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Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds
of themeniscus remain incurable. Tissue-engineeredmeniscus strategies seem to offer a new approach for treatingmeniscus injuries
with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play
a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and
scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling
is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation.
Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical
role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to
design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as
well as other types of biological stimulation.

1. Introduction

Meniscus injuries are very common in athletes and middle-
aged and older people [1]. The blood supply and nerve
distribution to the meniscus are variable. The meniscus can
be subdivided into three areas: the inner white region, which
lacks a blood supply; the outer red region, which has a
blood supply; and the middle red–white region, which shows
transitional features. Meniscus injuries to the inner white

region or middle red–white region remain hard to repair [2].
Orthopedic surgeons usually use a partial meniscectomy to
treat thesemeniscus injuries.However, this inevitably leads to
osteoarthritis (OA) of the injured knee [3].Meniscus allograft
transplantation can overcome this dilemma to an extent.
However, there are some limitations to transplantation, such
as viral transmission, graft preservation, and mismatching
[4].
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The development of tissue engineering and regeneration
medicine provides a new avenue for meniscus repair. By
combining cells and scaffolds, we can form tissue-engineered
constructs. However, it is difficult to use these constructs
to repair the injury tissues. Biomechanical or biochemical
stimulation can enhance the maturation and remodeling of
these constructs. Hence, we usually regard the seed cells,
scaffolds, and biomechanical and biochemical stimulation
as the three indispensable elements of tissue engineering.
Meniscal fibrochondrocytes and stem cells are the two most
important kinds of seed cell [5]. They all play critical roles in
meniscus regeneration. Scaffolds can be roughly divided into
scaffolds derived from synthetic polymers or from biological
materials [5]. It is very hard to regenerate the injured tissue
solely with a combination of seed cells and scaffold. However,
biomechanical and biochemical stimulation can build a
bridge between the tissue-engineered construct and the func-
tional tissue. The biomechanical stimulation usually mimics
the native meniscus biomechanical microenvironment, such
as the compressive loading or tensile strength [6, 7]. However,
this review focuses on the effects of biochemical stimulation
of the tissue-engineered meniscus.

The most familiar biochemical stimulation is growth
factor (GF). The GFs used usually play a significant role
in normal limb development and growth [8–11]. They can
influence cell migration, proliferation, differentiation, and
apoptosis. When used for tissue regeneration, they may also
play important roles in tissue maturation and remodeling.
Finally, we summarize other forms of biological stimulation
that are used in the tissue-engineered meniscus.

2. Growth Factors and Gene Therapy for
Meniscus Tissue Engineering

Thedesirable properties and functions of the nativemeniscus
are largely dependent on the maintenance of the unique
extracellular matrix (ECM) and its structure, which is gen-
erally modulated by the anabolic and catabolic activities
of meniscal cells [74]. Growing evidence indicates that in
addition to genetic factors, growth factors play a key role
in the metabolic activity of fibrochondrocytes and further
affect development, homeostasis, and regeneration [75–78].
By binding to specific receptors on the target cell surface,
growth factors may initiate signal transduction cascades
and further affect cellular processes and metabolic activity.
Growth factors may promote meniscus repair and regen-
eration via multiple mechanisms, including recruitment of
fibrochondrogenic cells, enhancement of fibrochondrogenic
cell proliferation, and stimulation of ECM production. Thus,
local administration of growth factors may create a favorable
microenvironment and further promote meniscus repair.
Growth factors commonly used for meniscus and cartilage
regeneration are summarized in Table 1. Of the numerous
bioactive molecules, the most important and thoroughly
studied growth factors include the transforming growth
factor-𝛽 (TGF-𝛽) superfamily, basic fibroblast growth factor
(bFGF), and insulin-like growth factor-1 (IGF-1). The effects
of other growth factors, such as connective tissue growth

factor (CTGF), vascular endothelial growth factor (VEGF),
platelet-derived growth factor (PDGF), hepatocyte growth
factor (HGF), and platelet-rich plasma (PRP), on meniscus
regeneration have also been evaluated.

2.1.The TGF-𝛽 Superfamily. TheTGF-𝛽 superfamily consists
of more than 30 members and includes TGF-𝛽s, activins,
and bone morphogenetic proteins (BMPs) [79, 80]. Growth
factors from the TGF-𝛽 superfamily are involved in regulat-
ing various cellular processes, including cell survival, growth,
proliferation, migration, differentiation, and apoptosis, as
well as synthesis and degradation of the ECM [80–82]. TGF-
𝛽s and BMPs have been studied most extensively and have
shown great potential in the field of tissue engineering and
regenerative medicine over the past few decades [77]. Thus,
it is possible that local administration of these factors may
benefit functional meniscus regeneration.

