2012).

Brain is the most advanced and important part of nervous

system, and activity in some brain regions can represent not

only emotional regulation but also complex decision-making

processes (Seymour and Dolan, 2008). Since the above

research based on subjective scoring relied too much on

subjective feelings of subjects and was unable to clarify the

brain mechanisms of the complex cognitive processes, some

researchers focused on physiological signals such as EEG. Based

on EEG, Balconi et al. (2018) applied the Iowa Game Task (IGT)

to explore the difference between Parkinson’s patients with or

without pathological gambling behavior. The results showed that

Parkinson’s patients with pathological gambling behavior had

worse task performance. Moreover, EEG signal analysis showed

that the low frequency bands of their frontal lobe increased.

Giustiniani et al. (2019) found that correct decision-making

under uncertain conditions is regulated by an individual’s

emotion, ability to encode information and explore information.

In addition, EEG signal analysis indicated that the right/left theta

asymmetry may reflect the individual’s motivation tendency.

Garrido-Chaves et al. (2021) applied IGT decision task to

analyze the difference in the influence of emotion on decision-

making between males and females. The results showed that

there were no significant gender-related differences in behavioral

performance, but women were more sensitive to failure. In

women, but not in men, the feedback-related negativity (FRN)

component showed a greater amplitude for losses than for wins.

Although the above studies have found many important

brain mechanisms for the influence of emotions on decision-

making, they focused on risky and uncertain decision-making.

Some studies pointed out that risk and ambiguity are two

fundamental parameters of decision-making (Zheng et al.,

2020). However, decision-making can also be made under the

condition that the result of choice is completely predictable

(Iribe-Burgos et al., 2022). Spatial decision is a kind of decisions

with predictable selection results and an important part of daily

life. In addition, spatial decision-making is also characterized

by the use of past experience to guide future decisions. So

spatial decision-making is a good way to understand how the

brain describes this experience and lays the foundation for

reinforcement learning theory (Simon and Daw, 2011). More

importantly, spatial decision-making is an indispensable part

of driving decisions and aeronautical decisions (Stokes et al.,

2014). When a driver or pilot is in the process of driving, he

or she may be affected by emotions and make a bad decision,

which may bring irreparable damage. Therefore, it is important

to further explore the influence of emotions on spatial decision-

making so as to avoid the negative influence of emotions on

decision-making.

Recently, As goal-oriented decision research, spatial

decision-making has attracted the attention of many researchers.

Kaplan et al. used functional magnetic resonance imaging
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(fMRI) to explore the specific brain region of the prefrontal

lobe in spatial decision-making. The interaction between

the rostrodorsal medial prefrontal cortex (rd-mPFC) and

the hippocampus was found to increase when deliberate

planning was required, especially when planning led to accurate

choice (Kaplan et al., 2017). Similarly, Epstein pointed out

that hippocampal and entorhinal spatial codes were used in

conjunction with frontal lobe mechanisms to plan routes during

navigation (Epstein et al., 2017). A number of studies have also

shown that spatial long-term memory and contextual memory

depend on the Retrosplenial Cortex (RSC) (Corcoran et al.,

2011; Katche et al., 2013; Cowansage et al., 2014; Milczarek

et al., 2018; de Sousa et al., 2019), and damage to the RSC

could impair navigation in both humans and rodents (Vann

and Aggleton, 2002; Ino et al., 2007; Pothuizen et al., 2010).

On this basis, Miller et al. trained rats with a continuous

T-maze alternation task. They found that the RSC developed a

distributed population-level representation of the rat’s spatial

location and current trajectory to the goal as the rats learned

(Miller et al., 2019). Although many key brain mechanisms

have been found in these studies, the role of emotion in

spatial decision-making remains unclear and needs further

investigation. In addition, most spatial decision-making

studies are fMRI studies, which have low temporal resolution.

EEG possesses high temporal resolution with about 1 ms,

allowing researchers to study phase changes in response to

decision tasks, which can effectively compensate for this

problem. Furthermore, the sufficient time resolution enables

the capture of macroscopic dynamics of brain activation and

synchronization (Delorme et al., 2002; da Silva, 2013; Alarcao

and Fonseca, 2017).

For existing studies, although they has found some brain

mechanisms of the influence of emotions on decision-making,

there are still the following problems: (P1) There are few

studies focusing on the influence of emotions on decision-

making based on EEG, and signal analysis methods are simple

(Davis et al., 2011; Lanini-Maggi et al., 2014; Takács et al.,

2015). Most of them focus on some common time-domain and

frequency-domain features, such as ERP and band power. (P2)

Conclusions obtained by different research methods are not

uniform. For example, Charpentier et al. (2017) showed that

fear would reduce risk propensity, which contradicts Heilman

et al.’s finding that fear would increase risk propensity. By

summarizing a large number of literature on the impact of

fear on risk tasks, Wake et al. (2020) further found that the

conclusions of different studies were different. (P3) The existing

research on the influence of emotions on decision-making

mainly uses risky decision tasks or uncertain decision tasks.

Most of the research on spatial decision-making focuses on the

decision task itself and ignores the influence of emotions on it.

Most of them are fMRI studies. As a result, The influence of

emotions on spatial decision-making has rarely been explored

with EEG.

In order to solve the above problems and make up for the

lack of research on the influence of emotions on spatial decision-

making, we designed a novel experimental task based on EEG in

this paper. In the selection of emotions, we refer to the research

of Zheng et al. (2018), Gao and Maurer (2009), in which one

kind of positive emotion and two kinds of negative emotions

(fear, sad) are specifically analyzed. In addition, there are many

studies exploring the influence of sad and fear emotions on

risky or economic decision-making (Harlé et al., 2012; Wake

et al., 2020). As a result, we choose these three emotions.

During the experiment, we recorded subjective data, decision-

making behavioral data, and EEG data of the subjects. The

results of the matched samples t-test showed that emotions were

effectively stimulated. Then, similar microstates of the brain

under different emotions in the decision-making process were

obtained by microstate analysis, and key brain regions of the

decision task were found. Focused on the key brain regions, ERP

analysis was used to explore the role of different emotions in the

decision-making process. Finally, by exploring the correlation

between decision behavioral data and graph metrics of the brain

network, the metrics and corresponding key regions in key

frequency bands that significantly affected decision accuracy

were found.

