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Summary
The 1000 Genomes Project (TGP) is a foundational resource that serves the biomedical community as a standard reference cohort for

human genetic variation. There are now seven public versions of these genomes. The TGP Consortium produced the first by mapping

its final data release against human reference sequence GRCh37, then ‘‘lifted over’’ these genomes to the improved reference sequence

(GRCh38) when it was released, and remapped the original data to GRCh38 with two similar pipelines. As best-practice quality valida-

tion, the pipelines that generated these versions were benchmarked against the Genome In A Bottle Consortium’s ‘‘platinum quality’’

genome (NA12878). The New York Genome Center recently released the results of independently resequencing the cohort at greater

depth (303), a phased version informed by the inclusion of related individuals, and independently remapped the original variant calls

to GRCh38. We performed a cross-comparison evaluation of all seven versions using genome fingerprinting, which supports ultrafast

genome comparison even across reference versions. We noted multiple issues, including discrepancies in cohort membership, disagree-

ment on the overall level of variation, evidence of substandard pipeline performance on specific genomes and in specific regions of the

genome, cryptic relationships between individuals, inconsistent phasing, and annotation distortions caused by the history of the refer-

ence genome itself. We therefore recommend global quality assessment by rapid genome comparisons, alongside benchmarking as part

of best-practice quality assessment of large genome datasets. Our observations also help inform the decision of which version to use, to

support analyses by individual researchers.
Introduction

Since its initial release, the 1000 Genomes Project (TGP)1

has served its intended purpose as the standard reference

for human genetic variation in population structure ana-

lyses, genotype imputation efforts, association studies,

evaluations of gene annotation, and efforts to improve

the reference genome itself, among many other applica-

tions.2 Since its release in 2013, most analyses of the TGP

cohort have relied on the phase 3 final data release version,

which includes estimated variation in 2,504 individuals

mapped onto version GRCh37 (hg19) of the human refer-

ence genome. These individualswere sampled from26pop-

ulations in five continent-level regions (Africa, East Asia,

SouthAsia, Europe, and theAmericas). Genotypes for all in-

dividuals were estimated based on a combination of low-

coverage whole-genome sequencing (WGS), deep exome

sequencing, and high-density single-nucleotide polymor-

phism (SNP) microarrays. The resulting variant calls

included phased biallelic and multiallelic SNPs, indels,

and structural variants, with high power to detect variants

with alleles of at least 5% frequency (75%–95% depending

on population)1. For the purpose of comparing variation in

the same individuals relative to different reference se-

quences, we hereafter refer to this phase 3 dataset as TGP37.

Not longafter the initial releaseof TGP37, anewandmuch

improved version3 of the human reference sequence,

GRCh38 (hg38), was released, prompting efforts to express

this standard set of variation data relative to this new refer-

ence. In 2015, the subset of TGP37 variants with reference
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SNP ID numbers (rsids)4 were translated (via liftOver) to

GRCh38 coordinates, yielding a version of the variation

reference set we will call TGP38L (L for lifted). In 2017, the

raw genomic sequence reads were mapped5 onto GRCh38

to support ‘‘native’’ variant calling.6 Two versions of these

variant calls have been released to date via the International

Genome Sample Resource (IGSR).7 The first, released in late

2018, is restricted to biallelic single-nucleotide variants

(SNVs);we call this versionTGP38S (S for SNVs). The second,

released in early 2019, includes both biallelic SNVs and in-

dels; we refer to this extended dataset as TGP38X (X for

extended). Also in early 2019, a new set of high-coverage

whole-genome sequences were produced by the New York

Genome Center (NYGC) and released via the European

Nucleotide Archive (accession: PRJEB31736) and IGSR; we

refer to this set as TGP38H (H for high coverage).8 This new

set was later (May 2020) enhanced by the addition of the

genomes of 698 related individuals, leading to improved

phasing;we refer to this improvedset (limited to just theorig-

inal 2,504 individuals in TGP) as TGP38N (N for new). The

NYGC also remapped the original variant calls in TGP37 us-

ing CrossMap,9 yielding the version we call TGP38C (C for

crossmap). We anticipate that one of these versions will

soon become the new standard reference version of the

human genetic variation in the TGP cohort. As such, it is

important to evaluate the quality of each of these genome

sets, to enable researchers to choose the most appropriate

version to support their specific research questions.