2.1.1. TGF-𝛽s. There are three different isoforms of TGF-
𝛽 in mammals: TGF-𝛽1, TGF-𝛽2, and TGF-𝛽3 [83]. The
most thoroughly studied TGF-𝛽s in the musculoskeletal
system are TGF-𝛽1 and TGF-𝛽3 [77]. TGF-𝛽 is very effective
for stimulating collagen production and glycosaminoglycan
(GAG) synthesis bymeniscal cells [12, 14, 18, 19]. For example,
Pangborn and Athanasiou [13, 15] evaluated the effects of
four common growth factors (TGF-𝛽1, PDGF-AB, IGF-I,
and bFGF) on meniscal fibrochondrocyte ECM synthesis
in monolayers or in three-dimensional (3D) cultures. These
studies found that treatment with TGF-𝛽1 led to the greatest
amount of collagen and GAG production compared to other
growth factors. Similarly, Imler et al. [16] demonstrated that
TGF-𝛽1 was the most potent stimulator of both collagen and
GAG synthesis. In addition, a combination of TGF-𝛽1 and
chondroitinase ABC (C-ABC) improved the biochemical and
biomechanical properties of an agarose scaffold seeded with
bovine meniscus cells and articular chondrocytes [17, 18].
TGF-𝛽1 alsomarkedly increased the amount of alpha-smooth
muscle actin (𝛼-SMA) inmeniscal cells, which plays a crucial
role in the contraction of the collagen–GAG matrix [20].
Not only does TGF-𝛽 enhance ECM synthesis, but it also
blocks matrix degradation via downregulation of proteases
such as matrix metalloproteases (MMPs) or upregulation of
inhibitors of MMPs (TIMPs) [21, 22]. In addition, TGF-𝛽
is a chief anticatabolic agent counteracting the deleterious
effects of catabolic cytokines. For example, several studies
[21, 22, 84] have reported that TGF-𝛽may effectively suppress
the catabolic effectsmediated by interleukin (IL)-1 and tumor
necrosis factor (TNF)-𝛼, including the upregulation ofMMPs
(MMP-1, MMP-3, MMP-8, MMP-13, and MMP-14) and
downregulation of ECM-related genes. In addition, TGF-𝛽
may increase TIMP production [21].

In addition to regulating matrix metabolism, another
chief function of TGF-𝛽 in meniscus tissue engineering is
the recruitment, proliferation, and fibrochondrogenic differ-
entiation of mesenchymal stem cells (MSCs) [23, 24, 85].
In general, TGF-𝛽 plays a crucial role in chondrogenesis
[25, 86], and studies have revealed that TGF-𝛽3 has the
strongest chondrogenic effects of all isoforms [26, 87, 88].
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Table 1: Commonly used growth factors for cartilage and meniscus tissue engineering and regeneration.

Growth factor Cell types Culture conditions Findings Authors and
reference

TGF-𝛽1 Meniscal fibrochondrocytes Monolayer culture Increase collagen and GAG synthesis Tanaka et al. [12]
Pangborn and
Athanasiou [13]

TGF-𝛽 Meniscal fibrochondrocytes Monolayer/alginate
beads/explant culture Increase proteoglycan synthesis Collier and Ghosh

[14]

TGF-𝛽1 Meniscal fibrochondrocytes PGA scaffold culture Increase collagen and GAG synthesis Pangborn and
Athanasiou [15]

TGF-𝛽1 Meniscal fibrochondrocytes Meniscus explant
culture Increase collagen and GAG synthesis Imler et al. [16]

TGF-𝛽1 and
C-ABC

Cocultures of meniscal
fibrochondrocytes and
articular chondrocytes

Agarose scaffold
culture

Increase collagen synthesis and the
Young’s modulus and ultimate tensile

strength
MacBarb et al. [17]

TGF-𝛽1 and
C-ABC

Meniscal fibrochondrocytes
and articular chondrocytes

Agarose scaffold
culture

Enhance compressive and tensile
properties

Huey and
Athanasiou [18]

TGF-𝛽1 and HP Meniscal fibrochondrocytes PLLA scaffold culture Increase collagen and GAG deposition
and compressive properties Gunja et al. [19]

TGF-𝛽1 Meniscal fibrochondrocytes
and articular chondrocyte Monolayer culture Increase SMA content Zaleskas et al. [20]

TGF-𝛽1 Articular chondrocytes Explant culture
Reduce MMP-1, MMP-3, MMP-8, and

MMP-13 expression and induced TIMP-2
and TIMP-3 production

Hui et al. [21]

TGF-𝛽1 Articular chondrocytes Monolayer culture Suppress MMP-13, MMP-14 expression Takahashi et al. [22]

TGF-𝛽1 Human synovium-derived
stem cells Monolayer culture Enhance chondrogenic differentiation

and proliferation Kim et al. [23]

TGF-𝛽1 BMSCs Monolayer culture Enhances chondrogenic differentiation
and proliferation Jian et al. [24]

TGF-𝛽 MSCs Monolayer culture Induce chondrogenic differentiation
Augustyniak et al.

[25]—
Tang et al. [26]

TGF-𝛽1, TGF-𝛽2,
IGF-I

Dedifferentiated adult human
articular chondrocytes Monolayer culture Reexpress aggrecan and type II collagen

genes Yaeger et al. [27]

TGF-𝛽1 BMSCs Chitosan/gelatin
scaffolds culture

Promoted chondrogenic differentiation of
MSCs, cartilage matrix synthesis, repair

of rabbit cartilage defects
Diao et al. [28]

TGF-𝛽3 BMSCs

PLGA-
gelatin/chondroitin
sulfate/hyaluronic

acid hybrid scaffold in
rabbit

Enhance MSCs proliferation and
abundant ECM production, cartilage

regeneration
Fan et al. [29]

TGF𝛽3 None PCL-HA scaffold in
rabbit

Regenerate articular cartilage by homing
of endogenous cells Bochyńska et al. [30]

TGF𝛽3 and CTGF None PCL scaffold in sheep Lead to heterogeneous meniscus
regeneration Lee et al. [31]

BMP-2 Dedifferentiated articular
chondrocytes Monolayer culture Reverse chondrocyte dedifferentiation Gouttenoire et al.