Materials and methods

Experimental design

Hypotheses

The current study has the following hypotheses: (H1)

subjects’ emotions are effectively stimulated by emotional films.

(H2) The ERP microstates of the subjects under different

emotions show similar patterns in decision-making task. (H3)

The stimulated emotions have an impact on the decision-

making process and can be reflected in the EEG characteristics

during the task. (H4) There is a correlation between decision

accuracy and graph metrics of brain network.

Subjects

Sixteen Chinese postgraduate students in University of

Chinese Academy of Sciences participated in this experiment.

Their ages ranged from 22 to 28 years old (Mean= 23.25,

std = 1.57, 11 females, 5 males). All of them had normal

vision or corrected-to-normal vision. None reported any known

neurological or psychiatric disease. And they were required to

get a good rest before the experiment. All subjects gave their

written informed consent and were paid for their participation.

Emotional stimuli

In the experiment, video clips were used to stimulate

emotions (Gross and Levenson, 1995; Alarcao and Fonseca,
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FIGURE 1

Valence score of preliminary experimental evaluation.

2017). In order to select emotional stimuli, we conducted

a preliminary experimental evaluation. In the preliminary

experimental evaluation, we selected Aftershock clip (T) (Zheng

and Lu, 2015), Lost in Thailand clip (Tai) (Zheng and Lu,

2015), Bean clip (H) (Soleymani et al., 2011), The Shining clip

(S) (Schaefer et al., 2010) and Curve clip (Q). The first four

referred to the emotional stimuli of public datasets, and the

last was an online classic fear clip. Of the five films, Bean and

Lost in Thailand clips were used to stimulate positive emotions,

while the rest were used to stimulate negative emotions. In

negative emotions, The Shining and Curve clips were used

to stimulate fear and Aftershock clip was used to stimulate

sad. To ensure the effect of emotional stimuli, we asked five

subjects to evaluate these five films. The figure of valence from

preliminary experimental evaluation were shown in Figure 1.

The results showed that Bean, Curve and Aftershock clips can

more effectively stimulate positive and negative emotions (the

valence has a larger difference before and after stimulating). As

a result, we choose these three emotional films. Among them,

Bean clip lasts 3 min 17 s, the Curve clip lasts 3 min 9 s, and the

Aftershock clip lasts 3 min 29 s.

Decision task

The decision task of this experiment is based on the spatial

decision task proposed by Kaplan et al. (2017). In this task,

we used a software called Blender (http://www.blender.org) to

generate maze map.

As shown in Figures 2A–C, in each trial, the task shows

three different states of a maze in sequence. Figure 2A is a

three-dimensional maze, in which the green ball is the starting

point and the red ball is the ending point. Subjects need to

infer the shortest path from the starting point to the ending

point. Figure 2B adds a choice point (yellow circle) on the

intersection of the shortest path based on Figure 2A. At this

point, subjects need to judge which direction to take is the

shortest path. Figure 2C featured a first-person viewpoint of

the choice point. Subjects should operate in this maze (W:

go forward, A: go left, D: go right, S: all directions have the

same path length). Figure 2D is the interstimulus interval (ISI),

during which the subjects were allowed to rest. After preliminary

experimental evaluation and adjustment, Figure 2A displays

3,000 ms, Figure 2B displays 500 ms, Figure 2C displays 1,500

ms, ISI displays 1500 ms. As a result, the decision task duration

of each trial is 6.5 s.

Subjective measures

Before and after each emotional stimulus, the subjects

were asked to fill out V-A scale (Russell, 1980). The V-

A scale is shown in Figure 3. It ranges from 1 to 9. For

valence, the score from low to high means negative to

positive. For arousal, the score from low to high means sleepy

to excited.

Procedure

Experimental procedure is shown in Figure 4. At first,

we introduced our experimental procedure to subjects. Then,

subjects were asked to wear an EEG cap to collect data.

Afterward, subjects practiced decision task to become familiar

with the corresponding operations. The practice task consists

of 10 trials, containing all possible operations (W: go forward,

A: go left, D: go right, S: all directions have the same path

length). In the formal experiment, the subjects were asked to

complete four blocks of decision task. Each block contains 40

trials, which means the decision task duration of each block

is 4 min 20 s. Block1 contains only spatial decision task,
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FIGURE 2

Spatial decision task. (A) Picture 1. In this picture, green ball is the starting point and red ball is the ending point. Subjects need to infer the

shortest path from the starting point to the ending point. (B) Picture 2. Picture 2 adds a choice point (yellow circle) on the intersection of the

shortest path based on Picture 1. At this point, subjects need to judge which direction to take is the shortest path. (C) Picture 3. Picture 3

featured a first-person viewpoint of the choice point. Subjects should operate in this picture (W: go forward, A: go left, D: go right, S: all

directions have the same path length). (D) Interstimulus interval (ISI), during which the subjects were allowed to rest.

FIGURE 3

V-A scale. (A) Valence, It goes from very negative feelings to very positive. (B) Arousal, It goes from sleepy to excited.

FIGURE 4

Experimental procedure. At first, we introduced our experiment to subjects. Then, they were asked to wear an EEG cap to collect data. After this,

they practiced the decision task. In the formal experiment, the subjects were asked to complete four blocks of decision task. Finally, they had

an interview.

no emotional stimuli, which is denoted as None. Block2 to

block4 are emotional stimuli first, followed by spatial decision

task. Block2 to block4 is denoted as H, Q or T, depending

on the emotional stimulus (H: Bean clip, Q: Curve clip, T:

Aftershock clip). The duration of the formal experiment is about

30 min.

In order to avoid the interference of maze difficulty in

the study of emotional influence on decision-making, we

ensured four blocks contained the same number of mazes

with the same difficulty, in which the difficulty of a maze

was controlled by the number of maze paths, the length of

maze paths, and the number of turning points. In order to

avoid the influence of familiarity rather than emotional state

on the decision task of the subjects, the sequence of emotional

stimuli was disrupted. Every 6 subjects were subjected to

emotional stimuli in the order of HQT, HTQ, TQH, THQ,

QHT and QTH at block2, block3 and block4, respectively.