Despite the intent to include only unrelated individuals

in the TGP cohort,10 a number of close and more distant
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Table 1. Overview of datasets

TGP version TGP37 TGP38L TGP38C TGP38S TGP38X TGP38H TGP38N

Reference GRCh37 GRCh38 GRCh38 GRCh38 GRCh38 GRCh38 GRCh38

Individuals 2,504 2,504 2,504 2,503 þ 45 2,503 þ 45 2,504 2,504

Relateds 31 - - 150 150 - 698

Data type exþWGS exþWGS exþWGS exþWGS exþWGS 303 WGS 303 WGS

Method map, call liftOver CrossMap map, call map, call map, call map, call

File format VCFv4.1 VCFv4.1 VCFv4.1 VCFv4.3 VCFv4.3 VCFv4.2 VCFv4.1

Size (gigabytes) 15.8 16.2 16.3 12.9 14.2 1241.4 32.3

Autosomes 1-22 1-22 chr1-chr22 chr1-chr22 1-22 chr1-chr22 chr1-chr22

Sex chroms X, Y X, Y chrX, chrY chrX X chrX, chrY chrX

Mitochondrial MT - - - - chrM -

SNVs included all all all biallelic biallelic all all

Indels included all all all none biallelic all all

Multiallelic single line single line multiline - - single line multiline

Variants with rsids 48.3% 100% 99.9% 0% 0% 0% 0%

Phased yes yes yes yes yes no yes

exþWGS, exome plus low-coverage WGS.
relationships exist within TGP37, as reported by us and

others.11 TGP37 is supplemented with a small set of 31

related individuals, which we call TGP37r (r for related).

Likewise, a set of 150 related samples accompanies

TGP38S and TGP38X, and we refer to these in turn as

TGP38Sr and TGP38Xr. Finally, we refer to the aforemen-

tioned 698 genomes accompanying TGP38N as TGP38Nr.

Beyond the method by which they were produced, the

seven versions of the TGP dataset differ in several ways (Ta-

ble 1). The number of individuals included in each differs.

All versions use the Variant Call Format (VCF) to represent

the data, but they use different versions of VCF; represent

chromosomes in different ways, include varying subsets of

the sex and mitochondrial chromosomes, and include

different combinations of SNVs, indels, and biallelic or

multiallelic variants. The number of variants reported for

each individual can vary significantly. Two of the versions

(TGP38C and TGP38N) represent multiallelic variants in

multiple lines, a format that may be unexpected to many

researchers and may confuse analysis tools, requiring

variant normalization for proper analysis. The various ver-

sions also differ in their level of inclusion of variant iden-

tifiers (rsids), and whether variants are phased or not. On

a very practical level, they also differ substantially in the

total size of the dataset to be downloaded for local analysis.

Given the importance of this high-impact reference set

of human variation, validating the quality of each release

is a crucial concern. TGP37 data were evaluated by

comparing variant calls for one individual per population

with calls based on 303 PCR-free sequence data, and by

comparison with 473 sequence using Complete Genomics

technology.1 TGP38S data quality was evaluated prior to
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release by comparing variant calls for the NA12878 indi-

vidual with ‘‘truth set’’ calls from the Genome In A Bottle

(GIAB) Consortium.6,12–14 At least two independent

studies of TGP data quality have also been reported. A

study of the array genotypes for 2,318 TGP samples found

the data to be, in general, of high quality, although some

discrepancies were found between reported and inferred

sex or in degree of relationship for some samples.15 More

recently, a study found that phasing and imputation for

rare variants are unreliable, based on comparison with

haplotypes of 28 individuals, experimentally phased using

a different sequencing technology.16

The availability of multiple versions of the same dataset

enables a different type of quality control (QC): cross-com-

parison among the versions, which supports identification

of version-specific results and data processing failures

throughout the cohort, themajority of which is not assessed

by benchmarking of results against a small subset of high-

quality genomes. A cross-comparison between phase 1 and

phase 3 data identified nearly 2 million SNPs present in the

former but absent in the latter, which could be explained

by differences in the samples included, the sequence data

type, the variant-calling pipelines, and the reference

used.17 Cross-comparison was also used to evaluate SNV, in-

del, and structural variant (SV) calls in TGP38N against the

original TGP phase 3 callset, which required lifting over var-

iants from the GRCh37 reference (TGP37) to GRCh38

(TGP38C), as a direct comparison across references was not

deemed possible.8

Cross-comparisons can be performed very efficiently

using reduced genome representations, including genome

fingerprints.11 Here, we use genome fingerprints and



some additional statistics to compare the seven versions

of the TGP (TGP37, TGP38L, TGP38C, TGP38S, TGP38X,

TGP38H, and TGP38N) and their associated related samples

(TGP37r, TGP38Sr, TGP38Xr, and TGP38Nr), in terms of (1)