[32]

BMP-2 None Intra-articular
injection in mice

Enhance matrix turnover in native and
IL-damaged cartilage Davidson et al. [33]

BMP-2 Articular chondrocytes
Solvent preserved
human meniscus
explant culture

Stimulate chondrocytes migration and
proliferation and enhance meniscus

repair
Minehara et al. [34]

BMP-7 Articular chondrocytes Monolayer culture Counteract chondrocyte catabolism
induced by proinflammatory cytokines

Elshaier et al. [35]
Huch et al. [36]

BMP-7 None Intra-articular
injection in sheep

Fill meniscal defect with cellular fibrous
tissue Forriol et al. [37]
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Table 1: Continued.

Growth factor Cell types Culture conditions Findings Authors and
reference

BMP-7 None Injection into Achilles
tendon in rats Regenerate meniscus-like tissue Ozeki et al. [38]

BMP-2/-4/-6 hBMSC Monolayer culture Enhance chondrogenic differentiation Sekiya et al. [39]

BMP-2/-4/-6/ -7
and CDMP-1/-2 Articular chondrocytes Alginate beads culture

BMP-7 are most potent in upregulating
proteoglycan production and counteract

catabolic activity mediated by IL-1

Chubinskaya et al.
[40]

BMP-7 and
TGF-𝛽1

Synovial mesenchymal stem
cells Pellet culture Enhance chondrogenesis from

synovium-derived MSCs Miyamoto et al. [41]

BMP-2/BMP-7,
TGF-𝛽1 Synovial tissue Agarose scaffold

culture
Enhance chondrogenic differentiation of

synovial explants
Shintani and
Hunziker [42]

bFGF Meniscal fibrochondrocytes Monolayer culture Enhance proliferation Hiraide et al. [43]
Kasemkijwattana et

al. [44]
bFGF Meniscal fibrochondrocytes PGA scaffold culture Enhance proliferation Stewart et al. [45]

bFGF Meniscal fibrochondrocytes Alginate scaffold
culture

Enhance proliferation and SMA
expression

Cucchiarini et al.
[46]

bFGF BMSCs Monolayer culture Enhance proliferation Sotiropoulou et al.
[47]

bFGF MSCs Monolayer culture Maintain the multilineage differentiation
potential of MSCs

Buckley and Kelly
[48]—

Martin et al. [49]

bFGF and hypoxia Meniscal fibrochondrocytes Three-dimensional
pellet culture Reexpress collagen type II and PGs gene Adesida et al. [50]

bFGF Intervertebral disc cells Monolayer and
alginate beads culture Suppress proteoglycan production Li et al. [51]

bFGF Articular chondrocytes Monolayer culture Suppress collagen type II and decorin
synthesis Sonal [52]

bFGF Articular chondrocytes Monolayer culture Upregulate MMPs, aggrecanases, nitric
oxide and superoxide anion expression

Muddasani et al.
[53]

bFGF Articular chondrocytes Alginate culture Antagonizes proteoglycan synthesis Loeser et al. [54]

bFGF Articular chondrocytes
Gelatin-chondroitin-
hyaluronan hybrid
scaffold culture

Repair with hyaline-like cartilage Deng et al. [55]

bFGF and hypoxia Meniscal fibrochondrocytes PLLA scaffold culture Enhance GAGs production and
compressive properties of constructs

Gunja and
Athanasiou [56]

bFGF and TGF-𝛽3 None Electrospun PCL
scaffolds culture

Improve meniscus repair and scaffold
integration Ionescu et al. [57]

IGF–1 Meniscal fibrochondrocytes Alginate scaffold
culture

Increase collagen and GAG synthesis as
well as mechanical properties Puetzer et al. [58]

IGF-1 Meniscal fibrochondrocytes Monolayer culture Enhanced proliferation and ECM
formation

Tumia and
Johnstone [59]

IGF-1 BMSCs Monolayer culture Modulate chondrogenic differentiation Longobardi et al.
[60]

IGF-1 Meniscal fibrochondrocytes Explant culture Stimulated cell migration Bhargava et al. [61]

IGF-1 BMSC (transfection of hIGF-1
gene)

Intra-articular
injection in goat

Promote the repair of full-thickness
meniscal defects Zhang et al. [62]

IGF-1 Articular chondrocytes
(transfection of hIGF-1 gene)

Polymerized
fibrinogen in equine

model
Enhance cartilage healing Goodrich et al. [63]

IGF-1 and TGF-𝛽1 BMSCs Three-dimensional
fibrin disk culture Enhance chondrogenic differentiation Worster et al. [64]

IGF-1 and TGF-𝛽1 None Explant culture Improve repair of meniscus avascular
zone Izal et al. [65]
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Table 1: Continued.

Growth factor Cell types Culture conditions Findings Authors and
reference

IGF–1, TGF-𝛽1,
bFGF Fibroblast-like synoviocytes PGA/PLLA scaffold

culture
Enhance collagen type II and aggrecans

expression Fox et al. [66]

IGF and BMP-7 Articular chondrocytes Monolayer culture Suppress MMP-13 expression Im et al. [67]

VEGF None VEGF-coated sutures
in a sheep Fail to promote meniscus healing Petersen et al. [68]

HGF Meniscal fibrochondrocytes
(transfection of HGF-1 gene) PGA scaffold in mice Induce blood vessel formation in

engineered constructs Hidaka et al. [69]

CTGF Meniscal fibrochondrocytes Fibrin glue in rabbits
model

Promote healing of meniscal defect in the
avascular zone He et al. [70]

CTGF None Hydrogel collagen
scaffold in rats model Enhance articular cartilage regeneration Nishida et al. [71]

PDGF-AB Meniscal fibrochondrocytes Monolayer culture Increase proliferation and matrix
formation

Tumia and
Johnstone [72]

PRP Meniscal fibrochondrocytes Gelatin hydrogel in a
rabbit model Promote meniscus repair Ishida et al. [73]

The synergistic effects of TGF-𝛽 and IGF-1 on the induction
of dedifferentiated articular chondrocytes from their original
phenotype were also observed [27]. Kulyk et al. revealed that,
in this process, TGF-𝛽 upregulates transcription factor SOX9
through the Smad pathway, followed by enhancement of car-
tilage gene expression, such as type II collagen and aggrecan.