For example, HQT means that block2, block3 and block4 use

the emotional stimuli of Bean clip, Curve clip and Aftershock

clip, respectively.
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FIGURE 5

Data analysis process. Data were processed based on type, i.e. EEG, behavioral or subjective. Correlation between behavioral data and graph

metrics (local and global measures) calculated by EEG data were analyzed in the final stage.

Finally, each subject had an interview. Through

the interview, we further understood the emotional

state, task feeling and task completion skills of

the subjects.

Data analysis methods

The data analysis process is shown in Figure 5. Subjective

data were analyzed by matched samples t-test to verify the

effect of emotional stimuli. Behavioral data were analyzed

by analysis of variance (ANOVA) to explore the influence

of emotions on accuracy and reaction time of decision task.

For the EEG data, firstly preprocessed, and then used the

microstate analysis to explore the similar microstates of decision

task under different emotions, aiming to find the relevant

brain regions of decision task. Secondly, according to the

results of microstate analysis, ERP was used to analyze the

difference in amplitude and latency of decision task related brain

regions under different emotions, to determine the influence

of emotions on the decision task. Finally, effective connectivity

analysis combined with graph theoretic analysis was used to

explore which graphmetrics of the brain network corresponding

to the electrode regions were significantly correlated with

behavioral data.

Preprocessing

Due to the inevitable noise during EEG data acquisition,

EEG signals are usually preprocessed before EEG data analysis.

This study referred to the preprocessing method proposed by

Yue et al. (2018), which mainly consisted of six steps: (1) EEG

data was resampled to 250 Hz. (2) 1-40Hz band-pass filtering

were used to remove high-frequency noise. Choosing 40 Hz as

the upper bound of bandpass filtering can improve the signal-

to-noise ratio and reduce the interference of high-frequency

electromyography on EEG. On the other hand, it also retains

the gamma component of 10 Hz width. ICA has a preference

for low-frequency components of high-amplitude EEG, and

selecting 1 Hz as the lower bound of band-pass filtering can

correct ICA preference to a certain extent (Winkler et al., 2015).

(3) Artifact Subspace Reconstruction (ASR) algorithm is used

to remove noise and artifacts automatically. ASR automatically

identifies the parts of the data without noise and artifacts
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to identify and eliminate the components with large variance

and reconstruct the data from the remaining components.

(4) Reconstruct deleted channel data by interpolation. (5)

The average reference was set as the reference electrode.

It has been proved that using the average reference would

have better results (Hu et al., 2017; Wang et al., 2019b). (6)

Independent Component Analysis (ICA), which is used to

remove electroophthalmic artifacts.

Microstate analysis

Lehmann et al. (1987) found that the topological structure

of scalp voltage topographic map of resting EEG signal

always remained relatively stable within a certain period of

time (80–120 ms), and these topological structures were called

“functional microstates.” To explore the microstates of subjects

in decision task under different emotions, eeglab and Cartool

software were used to calculate the ERP microstates of subjects

(Hu et al., 2014). T-AAHC method was used for category

recognition of microstates, and cross-validation criteria (CV)

was used to confirm the selection of optimal categories (Michel

and Koenig, 2018). In view of the fact that each trial relies on

the first two mazes for decision-making and the duration is

3,000 and 500 ms, respectively, data from 0 to 3,500 ms of each

trial are intercepted for ERP microstate analysis. Based on the

above analysis, the Curve of global field power (GFP) changing

with time and extracted microstates based on GFP peaks are

drawn. GFP equals the root mean square (RMS) across the

average-referenced electrode values at a given instant in time. It

constitutes a single, reference-independent measure of response

strength. Its formula is as follows:

GFPu =

√√√√
(
1

n
·

n∑

i=1

u2i

)
(1)

where ui refers to the voltage value of each electrode under

the average voltage reference, and n represents the number

of electrodes.

E�ective connectivity analysis and graph
theoretical analysis

Effective brain connectivity (EBC) is introduced in

connectivity analysis so as to explore the causal relationship

between different EEG signal channels and further detect the

direction of the connection between brain regions (Nolte et al.,

2008). Its basic idea mainly includes two aspects : (1) the

connection of neural process needs a certain amount of time;

(2) If the propagation velocity of different frequency waves

is similar, the phase difference between the signal sender and

receiver will increase with the increase of frequency, which is

shown as a positive slope in the phase spectrum.

Based on this idea, phase slope index (PSI) is defined

as follows:

9̃ij = J


∑

f∈F

K∗
ij(f )Kij(f + δf )


 (2)

where K∗
ij(f ) is the coherence function, δf is the frequency

resolution of fast Fourier transform (FFT), F is the set of

frequencies, and J(·) represents the imaginary part.

By calculating PSI indexes of different frequency bands

(delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–30

Hz, gamma: 30–40 Hz), the directed weighted graphs between

channels in different frequency bands can be obtained. To

reduce spectral leakage, 50% overlapping Hamming windows

are used in this paper. Considering that the small weight may

be caused by the noise in the experiment process, but it may also

contain valuable structural information, the optimal threshold

of sparseness needs to be determined. Therefore, based on the

idea of maximizing information on the networks’ community

structure, Bordier et al. (2017) proposed percolation analysis.

The percolation threshold was defined as the threshold at which

the maximum number of connected component nodes began

to decrease. Through this sparsification method, we obtained a

new directed weighted graph and used it for the following graph

theoretical analysis.

For the description and evaluation of effective connectivity

network of the brain, graph theory was integrated into the

analysis of EEG (Akbarian and Erfanian, 2020). Key graph

metrics describing the architecture of the network were

computed from the directed and weighted adjacency matrices

(PSI adjacency matrices) using BCT (Rubinov and Sporns,

2010), to include clustering coefficient (CC), local efficiency

(LE), global efficiency (GE), characteristic path length (CPL).

The first two metrics are local measures of the network, while

the last two are the global measures of the network.

Global measures

Characteristic path length (CPL) is the average shortest path

length of all node pairs. Its definition is as follows:

CPL =
1

N

∑

i∈N

∑
j∈N,j 6=i dij

N − 1
(3)

where dij is the shortest path length (distance) between nodes i

and j, N is the number of electrodes.