the set of genomes analyzed, (2) known and cryptic related-

ness within each cohort, (3) patterns of SNV and genotype

concordance between versions, and (4) phasing concor-

dance. We then seek explanations for the results of these

comparisons with a limited set of rapid follow-up studies.
Material and methods

Datasets
We obtained seven versions of the 1000 Genomes dataset, phase 3,

from IGSR.7

TGP37

Variant calls relative to the GRCh37 (hg19) version of the human

genome reference (N ¼ 2,504).

TGP38L

Variant calls for the same set of genomes, lifted over to the

GRCh38 (hg38) version of the human reference using dbSNP v.

149 (N¼ 2504). This versionwas later withdrawn (inMarch 2021).

TGP38C

Variant calls for the same set of genomes, crossmapped to the

GRCh38 (hg38) version of the human reference using CrossMap

(N ¼ 2,504).

TGP38S

A set of integrated phased biallelic SNV calls, directly called against

the GRCh38 (hg38) version of the human reference (N ¼ 2,548).

TGP38X

An extended set of integrated phased biallelic SNV and indel calls,

directly called against the GRCh38 (hg38) version of the human

reference (N ¼ 2,548).

TGP38H

A high-coverage (303) set of recalibrated SNV and indel calls, pro-

duced by the NYGC, directly called against GRCh38 with alterna-

tive sequences and decoys (N¼ 2504) - EuropeanNetwork Archive

Project PRJEB31736.

TGP38N

A high-coverage (303) set of recalibrated SNP and indel calls, pro-

duced by the NYGC, directly called against GRCh38 with alterna-

tive sequences and decoys (N¼ 2504), and phased in combination

with 698 related individuals: European Network Archive Study

ERP114329, Project PRJEB31736. We downloaded VCF files

including all 3,202 genomes, and split them into 2,504 main,

and 698 relateds, for further analysis.

We also obtained four sets of genomes of samples related to

those in the main TGP dataset.

TGP37r

Integrated phased biallelic SNVand indel calls, relative to GRCh37

(N ¼ 31).

TGP38Sr

Integratedphasedbiallelic SNVcalls, relative toGRCh38 (N¼150).

TGP38Xr

Integrated phased biallelic SNVand indel calls, relative to GRCh38

(N ¼ 150).

TGP38Nr

Integrated phased SNV and indel calls, relative to GRCh38

(N ¼ 698): European Network Archive Study ERP120144, Project

PRJEB36890.
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Variant normalization
We normalized the variants in TGP38C and TGP38N using the

bcftools norm -mþ command.18

Whole-genome fingerprinting
We previously described an algorithm for computing ‘‘finger-

prints’’ from genome data.11 In brief, fingerprints are locality-sen-

sitive hashes that only need to be computed once per genome, not

once per comparison, and can be rapidly compared with deter-

mine whether two genome sequences are derived from the same

individual, closely related individuals, or unrelated individuals.

Fingerprints represent collections of local microhaplotypes by en-

coding consecutive pairs of SNVs in terms of their alleles and rela-

tive distance, mitigating most issues arising from differences in

sequencing technology, representation format, reference version,

and analysis pipeline used. The main parameter to the method

(L) determines the size of the fingerprint hash and thus the quality

of the comparisons. We computed fingerprints for all genomes in

all sets as described, with L ¼ 200. Unless otherwise specified, all

genome fingerprints include only biallelic autosomal SNVs. This

computation does not include the pseudoautosomal regions

(PARs) of chromosomes X and Y.

Fingerprint comparison for relatedness assessment
Genome fingerprints are compared using a simple Spearman cor-

relation; the resulting correlation coefficient (⍴) decreases with

increasing degree of relationship and should not be interpreted

as a kinship coefficient. Fingerprint correlations above 0.75 indi-

cate the two samples being compared are of the same individual,

or identical twins.11 First-degree relatives typically show correla-

tions between 0.55 and 0.65; progressively higher-degree relatives

show lower correlations, and unrelated individuals from the same

population show correlations around 0.41, and lower for individ-

uals from different populations. We thus use a conservative cutoff

of ⍴ < 0.4 to confidently identify completely unrelated individ-

uals, and a cutoff of ⍴ > 0.45 to identify closely related individuals

(typically, degree of relationship 4, or less).