Furthermore, several studies have demonstrated that
TGF-𝛽 supplementation can promote cartilage andmeniscus
repair and has promise for meniscus regeneration [28–
30]. For example, Lee et al. [89] investigated the potential
of anatomically correcting TGF-𝛽3-infused bioscaffolds for
articular cartilage regeneration. Histological and mechanical
results showed that TGF-𝛽3-infused bioscaffolds promoted
hyaline cartilage formation in the articular surface with
excellent mechanical properties similar to those of native
articular cartilage 4 months after implantation in a rabbit
model. Moreover, this study was the first to demonstrate that
TGF-𝛽3 stimulates articular cartilage regeneration through
the recruitment of endogenous stem or progenitor cells,
chondrogenic differentiation, and histogenesis and provided
evidence that complex tissues may regenerate by homing
of endogenous cells without cell transplantation. Similarly,
McNulty and Guilak [90] found that applying TGF-𝛽1
enhanced cellular accumulation and increased the shear
strength of the repaired tissue, which suggests that TGF-𝛽1 is
essential for cartilage integrity andmay be a potent alternative
for enhancing meniscal repair.

In general, TGF-𝛽 is likely to push cells toward a more
chondrocytic phenotype and to induce hyaline cartilage for-
mation. Freymann et al. [91] revealed that TGF-𝛽 enhanced
the production of specific cartilage and collagen type II
proteoglycans by mesenchymal or meniscus cells but did
not significantly increase the formation of type I collagen in
meniscus 3D micromass or scaffold cultures, which is the
main component of fibrocartilage tissue and plays a crucial
role in the tensile strength of the native meniscus. Because
the unique inhomogeneous feature of the meniscus presents
a tremendous challenge for total meniscus regeneration,

the use of various combinations of growth factors may
be a promising solution. Lee et al. [31] spatiotemporally
delivered a combination of CTGF and TGF-𝛽3 to regenerate
the meniscus in a sheep model. They demonstrated that
spatiotemporally delivered CTGF and TGF-𝛽3 could lead to
heterogeneous meniscus regeneration by inducing endoge-
nous stem/progenitor cells to differentiate and synthesize
zone-specific types I and II collagen.

However, several unfavorable side effects of TGF-𝛽1
treatment must be mentioned, such as induction of synovial
fibroplasias and fibrosis, stimulation of osteophyte formation,
and recruitment of inflammatory leukocytes [84, 92, 93]. For-
tunately, studies have reported that applying local inhibitors
of TGF-𝛽may help block these undesirable side effects [84].

2.1.2. Bone Morphogenetic Proteins (BMPs). BMPs also
belong to the TGF-𝛽 superfamily and play a crucial role
in bone and cartilage formation and repair [94–96]. They
share several functions with TGF-𝛽s and have potential
for meniscal regeneration [97]. The distinct and key func-
tion of BMPs is osteogenic differentiation of human MSCs
(hMSCs), but they are not restricted to bone and also induce
osteoblastic [98, 99], tenogenic [100], and chondrogenic [101]
differentiation of MSCs. For instance, a study examined the
capacity of BMP-2, BMP-4, and BMP-6 to promote chon-
drogenic differentiation of MSCs and encourage cartilage
formation in vitro. It found that BMP-2 is more effective
than others for chondrogenic differentiation of MSCs [39].
Gouttenoire et al. [32] reported the specific capability of
BMP-2 to reverse chondrocyte dedifferentiation by increasing
cartilage-specific collagen type II production in dedifferenti-
ated chondrocytes. In addition, Shintani and Hunziker [42]
evaluated the potential of BMP-2, BMP-7, and TGF-𝛽1 for
inducing chondrogenic differentiation of synovial explants.
In that study, all three growth factors induced chondrogenic
differentiation of synovialMSCs and enhanced the formation
of cartilaginous tissue. However, BMP-7 was more potent
and effective than the other growth factors in inducing



6 BioMed Research International

chondrogenesis. In addition, Miyamoto et al. [41] reported
that the effects of BMP-7 on chondrogenic differentiation of
MSCs were enhanced when it was combined with TGF-𝛽3.

BMPs have a clear role in modulating tissue homeostasis
and blocking degradation processes [102, 103]. Chubinskaya
compared the anabolic activity of BMPs (BMP-2, BMP-4,
BMP-6, and BMP-7) and cartilage-derived morphogenetic
proteins (CDMP-1 and CDMP-2) in human articular chon-
drocytes [40]. BMP-2, BMP-4, and BMP-7 were more potent
in upregulating proteoglycan production than the other three
growth factors, with the highest proteoglycan content on day
9 in the presence of BMP-7. Furthermore, under simulta-
neous treatment with IL-1𝛽 and the aforementioned growth
factors, only BMP-7 effectively antagonized the inhibition
of proteoglycan synthesis mediated by IL-1𝛽. Similar studies
have also demonstrated that BMP-7 effectively counteracted
chondrocyte catabolism induced by various proinflammatory
cytokines such IL-1, IL-6, IL-8, MMP-1, MMP-13, and TNF-𝛼
[35, 36, 67, 104].Theprominent proanabolic and anticatabolic
properties of growth factors are essential to their clinical
application, particularly under local inflammatory conditions
triggered by trauma, degenerative disease, or surgery. In
addition, BMP-7 increases matrix synthesis without stimu-
lating uncontrolled fibroblast proliferation and osteophyte
formation [105, 106]. It is interesting that BMP-2may enhance
matrix turnover in native and IL-damaged cartilage, as
evidenced by upregulated collagen type II and aggrecan
expression and increased aggrecan degradation, which sug-
gests that BMP-2 treatment may lead to a reparative response
in chondrocytes after cartilage injury or osteoarthritis [33].