Global efficiency (GE) is the average inverse of all shortest

path lengths and is used to measure the integration or overall

ability to carry out parallel information transfer and fast

information exchange between distributed regions. Its definition

is as follows:

GE =
1

N

∑

i∈N

∑
j∈N,j 6=i

(
dij
)−1

N − 1
(4)
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Local measures

Clustering coefficient (CC) is used to measure the closeness

of nodes in the network to their neighbors. Its definition is

as follows:

CCi =
ti(

kouti + kini

) (
kouti + kini − 1

)
− 2

∑
j∈N aijaij

(5)

where ti is the number of triangles around node i, kini and kouti

are the input and output degrees of node i respectively, and aij is

the element of adjacency matrix.

Local efficiency (LE) measures the information transfer

efficiency of a local area, which is measured by removing a

node and calculating the communication efficiency between its

neighbors. Its definition is as follows:

LEi =
1

2

∑
j,h∈N,j6=i

(
aij + aji

) (
aih + ahi

) [
djh (Ni)

−1 + dhj (Ni)
−1
]

(
kouti + kini

) (
kouti + kini − 1

)
− 2

∑
j∈N aijaij

(6)

where djh (Ni) is the shortest path between j and h containing

only neighbor i, and dhj (Ni) similarly.

Statistical analysis

Matched samples t-test

For subjective data and behavioral data, matched samples

t-test was performed on the valence scores before and after

each emotional stimulus (H, Q, T) to verify the effect of

emotional stimuli.

Analysis of variance

In order to explore whether the decision behavioral data has

significant differences among different emotions, ANOVA were

performed both on the decision accuracy and reaction time data

of these four blocks (H, Q, T, None).

Independent samples t-test and pearson correlation

analysis

For EEG data, in order to evaluate the relationship between

the graph metrics of different subjects and their corresponding

behavioral data, global measures and local measures were

analyzed, respectively.

In the analysis of global measures, Pearson correlation

analysis was used to explore the correlation between the

global measures (GE, CPL) of different bands and the

decision accuracy.

For the processing of local measures, it is firstly divided

into two groups according to the decision accuracy. The 16

blocks with the highest decision accuracy are divided into a

group (group1), and the 16 blocks with the lowest decision

accuracy are divided into a group (group2). The whole-brain

FIGURE 6

Valence score before and after three kinds of emotional stimuli.

* represents significant di�erence between the two groups

(p ≤ 0.05).

averages of the 5 bands’ local measures (LE, CC) were calculated

for the two groups, respectively, and the independent samples

t-test was used to analyze whether there was a significant

difference between the local measures of group1 and group2.

This step is mainly to locate the bands and metrics related to

the decision accuracy.

For the local measures with significant differences, the EEG

topographic maps of the EEG local measures of group1 and

group2 were drawn, respectively. The electrode area related

to the decision accuracy was obtained by comparing between

groups. Considering that the superimposed average may be

affected by some subjects, the correlation between these metrics

and the decision accuracy cannot be rigorously stated. As a

result, the Pearson correlation analysis is used to further prove

whether there is a significant correlation between the decision

accuracy and the local measures of these bands.

Results

The results of matched samples t-test
showed that the three emotions were
e�ectively stimulated

For hypothesis H1, the paper analyzed the subjective

data (V-A scale), and the results were shown in Figure 6.

Figure 6 shows the valence score before and after three kinds

of emotional stimuli. Matched samples t-test results showed

that valences were significantly different before and after each

emotional stimuli (H, Q, T). Among them, the valence increased

significantly stimulated by H, while the valence decreased

significantly stimulated by Q and T. Therefore, it can be shown

that from the perspective of continuous emotions, one positive

emotion and two negative emotions are effectively stimulated.

In post-trial interviews, subjects reported that the three

emotional stimuli evoked different emotions in them. The Bean

clip stimulated their positive emotion. The Curve clip and
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Aftershock clip stimulated their negative emotions, specifically

fear and sadness, respectively. This further validated that our

emotional stimuli were effective.

Furthermore, ANOVA was performed on the behavioral

data of decision task under different emotions. As shown in

Table 1 there was no significant difference in decision accuracy

and reaction time between the three kinds of emotional stimuli

and no stimulus. The average correct decisions of None, H, Q

and T were 32.94, 33.00, 32.75, and 32.19, respectively (totally

40), and the response time of None, H, Q and T were 495.57,

471.50, 445.93, and 460.07 ms, respectively. Although there was

TABLE 1 ANOVA results for behavioral data (decision accuracy and

reaction time).

Sum of

squares

Mean

square

F Sig.

Accuracy Between groups 6.563 2.188 0.138 0.937

Within groups 954.375 15.906

Total 960.938

Reaction time Between Groups 21348.767 7116.256 0.329 0.804

Within groups 1254860.027 21635.518

Total 1276208.794

no significant difference in the behavioral data, we could still find

that the decision accuracy was highest in the positive emotion,

followed by no stimuli, and finally the two negative emotions.

For reaction time, the reaction time of decision-making under

fear was the shortest, and the reaction time with no stimuli was

longer than that with emotional stimuli.

Microstate analysis showed that the
parietal, occipital and prefrontal lobes
played key roles in spatial decision task

For hypothesis H2, the paper explores the similar

microstates of the brain in spatial decision task under

different emotions through microstate analysis, and the results

are shown in Figure 7. Figure 7 contains the ERP microstate

analysis results of subjects in decision task under different

emotional stimuli (H, Q, T) and no stimuli (None). The Y-axis

in each figure is GFP value, and the X-axis is time, with a total

length of 3,500 ms. Where, the first 3,000 ms corresponds to

the display of Figure 1A, and the last 500 ms corresponds to the

display of Figure 1B.