Chromosome fingerprinting
To compute single-chromosome fingerprints, we restricted SNV

pair collection to each chromosome and normalized the single-

chromosome raw fingerprints separately, yielding single-chromo-

some normalized fingerprints. Other than restricting the range

to the individual chromosome, the procedure is identical to that

used for computing whole-genome fingerprints. We applied this

procedure also to the PARs.

Other metrics

We computed the SNV count of an individual as the number of

biallelic SNVs observed in their genome in either heterozygous

state or homozygous for the alternate allele. We computed the ge-

notype concordance of an individual between two datasets as the

number of biallelic SNVs (with same coordinates, reference (REF)

and alternate (ALT) alleles in the two datasets) in which the indi-

vidual is heterozygous in both datasets (ignoring phasing of het-

erozygous sites) or homozygous alternate allele in both datasets,

divided by the total number of biallelic SNVs in which the individ-

ual was not homozygous reference in both datasets.

Evaluation of sex-chromosome coverage
We downloaded compressed reference-oriented alignment map

(CRAM) index files for all samples from the Sri Lankan Tamil
man Genetics and Genomics Advances 3, 100123, July 14, 2022 3



Figure 1. Overview of the seven available versions of sequence
variations within the TGP phase 3 cohort
Phase 3 of the 1000 Genomes mapped exome sequences and low-
coverage WGS onto GRCh37 to identify sequence variations,
yielding version TGP37. Three approaches have since been used
to represent the human genomic sequence variation against the
GRCh38 reference sequence: liftOver of variants called against
GRCh37 (yielding version TGP38L) and similarly using
CrossMap (yielding version TGP38C); remapping the individual
reads from the original data directly against GRCh38, followed
by integrated variant calling resulting in only SNV calls
(TGP38S) or both SNV and indel calls (TGP38X); and independent
whole-genome resequencing of new reads, for these 2,504 se-
quences at the modern standard sequencing depth of 303,
(yielding versions TGP38H and TGP38N, which is also phased).
population in the UK (STU) population (*.alt_bwa-

mem_GRCh38DH.20150718.STU.low_coverage.cram.crai) and

used these to estimate total coverage in chrX and chrY (and hence

estimate chrX and chrY copies) by normalizing to the observed

coverage in autosomes. We similarly obtained and analyzed

CRAM index files for the 698 samples in TGP38Nr.
Identification of genomic regions discrepant between

TGP versions
We aligned the VCF files for each pair of TGP versions, to identify

variants shared between the two versions (same chromosome, po-

sition, reference, and alternate alleles) and to enumerate variants

unique to one version (i.e., absent from the other). When

encountering variants in which all individuals were reported as

homozygous reference (i.e., zero counts of the alternate allele,

allele count [AC] ¼ 0), we considered them as absent. We then

identified segments enriched in (or depleted of) unique variants,

using this procedure: for each pair of consecutive shared variants,

we counted how many unique variants are present between them

in each of the two TGP versions being compared, and retained for

subsequent analysis segments at least 1 kb long. We identified a

subset of these segments as significant, based on p values re-

turned by the corresponding cumulative distribution function

of the Poisson distribution, modeled using the length of the

segment and the number of unique variants in it (separately for

each TGP version being compared). The Poisson distribution is

used to estimate the number of events in a given time or space

interval. It uses a shaping parameter lambda (l), which denotes

the expected number of events in a unit of time or space. We
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use the genome-wide density of variants to estimate l for a given

segment of length l.

l ¼ total number of variants unique to a TGP version

total length of the genome
3 l

The p value to determine the extremity of occurrence of k vari-

ants in a segment is then evaluated as:

if (k > l):

1 �
Xk�1

k¼0

1

ðk � 1Þ!3 e� llk�1

else:

Xk

k¼0

1

k!
3 e� llk

Using Bonferroni correction, we considered significant any

segment with p--value % 0:05=2N, where N ¼ 104,572 is the total

number of segments being evaluated in all pairwise comparisons

(two p values are computed per segment).We then used bedtools19

to subtract from the list of unique segments those that overlap

with large genomic gaps or satellite sequences (yielding a list of

95,843 segments) and finally to merge them into a set of 12,307

non-overlapping regions.