BMPs effectively promote cartilage and osteochondral
regeneration [107, 108]. BMPs have also been evaluated for
their potential in meniscus repair and regeneration. For
example, Forriol et al. [37] investigated the effects of BMP-
7 treatment on meniscal defects in a sheep model. In that
study, defects were made in the avascular region of the
medial meniscus and treated with Putty� (control group)
or osteogenic protein-1 (OP-1) Putty, which contains BMP-7
(experimental group). After 12 weeks, meniscal defects in the
experimental groupwere filledwith cellular fibrous tissue that
connected both edges of the defects. In addition, Minehara et
al. [34] developed a chemotactic cell-seeding technique with
a solvent-preserved human meniscus scaffold to improve
meniscal repair. They found that rhBMP-2 stimulated chon-
drocyte migration and proliferation as well as proteoglycan
production throughout the meniscus tissue, which suggests
a potential application of rhBMP-2 as a chemokinetic factor
for loading into a scaffold for cartilage and meniscus tissue
engineering. In another study, theAchilles tendonwas treated
withBMP-7 and transplanted into a ratmeniscal defectmodel
[38]. After 12 weeks, regenerated meniscus-like tissue was
observed; this may effectively prevent cartilage degeneration.

In general, BMP-2 and BMP-7, which are approved by
the Food and Drug Administration (FDA) for clinical use,
have shown promising effects on chondrocyte differentiation,
ECM production, and fibrocartilaginous tissue regeneration.
Synergistic effects have been observed when BMP-7 is com-
bined with other growth factors such as IGF-1 and TGF-
𝛽1 [109], which suggests that the addition of these factors

may lead to greater improvements in meniscus repair and
regeneration.

2.2. Basic Fibroblast Growth Factor (bFGF). The fibroblast
growth factor (FGF) family is composed of 18 structurally
related signaling molecules [110, 111]. Basic FGF, also known
as bFGF, FGF2, or FGF-𝛽, is an important member of the
FGF family and is found in the cartilaginous matrix [78,
102, 112, 113]. The mitogenic effects of FGF on MSCs were
first reported by Oliver more than 27 years ago [114]. FGF
is a powerful mitogen for a variety of cell types, including
chondrocytes, fibrochondrocytes, osteoblasts, and adipocytes
[102]. Numerous studies [45, 115, 116] have demonstrated the
strong stimulating effects of bFGF on meniscal cell prolifer-
ation in monolayer cultures as well as in tissue-engineered
constructs. For example, one study [44] evaluated the effects
of nine growth factors (EGF, NGF, IGF-1, TGF-𝛼, TGF-𝛽, a-
FGF, b-FGF, PDGF-AA, and PDGF-AB) on meniscal fibro-
chondrocyte proliferation in amonolayer culture. EGF, bFGF,
TGF-𝛼, and PDGF-AB stimulate cell proliferation, with bFGF
having the greatest effect. Cucchiarini et al. [46] investigated
the effects of bFGF on proliferation and metabolic activities
of meniscal cells using a gene-based approach in which
bFGF was vectored with a recombinant adeno-associated
virus; increased cell proliferation and alpha-smooth muscle
actin (𝛼-SMA) expression were observed. Sotiropoulou et
al. [47] also demonstrated that adding bFGF to culture
media enhanced the proliferative capacity of hMSCs. In
addition, FGF maintains the multilineage differentiation
potential of MSCs during proliferation, including chondro-
genic, osteogenic, adipogenic, and neurogenic differentiation
[48, 49, 117, 118].

Monolayer expansion may result in loss of expression of
collagen type II and matrix-forming phenotypes of meniscal
cells. However, Adesida et al. [50] demonstrated the ability
of bFGF to restore the chondrogenic phenotype of passaged
meniscal cells based on reexpression of collagen type II and
proteoglycan at both the gene and protein levels. In that
study, supplementation with bFGF upregulated expression of
collagen type II 200-fold in subsequent 3D pellet cultures.
Moreover, this favorable effect was further enhanced under
5% oxygen culture conditions.

The specific role of bFGF in anabolic and catabolic
processes remains controversial. Studies have demonstrated
the capacity of bFGF to stimulate the anabolic activity
of cartilage and meniscus [13]. For example, Tumia and
Johnstone [115] demonstrated that meniscal cells from all
zones responded positively to bFGF supplementation by
enhancing DNA synthesis and ECM formation. Cheng et al.
[119] also demonstrated that bFGF boosted the kinetics of
MSC chondrogenesis, resulting in faster differentiation and
leading to enhanced ECM accumulation. However, several
studies [16, 51] revealed that bFGF was the least effective
stimulator of both protein and proteoglycan production. In
addition, Loeser et al. [54] reported that bFGF had dramatic
antagonistic effects on proteoglycan accumulation promoted
by IGF-1 and/or BMP-7. bFGF is also an antagonist of
collagen type II and decorin production induced by IGF-1
and TGF-𝛽 in porcine articular chondrocytes [52]. Moreover,
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some evidence suggests that bFGF leads to the upregulation
of MMPs and aggrecanases and increases reactive oxygen
species such as nitric oxide (NO) and the superoxide anion
[53]. The role of two members of the FGF family, FGF-2 and
FGF-18, in cartilage homeostasis was evaluated by Ellman et
al. [120, 121], who concluded that bFGF is a catabolicmediator
in human cartilage via increased matrix-degrading enzyme
activity and decreased ECM production, whereas FGF-18 is
likely an anabolic regulator in human articular chondrocytes,
enhancing ECM formation and chondrogenic differentiation
and inhibiting cell proliferation.