In the paper, the optimal number of microstates was

determined by cross-validation. The number of microstates

FIGURE 7

ERP microstate results of spatial decision task under four stimuli (H, Q, T, None). (A–D) Plotted the GFP curves and similar microstates of

decision task under H, Q, T, and None emotional stimuli, respectively. There are three similar microstates, namely, M1_P2 microstate, M1_P3

microstate, and M2_N3 microstate. The corresponding time of occurrence corresponds to the blue, yellow and purple regions in each image.
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FIGURE 8

ERP analysis of prefrontal lobe electrode. From top to bottom and from left to right are the ERP waveforms of FP1, FPz, FP2, AF3, and AF4,

respectively. The blue, green, purple and cyan curves represent the ERP waveforms of the decision task after the stimuli of H, None, Q, and T.

in the spatial decision task stimulated by None, H, Q, and

T was 18, 10, 8, and 6, respectively. Different microstates

would be separated by vertical lines in Figure 7, and microstate

might appear multiple times. By comparing the similarity

of microstates under four kinds of emotional state and

considering the meaning of corresponding ERP components,

three similar microstates were selected. The first two microstates

corresponded to components P2 and P3 after the beginning

of the presentation in Figure 2A, and the third microstate

corresponded to components N3 after the beginning of the

presentation in Figure 7B. Therefore, the three microstates were

named M1_P2 microstate, M1_P3 microstate, and M2_N3

microstate, respectively. In Figure 7, similar microstates under

different emotions have the same color and the same name.

The blue area is M1_P2 microstate, the yellow area is M1_P3

microstate, and the purple area is M2_N3 microstate. The three

microstates correspond to three EEG amplitude topographic

maps in each image, respectively, and the legend is on the right

side of each image.

By observing the M1_P2 microstate in Figures 7A–D, it can

be found that both the parietal lobe and occipital lobe showed

an obvious positive maximum value. For M1_P3 microstate, the

middle prefrontal lobe showed an obvious positive maximum

value. The two sides of the frontal lobe showed a negative

maximum. For M2_N3 microstate, the prefrontal lobe showed

a negative maximum value, while the parietal occipital lobe

showed a positive maximum value. Therefore, according to the

characteristics of peak appearance of microstates, it can be found

that parietal lobe, occipital lobe and prefrontal lobe play a key

role in spatial decision task.

Previous studies have shown that occipital lobe area is

associated with vision (Pöppel et al., 1978; Berlucchi, 2014;

Rehman and Al Khalili, 2019), parietal lobe area is associated

with spatial positioning (Vuilleumier, 2013), and prefrontal lobe

area is associated with emotion and decision-making (Manes

et al., 2002; Damasio, 2006; Hiser and Koenigs, 2018). Most of

these studies were based on fMRI, and some focused on patients

with lesions in the prefrontal cortex (PFC). Furthermore, they

paid less attention to the influence of emotions on decision-

making.

Considering the role of the prefrontal lobe in emotion and

decision-making, in order to further explore the influence of

emotion on decision-making, we focused on the electrodes of the

prefrontal lobe and used ERP to analyze how emotions affected

decision-making process.

The amplitude di�erence of P2
component of prefrontal lobe revealed
the influence of di�erent emotions on
the decision task

For hypothesis H3, we focused on the prefrontal lobe

according to 3.2, where ERP analysis was used to explore how

emotion affects spatial decision-making. ERP waveform results

of prefrontal lobe under different emotional stimuli are shown

in Figure 8.

Figure 8 contains the ERP waveforms of the five electrodes

(FP1, FPz, FP2, AF3 and AF4) in the prefrontal lobe. The
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TABLE 2 Pearson correlation analysis results between global

measures and decision accuracy in five bands.

Delta Theta Alpha Beta Gamma

CPL p = 1.37E-1 p = 9.31E-1 p = 4.65E-1 p = 7.40E-2 p = 5.67E-3

r = –1.88E-1 r = 1.10E-2 r = –9.30E-2 r = 2.25E-1 r = –3.42E-1**

GE p=1.68E-4 p = 2.30E-5 p = 2.55E-1 p = 8.31E-1 p = 2.25E-1

r = –4.53E-1** r = –5.03E-1** r = –1.44E-1 r = –2.72E-2 r = –1.54E-1

**Means a significant correlation at the 0.01 level (two-tailed). Results with significant

correlations are bolded.

horizontal axis represents the time, the vertical axis represents

the voltage value, and the four colors represent the ERP results

under different stimuli. One-way ANOVA was performed for

ERP data under different emotions. The periods with significant

differences are shown in the black area marked on the horizontal

axis in the figure. It can be seen that the four ERP curves under

each electrode have significant differences in the amplitude

of P2, as shown in the gray shaded area in the figure. This

result indicated that different emotions would affect the P2

amplitude in the prefrontal lobe of the subjects during the

decision task, thus affecting the subjects’ decision-making. As

shown in Figure 8, positive emotions have higher P2 amplitudes

than negative emotions and no stimuli. Moreover, by comparing

the P2 latency of decision task under Curve stimulus and other

stimuli, it can be found that when people are nervous and afraid,

they tend to have larger P2 latency and smaller P2 amplitude.

The decision accuracy was significantly
correlated with the CC and LE of delta
and theta bands in the midline region

For Hypothesis 4, this paper analyzes the graph metrics of

brain network from global measures and local measures.

Global measures

For global measures, since the whole brain corresponds to a

numerical value, a Pearson correlation analysis was performed

between the global measures of the five bands and the decision

accuracy. Similarly, a Pearson correlation analysis was also

performed between the global measures of the five bands and the

decision reaction time. The results showed that the correlation

between the GE of the delta band and theta band and the

decision accuracy is significant (p ≤ 0.01), and the correlation

between the CPL of the gamma band and the decision accuracy

is significant (p ≤ 0.01), as shown in Table 2. No significant

correlation was found in the results for reaction time and global

measures (p > 0.05).

TABLE 3 T-test analysis results of local features between group1 and

group2 in five bands.

Delta Theta Alpha Beta Gamma

CC p = 1.33E-2* p = 8.79E-4** p = 2.11E-1 p = 4.78E-1 p = 1.56E-1

LE p = 5.23E-4** p = 3.93E-4** p = 1.30E-1 p = 6.89E-1 p = 5.33E-1

*Means a significant difference at the 0.05 level (two-tailed). **Means a significant

difference at the 0.01 level (two-tailed). Results with significant differences are bolded.