Identification and classification of discrepant alternate

alleles
We compared all six TGP versions on GRCh38 (TGP38L, TGP38S,

TGP38X, TGP38H, and TGP38N) to identify autosomal variants in

which the alternate allele (ALT) differs between TGP versions. To

maximize interpretability, we restricted this analysis to the 2,503

individuals represented in all TGP versions. We tabulated the re-

ported ALTalleles and their ACs in each TGP version, and classified

the ALT-discrepant variants into three non-overlapping classes: (1)

multiallelic, including variants with more than two ALT alleles in

any TGP version; (2) indel-related, including variants in which the

REF allele or any ALT allele has length different from 1, or one of

the alleles is a ‘‘star allele’’ (the * character), in any TGP version;

and (3) biallelic SNV, including all remaining ALT-discrepant bial-

lelic single-nucleotide variants not obviously associated with in-

dels in any version of TGP. Sites that are bothmultiallelic and indel

related are counted among the multiallelic.

Phasing-aware genome fingerprints
Wemodified the fingerprint-computationmethod to capture local

phasing information by changing the third step of raw fingerprint

computation.11 Specifically, when joining the keys of consecutive

SNVs, we reverse the key of the second SNV (i.e., the ALT allele is

assigned to the first phased chromosome and the REF allele is as-

signed to the second chromosome) if only one of the two SNVs

matches the genotype pattern ‘‘1|0.’’ We computed phasing-aware

genome fingerprints for all TGP versions except for TGP38H, since

this version is not phased. Finally, we compared the datasets in

pairwise fashion using standard and phasing-aware fingerprints.
Results

Overview of datasets and quality assessment strategies

We demonstrate the application of genome fingerprints11

for rapid cross-comparison of large genome datasets on

the seven reported versions of the 1000 Genomes phase



A B Figure 2. Comparison of cohort structure
We counted sequence identifiers in each TGP
set, and came to the following conclusions.
(A) While TGP38L, TGP38H, and TGP38N
include the same 2,504 genome identifiers
as TGP37, as expected, TGP38X and TGP38S
include2,548 identifiers, only2,503ofwhich
are in common with TGP37. NA18498 is ab-
sent from versions TGP38S and TGP38X,
which also include 45 identifiers not in
TGP37.
(B)Theoriginal setof31 supplemental related
samples (TGP37r) has been expanded to 150
in the versions TGP38Sr and TGP38Xr.
TGP38Nr includes 698 genomes with partial
overlap with the other sets.
3 cohort (Table 1 and Figure 1), which included the variant

set as originally released, mapped to GRCh37 (TGP37); the

same variants lifted over to GRCh38 (TGP38L and

TGP38C); a reanalysis of the same raw sequence reads

directly mapped onto GRCh38, first limited to biallelic

SNVs (TGP38S) and then also including biallelic indels

(TGP38X); as well as a recent independent high-coverage

resequencing (TGP38H and TGP38N) of the original cell

lines (sequenced to a nominal target depth of 303

coverage; see section ‘‘materials and methods’’). We also

evaluate smaller sets of related individuals.

We used genome fingerprints as well as simple summary

statistics to compare the SNVs reported in these genomes.

Based on these analyses, we identified a number of discrep-

ancies and quality issues, including an unexpectedly

missing individual, cryptic relations, and a set of genomes

with significantly fewer SNV counts. We further identified

regions of the genomewith excess variation, or significantly

lacking variation, in some TGP versions and discrepancies

in the identity of the alternate allele (ALT), sometimes

at high population frequency. Finally, we observed that

phasing is very inconsistent between the TGP versions.
Cohort composition: Metadata versus genome

comparison

We compared the identifiers of the genomes included in

the seven TGP versions and observed that there are differ-

ences in cohort membership (Figure 2A), with four ver-

sions (TGP38L, TGP38C, TGP38H, and TGP38N) retaining

the cohort used in TGP37, but the two versions directly

mapping the original data to GRCh38 (TGP38S, TGP38X)