Despite its controversial effects on cartilage homeostasis,
the effects of bFGF on tissue regeneration and repair were
investigated and revealed positive results [43, 55, 122, 123].
Deng et al. [55] developed gelatin microspheres in com-
bination with controlled-release bFGF for cartilage repair
in a rabbit model. Histological results showed that defects
were filled with hyaline-like cartilage after 24 weeks, which
indicates the great potential of a bFGF-loaded scaffold for
promoting cartilage regeneration. In another study [56],
meniscal cells were cultured on poly L-lactic acid (PLLA)
scaffolds with bFGF under hypoxic conditions. After 4 weeks,
histological results demonstrated synergic effects of hypoxia
and bFGF on enhancing GAG production and compressive
properties of tissue-engineered meniscus constructs in vitro.
In addition, Ionescu et al. [57] investigated the effects of
bFGF as a promitotic manager and TGF-𝛽3 as a promatrix
formation manager on meniscus repair and integration with
electrospun polycaprolactone (PCL) scaffolds. This study
biochemically, histologically, and mechanically showed that
short-term delivery of bFGF or sustained delivery of TGF-
𝛽3 enhanced integration for bovine meniscus tissues, which
suggests that both bFGF and TGF-𝛽3 have the potential to
promote meniscus repair.

Miyakoshi et al. [124] reported that local administration
of bFGF led to inflammatory responses and osteophyte
formation in a rabbit model. bFGFwas also closely associated
with synovial proliferation and hyperplasia in rheumatoid
arthritis joints [120]. Given the potentially deleterious effects
and controversial role of bFGF in articular development,
the use of bFGF for meniscus repair and regeneration must
be further explored. Although there is less literature on the
role of FGF-18 in meniscus repair, it has shown promising
anabolic effects on chondrocytes [121, 125]. More detailed
studies are necessary to define the exact effects of FGF on
meniscal cells, explants, and engineered constructs and to
provide evidence for meniscus regeneration.

2.3. Insulin-Like Growth Factors (IGFs). Two distinct forms
of IGFs, IGF-1, and IGF-2 play a pivotal role in tissue
metabolism [126]. IGF-1 is a vital anabolic growth factor of
cartilaginous tissue under normal conditions and has been
studied most in cartilage and meniscus tissue engineering
[67, 127]. In general, IGF-1 enhances anabolic effects and
inhibits catabolic responses. Puetzer et al. [58] explored the
effects of IGF-1 on themechanical and biochemical properties
of meniscal constructs. After 4 weeks, IGF-1 treatment led to
a 26-fold increase in GAG production, a 10-fold increase in

collagen production, and a 3-fold increase in the equilibrium
modulus of engineered meniscal constructs compared to 0-
week controls, providing evidence for IGF-1 as a potential
treatment inmeniscal regeneration. Amixture of bFGF, TGF-
𝛽1, and IGF-1 elevates expression of collagen type II and
aggrecans in fibroblast-like synoviocytes in vitro [66]. In
another study [59], IGF-1 applied to monolayer cultures for
48 h enhanced fibrochondrocyte proliferation and formation
of ECM in all zones of the meniscus. What is interesting is
that the meniscal cells from the avascular region responded
more favorably than those from the vascular region. This
indicates that fibrochondrocytes from avascular meniscal
tissue are able to express their intrinsic potential to regenerate
when exposed to suitable growth factors. In addition, IGF-1
effectively decreases expression of aggrecanase-1 and reduces
the release of degrading molecules such as MMPs [67]. For
example, Im et al. [67] demonstrated the prominent suppres-
sive effects of the combination of IGF-1 and BMP-7 onMMP-
13 expression: IGF-1 and BMP-7 decreased inflammatory
cytokine expression and/or their intermediate gene products.
However, chondrocyte responsiveness to IGF-1may diminish
with age and under conditions of inflammation due to
overexpression of IGF binding proteins [128–131]. BMP-7
seems attractive for counteracting these effects because of
its robust anticatabolic actions. Therefore, synergistic effects
resulting in enhanced ECM production were observed when
BMP-7 and IGF-I were used in combination [109, 132].

Apart from its anabolic effects on cartilaginous tissue,
IGF-1 promoted the chondrogenic differentiation of MSCs,
which may be further enhanced when combined with TGF-
𝛽1 [60, 64]. IGF-1 also stimulated cell migration in specific
regions of themeniscus [61]. Together, these findings support
the regenerative potential of IGF for cartilage and meniscus
tissue engineering. Zhang et al. [62] studied the ability of
human IGF-1- (hIGF-1-) meshed bone marrow stromal cells
(BMSCs) to promote the repair of full-thickness meniscal
defects and found that defects were completely filled with
white tissue 16 weeks after treatment in a goat model that was
histologically and biochemically similar to normal meniscal
fibrocartilage. In another study, Goodrich et al. [63] investi-
gated the ability of chondrocytes modified by an adenovirus
vector encoding equine IGF-1 to enhance cartilage healing
in an equine model. Histological results showed that defects
were filled with a more hyaline-like tissue at 8 months,
whereas control defects were coveredwith irregular andmore
fibrous tissue. Izal et al. [65] also reported that treatment
with TGF-𝛽1 and IGF-1 in combination improved repair
of the meniscus avascular zone by enhancing meniscal cell
proliferation and tissue attachment.