Local measures

In the analysis of local measures, since each electrode

corresponds to a numerical value, the relationship between the

decision accuracy and the local measures of the brain region

can be observed. Therefore, the data is first grouped by decision

accuracy. Group1 is the group with higher decision accuracy,

and group2 is the group with lower decision accuracy.

The results of the independent samples t-test between the

two groups showed that only the whole-brain averaged CC and

LE of delta and theta band were significantly different, whose

p-values are shown in Table 3. Therefore, CC and LE of delta

and theta bands of these two groups were selected for further

detailed analysis.

For the selected local measures, the EEG topographic maps

of the two groups of them were drawn, as shown in Figure 9.

Figures 9A,B represent the EEG topographic maps of the CC

in delta band for group1 and group2, respectively. Similarly,

(C) and (D) represent the EEG topographic maps of the CC

in theta band for group1 and group2, respectively. (E) and (F)

represent the EEG topographic maps of the LE in delta band

for group1 and group2, respectively. (G) and (H) represent the

EEG topographic maps of the LE in theta band for group1 and

group2, respectively.

It can be found that the CC and LE in delta and theta bands

exhibit similar patterns. In the midline region of the delta and

theta bands, the CC and LE of the group with high decision

accuracy were lower. We believe that there may be a relationship

between the CC and LE in the midline region of these two bands

and the decision accuracy.

Considering that the average EEG topograph maps of the

subject data may be affected by individual subjects, it is difficult

to strictly explain the negative correlation between decision

accuracy and CC/LE. Therefore, the average CC in delta and

theta bands of all electrodes of each subject was calculated.

Pearson correlation coefficient test was carried out between the

average CC in delta and theta bands and the decision accuracy

data. The same analysis was performed for LE. The results

showed that there was a significant negative correlation in both

the delta band and theta band, as shown in Table 4. This further

proves that the CC and LE in the midline region of the delta

and theta bands are significantly negatively correlated with the

decision accuracy of the spatial decision task.
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FIGURE 9

EEG topographic maps of CC and LE in delta and theta bands. (A,B) are the EEG topographic maps of CC in delta band for the two groups. (C,D)

are the EEG topographic maps of CC in theta band for the two groups. (E,F) are the EEG topographic maps of LE in delta band for the two

groups. (G,H) are the EEG topographic maps of LE in theta band for the two groups.

TABLE 4 Pearson correlation analysis results between local measures

and decision accuracy in delta and theta bands.

Delta Theta

CC p = 4.80E-2, r = –0.35* p = 5.89E-5, r = –0.65**

LE p = 3.25E-3, r = –0.50** p = 2.96E-5, r = –0.67**

*Means a significant correlation at the 0.05 level (two-tailed). **Means a significant

correlation at the 0.01 level (two-tailed). Results with significant correlations are bolded.

Discussion

Microstate analysis showed that the
parietal, occipital and prefrontal lobe
played key roles in spatial decision task

In this paper, three similar microstates of decision task

under different emotional stimuli are found through microstate

analysis. Moreover, the prefrontal lobe, parietal lobe and

occipital lobe showed obvious peaks in the three microstates,

which reflected the key role of these three regions in the spatial

decision-making process.

The roles of these three regions are also mentioned in the

relevant studies. Si et al. pointed out in their study that decision-

making was thought to involve the activation of distributed

cortical regions, such as frontal, parietal, and occipital from

the results of scalp topology and cortical activation (Si et al.,

2021). Some studies further confirm the reliability and validity

of the three key regions derived from our study and can

further help explain what role these regions play in spatial

decision-making. Regarding the role of the occipital lobe area,

a large number of research has confirmed the correlation

between the occipital lobe area and vision (Pöppel et al., 1978;

Berlucchi, 2014; Rehman and Al Khalili, 2019). For the role

of the prefrontal and parietal lobes, Patai et al. combined

evidence from non-spatial studies and found that the interaction

between the lateral PFC and the posterior parietal cortex is

important for planning paths and processing subgoals (Patai

and Spiers, 2021). Existing research suggests that the PFC

supports decision-making, target tracking, and planning. And

PFC plays an important role in spatial navigation, supporting

flexible response to environmental changes (Javadi et al., 2019).

By summarizing 47 fMRI works on spatial navigation, Li

et al. (2021) pointed out that the brain regions involved in

human spatial navigation are mainly located in the medial

temporal cortex and posterior parietal cortex, and different

spatial scales and spatial reference frames may show different

brain activation patterns. Similarly, studies have shown that

information about correct decisions are stored in the ventral

temporal cortex and posterior parietal cortex (Philiastides et al.,

2010; Hutchinson et al., 2015), while the ventromedial prefrontal

cortex (vmPFC) is implicated in computing expected value

and reward outcomes in processing decisions (Daw and Doya,

2006).
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For the M1_P2 microstate, there were peaks of voltage in

the parietal and occipital lobes. Kravitz et al. (2011) pointed

out that the role of the occipital-parietal pathway is mainly

to integrate and abstract visual information from the retina.

Therefore, this microstate may correspond to the process of

human beings receiving and processing visual information.

For the M1_P3 microstate, the corresponding prefrontal lobe

showed a peak. Considering the peak in the parietal lobe

area of the previous microstate, and the parietal-prefrontal

pathway is mainly used to control eye movements and

participate in spatial attention activities, this microstate may

correspond to the decision-making process of the subjects.

For the M2_N3 microstate, peaks were seen in the prefrontal,

parietal and occipital lobes. The activation of occipital and

frontal was thought to involve in the identification of options

and provide information for humans to sift through (Si

et al., 2019). Considering that this microstate occurs after the

appearance of the second maze (Figure 2B), it is necessary

to integrate the visual information of the second maze and

call the spatial navigation ability to make decisions, it is

likely that this state reflects multiple areas collaborate to

make decisions.

The amplitude di�erence of P2
component of prefrontal lobe revealed
the influence of emotion on the decision
task

Emotion-related studies have shown that the PFC plays a

key role in the production and regulation of emotion (Dixon

et al., 2017). Several ERP studies have demonstrated a correlation

between P2 components and emotions (Ma et al., 2015; Wang

et al., 2019a). Under different emotions, the corresponding

P2 components of the subjects are often different. The study

by Spreckelmeyer et al. (2006) showed that positive emotions

evoked larger P2 amplitudes than neutral and negative emotions.