2.4. Other Growth Factors and Small Bioactive Molecules. In
addition to the aforementioned growth factors, other growth
factors, such as CTGF, VEGF, PDGF, HGF, and PRP, have
been studied for their ability to improve meniscal repair
and regeneration. Inducing angiogenesis may be essential
to enhancing the healing capacity of the meniscus tissue.
Thus, VEGF seems to be attractive for improving meniscus
repair by stimulating angiogenesis. However, Petersen et
al. [68, 133] demonstrated that VEGF failed to promote
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healing in the meniscus in a sheep meniscal longitudinal
injury model treated with VEGF-coated sutures. In addition,
HGF induces blood vessel formation in engineered meniscal
fibrochondrocyte-polyglycolic acid (PGA) constructs with-
out increasing any mechanical properties [69]. The effects of
CTGF were also assessed. He et al. [70] studied the reparative
effects of CTGF on enhancingmeniscal repair in themeniscal
avascular zone in a rabbit model and demonstrated that
CTGF might promote healing of defects by stimulating ECM
deposition within the repair zone. Nishida et al. [71] also
reported that CTGF-hydrogel collagen scaffolds enhanced
articular cartilage regeneration in a rat model. PDGF also
enhanced wound healing and ECM production as well as cell
proliferation; thus, it was believed to be capable of enhancing
tissue regeneration and repair [126]. Tumia and Johnstone
[72] investigated the capacity of PDGF-AB to improvemenis-
cal tissue regeneration in all three zones of the meniscus
and found that it enhanced fibrochondrocyte proliferation
and new matrix formation, which suggests that PDGF may
be of benefit in meniscus regeneration. PRP is the source
of multiple growth factors, including TGF-𝛽, PDGF, VEGF,
IGF-1, bFGF, and EGF [73, 134]. Because growth factors are
effective in meniscal healing, PRP may be a potent agent
for meniscal repair. PRP promoted cartilage regeneration by
increasing ECM content in a rabbit model [134]. Ishida [73]
also demonstrated the ability of PRP to encourage matrix
deposition and proliferation of meniscal cells in a monolayer
culture, histologically enhancing the healing of meniscal
defects with tissue that resembled the inner region of the
meniscus in a rabbit model. However, Zellner et al. [135]
reported no improvements in the healing of a meniscus
defect after treatment with PRP-loaded hyaluronan-collagen
composite matrices.

Several small bioactive molecules, such as kartogenin
(KGN), aptamer, Y-27632, and E7 peptide, have also attracted
great interest and shown promising results in cartilage and
meniscus regeneration. For example, Huang et al. [136]
reported that KGN not only promoted chondrogenic dif-
ferentiation of tendon stem cells in vitro but also enhanced
meniscus-like tissue formation in a rabbit model. Hu et al.
[137] demonstrated that an aptamer-bilayer scaffold could
specifically recognize and bind with MSCs, while efficiently
recruiting them to enrich the MSCs around the osteochon-
dral defect, successfully achieving osteochondral regener-
ation. A biphasic scaffold functionalized with E7 peptide
was also demonstrated to enhance cartilage regeneration via
the specific homing of endogenous stem cells [138]. The
rho-kinase inhibitor Y-27632 also favors the differentiation
of chondroprogenitors and prevents the dedifferentiation of
articular chondrocytes [139, 140].

2.5. Gene Therapy. Gene therapy is a novel approach to
meniscus tissue engineering that aims to transfer specific
genes into an organism or tissue using viral or nonviral
vectors or direct injection [102, 141]. Because growth factor
concentration gradients and the duration of treatment may
play a crucial role in meniscus repair, an important aspect
of growth factor treatment is their delivery, given their short
biological half-life and rapid clearance potential. To achieve

controlled and extended growth factor release, gene transfer
techniques may be favored for the local administration of
specific factors. The major advantage of gene therapy is high-
concentration delivery and persistent expression of these
growth factors at the repair site [141–144]. A variety of
vectors are currently used for gene transfer in meniscus
tissue engineering, including nonviral vectors, adenoviral
vectors, retroviral/lentiviral vectors, herpes simplex virus
(HSV) vectors, and recombinant adeno-associated virus
(rAAV) vectors. Each exhibits specific characteristics [46, 62,
69, 145–149]. In general, nonviral vectors are safe because
of their lack of inherent replication capability, but their
lower efficiency limits their widespread application [150, 151].
Adenoviral vectors are characterized by high transduction
efficiency and a low risk of carcinogenesis, but they are
immunogenic and fail to maintain long-term transgene
expression [147, 152, 153]. Retroviral/lentiviral vectors permit
prolonged transgene expression by integrating into the host
cell genome. Although retroviral vectors only transduce
actively replicating cells, this obstacle can be overcome with
the application of lentiviral vectors, which are most effective
for transduction in nondividing cells [153–156]. However,
the potential for insertional mutagenesis and tumor gene
activation makes them unattractive candidates for clinical
application. The advantage of HSV vectors is their ability
to deliver long transgenes and a relatively high level of
transduction efficiency in nondividing cells. Nevertheless,
several studies have revealed that they are toxic and mediate
only short-term transgene expression [154]. rAAV vectors
are promising gene vehicles because they not only exhibit
high transduction efficacy in both dividing and nondividing
cells but also allow for long-term transgene expression [46,
148, 149, 154, 157]. In addition, these vectors demonstrate
fewer immunogenic effects and are not pathogenic. All of
these features make them an attractive choice for tissue
engineering. Currently, there are two primary methods of
gene transfer: direct injection of a gene into the target tissue
and implantation of a genetically modified cell into the body.
Numerous experiments have shown the feasibility of gene
transfer to several tissues of themusculoskeletal system.Thus,
gene transfer of regenerative factors appears to be a promising
option for promoting meniscal repair and regeneration.