In this paper, the ERP waveforms of subjects during

decision task under different emotional stimuli in the prefrontal

lobe were plotted. The results also showed that subjects with

positive emotion produced the largest P2 amplitudes during the

decision task compared to negative emotions and no stimuli

(see Figure 8). Different from the study by Spreckelmeyer

et al., which used the data in the process of emotional stimuli

for analysis, this paper uses the decision data after different

emotional stimuli for analysis. On the one hand, we further

confirmed the effect of different emotions on the P2 component

and the persistent role of emotion in decision task. On the

other hand, this also indicates that the influence of emotion

on decision-making may be reflected in the difference of

P2 components.

The decision accuracy was significantly
correlated with the CC and LE of delta
and theta bands in the midline region

In terms of global measures, the results of the effective

connectivity analysis combined with the graph theoretical

analysis showed that, there was a significant negative correlation

between the decision accuracy and the GE of the delta band

and theta band. Similarly, there was also a significant negative

correlation between the decision accuracy and the CPL of

the gamma band. By exploring brain connectivity in children

with attention deficit and hyperactivity disorder (ADHD),

Furlong et al. found that increased GE was associated with

increased severity of inattention symptoms (Furlong et al.,

2021). Therefore, it was speculated that compared with the

group with higher decision accuracy, the group with lower

decision accuracy may be distracted, and the decision-making

results were relatively poor. This distraction manifested itself in

the lower CPL of the gamma band and the lower GE of the delta

and theta bands.

In terms of local measures, the decision accuracy had

a significant negative correlation with the CC and LE of

the delta and theta bands in the midline region. Existing

studies have analyzed the associations between delta band,

theta band, and midline regions with decision-making and

cognitive processes, and have drawn some conclusions that

can be used to explain the results of our analysis. Studies

by Li et al. (2010), Jensen and Tesche (2002), and Massar

et al. (2014) indicated that theta oscillations (4-8 Hz) in the

frontal lobe are associated with different aspects of human

behavior (risk decision-making and risk learning). Cohen et al.

(2007) experimentally found that EEG responses to losses,

compared to wins, were associated with enhanced power and

phase coherence in the theta frequency band. Pinner and

Cavanagh (2017) also pointed out that the frontal midline

theta is not only a candidate mechanism for implementing

cognitive control, but is also sensitive to the inherent costs

therein. Wang et al. studied human brain activity during

reinforcement learning and demonstrated that theta and delta

oscillations reflect separable components of higher-level cue

processing prior to decision feedback. Feedback unavailable

cues were more likely to induce an increase in mid-posterior

delta power than feedback available cues after a decision (Wang

et al., 2016). Therefore, it is speculated that compared with

the group with higher decision accuracy, the group with lower

decision accuracy may be more sensitive to the loss in decision

task. The subjects’ higher sensitivity to loss feedback may be

reflected by higher CC and LE of the delta and theta bands

in the midline region, which means subjects are more anxiety

about loss.

In summary, the results of the global measures and local

measures suggest that the group with lower decision accuracy
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may reduce the attention of the decision task itself and be more

sensitive to loss feedback, which in turn affects the decision-

making results.

Conclusion and future work

In this paper, we designed a novel experimental task

to explore the influence of emotions on spatial decision-

making. During the experiment, we collected the subjective

and objective data of the subjects. The subjective data verified

the emotions were effectively stimulated. For the objective

data, three conclusions were drawn. Firstly, we observed three

similiar ERP microstates in the decision-making process under

different emotions by microstate analysis. Additionally, the

prefrontal, parietal and occipital lobes played key roles in

decision task. Secondly, we found that the P2 component

of the prefrontal lobe represents the influence of different

emotions on decision-making by ERP analysis. Among them,

positive emotion evoked the largest P2 amplitude compared

to negative emotions and no stimuli. Finally, we explores

graph metrics of brain network related to decision accuracy.

In terms of global measure, there is a significant negative

correlation between the decision accuracy and the GE of the

delta and theta bands, and CPL of the gamma band. In

terms of local measures, the decision accuracy has a significant

negative correlation with the CC and LE of the delta and

theta bands, and this effect is especially reflected in the

midline region.
Although this paper obtained some useful conclusions, it

still needs further improvement and refinement. Three key

regions (the prefrontal, parietal and occipital lobes) are found

in spatial decision task, but the role of these three regions in

the spatial decision task needs to be explored in more detail.

Positive emotion evokes the largest P2 amplitude compared to

negative emotions and no stimuli in spatial decision task, but

whether this conclusion is also applicable to other decision tasks

requires further analysis and exploration. Because of MFN and

FRN was strongly correlated with decision-making (Garrido-

Chaves et al., 2021; Si et al., 2021), the following research

will further analyze the difference of ERP components such as

MFN and FRN in decision-making under different emotions.

Finally, the metrics that significantly correlated with decision

accuracy can be further used to predict people’s decision-

making, and it needs us to establish classification model for

further analysis.

Data availability statement

The raw data supporting the conclusions of this

article will be made available by the authors, without

undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by Casia Human Subjects Research Application. The

patients/participants provided their written informed consent to

participate in this study.Written informed consent was obtained

from the individual(s) for the publication of any potentially

identifiable images or data included in this article.

Author contributions

YZ, DW, XW, and SC contributed to conception and design

of the study. YZ organized the database, performed the statistical

analysis, and wrote the first draft of the manuscript. All authors

contributed to manuscript revision, read, and approved the

submitted version.

Funding

This research is supported by the National Natural Science

Foundation of China under Grant Nos. 61872363 and 61672507,

the Natural Science Foundation of Beijing and Key project of

Science and Technology Plan of Beijing Municipal Education

Commission under Grant No. 21JD0044, the Strategic Priority

Research Program of Chinese Academy of Sciences, Grant No.

XDA27000000, the National Key Research and Development

Program under Grant No. 2016YFB0401202, and the Research

and Development Foundation of The Institute of Automation,

Chinese Academy of Sciences under Grant No. Y9J2FZ0801.