To date, only a few studies have used gene therapy
strategies for meniscus tissue engineering. Growth factors
used for gene transfer, including TGF-𝛽1, HGF, and bFGF,
have demonstrated the potential to enhance meniscus repair
and regeneration. For example, bFGF vectored with rAAV
enhanced cell proliferation, cell survival, and 𝛼-SMA expres-
sion in human meniscal fibrochondrocytes in vitro. This
study demonstrated the feasibility of gene transfer for aiding
in the repair of meniscal defects [158]. In another study [149],
human meniscal fibrochondrocytes modified using a TGF-𝛽
rAAV enhanced cell proliferation and matrix synthesis. The
TGF-𝛽 rAAV vectors were injected directly into the defects
in meniscal explants and promoted repair of the meniscus
lesions. In addition, meniscal cells and MSCs transduced
with adenoviral vectors encoding TGF-𝛽1 and seeded type
I collagen–GAG matrices were transplanted into the injured
avascular region of bovine menisci. After 3 weeks of in vitro
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culture, the constructs showed enhanced cellularity, collagen
and proteoglycan production, and repair of the meniscal
lesions with new tissue [147]. Previously, we also mentioned
a study in which BMSCs with the transfected hIGF-1 gene
were mixed with calcium alginate gel and aided in the repair
of meniscus defects [151]. In general, gene therapy has the
potential to enhance meniscus repair and regeneration, but
more work is needed to identify the best candidate genes and
ideal combinations of genes for meniscus regeneration.

2.6. Other Types of Biological Stimulation. Because a lack of
blood supply creates a hypoxic environment in the inner
region of the meniscus, scientists have attempted to mimic
this environment in in vitro cultures to restore a differentiated
phenotype. For example, Adesida et al. [50] demonstrated
that low oxygen tension may enhance the matrix-forming
phenotype of meniscal cells. Meniscal cells from the inner
and outer regions responded differently to hypoxia culture.
Indeed, cells from the outer meniscus showed greater sen-
sitivity to lowered oxygen tension than cells from the inner
meniscus. The response of meniscal cells to hypoxia was
mediated by transcription factor hypoxia inducible factor-
1𝛼 (HIF-1𝛼), which may play a crucial role in determining
the phenotype of inner meniscus cells [159]. Additive and
synergistic effects of bFGF and hypoxia were also found on
the enhancement of GAG accumulation and the compressive
properties of engineered meniscus constructs in vitro [56].

Coculture systems have also been used for meniscus
tissue engineering. Gunja and Athanasiou [160] used cocul-
tures of second-passage meniscus cells and primary articular
chondrocytes at varying ratios (100 : 0, 75 : 25, 50 : 50, 25 : 75,
and 0 : 100) to enhance the biochemical and biomechanical
properties of engineered constructs. Coculture systemswith a
higher percentage of chondrocytes led to significantly greater
production of collagen type I, collagen type II, and GAG
as well as compressive properties, whereas constructs with
a higher percentage of meniscus cells resulted in a greater
collagen type I content.This study illustrates that it is possible
to achieve matrix content and mechanical properties close to
native values of the meniscal inner and outer regions using
a variety of coculture ratios. In another study, Cui et al. [161]
investigated the use of coculture systems of human meniscal
cells with MSCs at different ratios (100 : 0, 75 : 25, 50 : 50,
25 : 75, and 0 : 100) formeniscus tissue engineering and regen-
eration. The 75% meniscal cell/25% MSC coculture system
showed optimal meniscus ECM production and the lowest
hypertrophic expression of MSC genes such as COL10A1
and MMP13 during chondrogenic differentiation. This study
indicates that coculture of meniscal cells with MSCs has the
potential to expand the limited supply of meniscal cells with
enhanced ECM production without hypertrophy.

3. Conclusion, Challenges,
and Future Perspectives

Currently, there is no ideal treatment for the meniscus
injuries. Tissue engineering is an attractive and promising
strategy for repairing or regenerating the meniscus defects.

However, regeneration of the functionally engineered menis-
cus remains challenging because of its complicated struc-
ture and functions. This review clearly demonstrates that
biochemical stimulus plays a crucial role in the repair and
regeneration of the engineered meniscus. There seems to
be great potential for growth factors loading to promote
regeneration of the engineered meniscus.

Individual growth factors are potent stimulators and have
significant effects on many cellular processes, such as cell
proliferation, differentiation, andmetabolic activity, as well as
meniscus repair and regeneration. Numerous experimental
studies have demonstrated the synergistic effects of combina-
tions of growth factors on meniscus repair and regeneration.
Future investigations are warranted to explore the effects on
meniscus tissue engineering of small bioactive molecules,
which have already been shown to promote cartilage regener-
ation.The design of a good growth factor application strategy
needs to consider the spatiotemporal specificity of meniscus
regeneration. Nevertheless, it is easier than ever to achieve
a spatial-specific growth factors distribution using a 3D
printing approach. It is also important to develop a sequential
release model for multiple growth factors that mimics cell
migration and proliferation in the early regeneration stage,
differentiation in the middle regeneration stage, and tissue
remodeling in the final maturation stage. Gene therapy
approaches may help to achieve this in the future.

Physical mechanical loading also plays a vital role in the
development, remolding, and regeneration of the meniscus.
The combination of mechanical stimulation and growth fac-
tors may yield great benefits for meniscus tissue engineering
in the future.
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