Acknowledgments

The authors give special thanks to all participants for their

assistance in carrying out this.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2022.989988
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fnins.2022.989988

References

Akbarian, B., and Erfanian, A. (2020). A framework for seizure detection using
effective connectivity, graph theory, and multi-level modular network. Biomed.
Signal Process. Control 59, 101878. doi: 10.1016/j.bspc.2020.101878

Alarcao, S. M., and Fonseca, M. J. (2017). Emotions recognition
using eeg signals: a survey. IEEE Trans. Affect. Comput. 10, 374–393.
doi: 10.1109/TAFFC.2017.2714671

Balconi, M., Angioletti, L., Siri, C., Meucci, N., and Pezzoli, G. (2018). Gambling
behavior in parkinson’s disease: impulsivity, reward mechanism and cortical brain
oscillations. Psychiatry Res. 270, 974–980. doi: 10.1016/j.psychres.2018.03.041

Berlucchi, G. (2014). Visual interhemispheric communication
and callosal connections of the occipital lobes. Cortex 56, 1–13.
doi: 10.1016/j.cortex.2013.02.001

Bordier, C., Nicolini, C., and Bifone, A. (2017). Graph analysis andmodularity of
brain functional connectivity networks: searching for the optimal threshold. Front.
Neurosci. 11, 441. doi: 10.3389/fnins.2017.00441

Causse, M., Dehais, F., Péran, P., Sabatini, U., and Pastor, J. (2013). The effects of
emotion on pilot decision-making: a neuroergonomic approach to aviation safety.
Trans. Res. C Emerg. Technol. 33, 272–281. doi: 10.1016/j.trc.2012.04.005

Charpentier, C. J., Aylward, J., Roiser, J. P., and Robinson, O. J. (2017). Enhanced
risk aversion, but not loss aversion, in unmedicated pathological anxiety. Biol.
Psychiatry 81, 1014–1022. doi: 10.1016/j.biopsych.2016.12.010

Cohen, M. X., Elger, C. E., and Ranganath, C. (2007). Reward expectation
modulates feedback-related negativity and eeg spectra. Neuroimage 35, 968–978.
doi: 10.1016/j.neuroimage.2006.11.056

Corcoran, K. A., Donnan, M. D., Tronson, N. C., Guzmán, Y. F., Gao, C.,
Jovasevic, V., et al. (2011). Nmda receptors in retrosplenial cortex are necessary for
retrieval of recent and remote context fear memory. J. Neurosci. 31, 11655–11659.
doi: 10.1523/JNEUROSCI.2107-11.2011

Cowansage, K. K., Shuman, T., Dillingham, B. C., Chang, A., Golshani, P.,
and Mayford, M. (2014). Direct reactivation of a coherent neocortical memory of
context. Neuron 84, 432–441. doi: 10.1016/j.neuron.2014.09.022

da Silva, F. L. (2013). Eeg and meg: relevance to neuroscience. Neuron 80,
1112–1128. doi: 10.1016/j.neuron.2013.10.017

Damasio, A. R. (2006). Descartes’ Error. New York, NY: Random House.

Davis, C. E., Hauf, J. D., Wu, D. Q., and Everhart, D. E. (2011). Brain function
with complex decision making using electroencephalography. Int. J. Psychophysiol.
79, 175–183. doi: 10.1016/j.ijpsycho.2010.10.004

Daw, N. D., and Doya, K. (2006). The computational neurobiology of learning
and reward. Curr. Opin. Neurobiol. 16, 199–204. doi: 10.1016/j.conb.2006.03.006

de Sousa, A. F., Cowansage, K. K., Zutshi, I., Cardozo, L. M., Yoo, E. J., Leutgeb,
S., et al. (2019). Optogenetic reactivation of memory ensembles in the retrosplenial
cortex induces systems consolidation. Proc. Natl. Acad. Sci. U.S.A. 116, 8576–8581.
doi: 10.1073/pnas.1818432116

Delorme, A., Makeig, S., Fabre-Thorpe, M., and Sejnowski, T. (2002).
From single-trial eeg to brain area dynamics. Neurocomputing 44, 1057–1064.
doi: 10.1016/S0925-2312(02)00415-0

Dixon, M. L., Thiruchselvam, R., Todd, R., and Christoff, K. (2017). Emotion
and the prefrontal cortex: an integrative review. Psychol. Bull. 143, 1033.
doi: 10.1037/bul0000096

Epstein, R. A., Patai, E. Z., Julian, J. B., and Spiers, H. J. (2017). The cognitive
map in humans: spatial navigation and beyond. Nat. Neurosci. 20, 1504–1513.
doi: 10.1038/nn.4656

Furlong, S., Cohen, J. R., Hopfinger, J., Snyder, J., Robertson, M. M., and
Sheridan,M. A. (2021). Resting-state eeg connectivity in young children with adhd.
J. Clin. Child Adolescent Psychol. 50, 746–762. doi: 10.1080/15374416.2020.1796680

Gao, X., and Maurer, D. (2009). Influence of intensity on children’s sensitivity
to happy, sad, and fearful facial expressions. J. Exp. Child Psychol. 102, 503–521.
doi: 10.1016/j.jecp.2008.11.002

Garrido-Chaves, R., Perez-Alarcón,M., Perez, V., Hidalgo, V., Pulopulos, M.M.,
and Salvador, A. (2021). Frn and p3 during the iowa gambling task: The importance
of gender. Psychophysiology 58, e13734. doi: 10.1111/psyp.13734

Giustiniani, J., Joucla, C., Bennabi, D., Nicolier, M., Chabin, T., Masse, C., et al.
(2019). Behavioral and electrophysiological arguments in favor of a relationship
between impulsivity, risk-taking, and success on the iowa gambling task. Brain Sci.
9, 248. doi: 10.3390/brainsci9100248

Gross, J. J., and Levenson, R. W. (1995). Emotion elicitation using films. Cogn.
Emot. 9, 87–108. doi: 10.1080/02699939508408966

Harlé, K. M., Chang, L. J., van’t Wout, M., and Sanfey, A. G. (2012).
The neural mechanisms of affect infusion in social economic decision-
making: a mediating role of the anterior insula. Neuroimage. 61, 32–40.
doi: 10.1016/j.neuroimage.2012.02.027
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