omitting genome NA18498 (Yoruba in Ibadan, Nigeria

[YRI]), and including 45 additional genomes. The sets of

related genomes also differ (Figure 2B), with 119 additional

genomes (TGP38Sr, TGP38Xr) directly mapped to GRCh38

that were not in the original cohort (TGP37r), and 698 ge-

nomes in TGP38Nr, partially overlapping TGP37r and

TGP38Xr. We found no overlap between the additional

45 genomes in TGP38X, and the 698 related genomes in

TGP38Nr.
Hu
According to the metadata in the IGSR data portal,20 the

omitted genome NA18498 should have been present in

TGP38X. We used genome fingerprint comparisons to

evaluate whether NA18498 might have been mislabeled,

but found this not to be the case: the highest fingerprint

correlation between NA18498 (from TGP38L) and any in-

dividual from TGP38X is 0.316 (to HG03108, Esan in

Nigeria [ESN]), which also exceeds correlation with any

genome among the 150 supplemental individuals in

TGP38Xr. These values are well below the 0.75 minimal

correlation expected for versions of the same individual,11

confirming that NA18498 was not included in TGP38X or

TGP38Xr under a different identifier. Of the 45 additional

individuals in TGP38X, most (75%) seem to be related to

individuals in the TGP37 cohort, some with fingerprint

correlations consistent with second-degree relationships

(>0.55; Table S1), suggesting these genomes should not

be included as part of the main TGP cohort.

Fingerprint-based comparisons of the 2,503 individ-

uals shared between TGP37 and TGP38X or TGP38S

(Figure 2A) confirm a one-to-one relationship: for each in-

dividual in TGP37 (excluding NA18498, discussed above),

the highest fingerprint correlation observed was to the

TGP38X/TGP38S individual with the same identifier. For

all but eight, the correlation is well above 0.75, as expected;

the remaining eight individuals (‘‘strongly affected;’’ Ta-

ble 2), all from the African Caribbean in Barbados (ACB)

population, have between-set correlations that would be

erroneously consistent with first-degree relationships.11

An additional eight individuals (‘‘mildly affected;’’ Table 2)

have between-set fingerprint correlations ranging from

0.787 to 0.865, indicating the same individual (>0.75)

but much lower than observed for the other between-set

self-comparisons (0.885 5 0.0028).

To evaluate the nature of these discrepancies, we tabu-

lated the number of biallelic autosomal SNVs observed

for each individual genome in each of the seven datasets.

For most individuals, we observed about 2% fewer SNVs

in TGP38X than in TGP37 (Table 2 and Figure 3). Possible

explanations for this reduction might include changes

in the reference (including reference/alternate allele
man Genetics and Genomics Advances 3, 100123, July 14, 2022 5



Table 2. Observed statistics for the outlier individuals most affected by dataset recomputation from TGP37 to TGP38X, in comparison
with the platinum NA12878 genome, the 89 ACB individuals unaffected by this bioinformatic difference, and the 2487 similarly unaffected
individuals in the entire cohort

Section ID Population code Fingerprint correlation

SNV count (millions) SNVs lost

Genotype concordanceTGP37 TGP38X (%)

Missing NA18498 YRI NA 4.28 0.00 100.00 NA

Strongly affected HG02325 ACB 0.550 4.28 3.33 22.18 0.578

HG02442 ACB 0.554 4.26 3.35 21.40 0.587

HG02433 ACB 0.570 4.25 3.36 20.82 0.600

HG01989 ACB 0.571 4.20 3.33 20.69 0.602

HG02445 ACB 0.571 4.20 3.32 20.84 0.601

HG02343 ACB 0.585 4.19 3.35 20.17 0.615

HG02420 ACB 0.595 4.12 3.29 20.22 0.626

HG01988 ACB 0.603 4.04 3.26 19.37 0.632

Mildly affected NA19189 YRI 0.787 4.26 3.98 6.67 0.871

HG00232 GBR 0.814 3.48 3.26 6.13 0.905

HG00530 CHS 0.824 3.49 3.30 5.49 0.919

HG00542 CHS 0.827 3.49 3.29 5.60 0.923

HG00531 CHS 0.839 3.49 3.32 4.86 0.938

NA18960 JPT 0.840 3.55 3.36 5.22 0.947

NA18856 YRI 0.862 4.31 4.16 3.49 0.965

HG00116 GBR 0.865 3.51 3.38 3.66 0.969

Reference NA12878 CEU 0.885 3.52 3.44 2.24 0.989

average ACB (n ¼ 89) 0.887 4.26 4.17 2.02 0.988

SD ACB (n ¼ 89) 0.0024 0.03 0.04 0.13 0.002

average all (n ¼ 2487) 0.885 3.74 3.66 2.19 0.988

SD all (n ¼ 2487) 0.0028 0.33 0.32 0.17 0.002

Genotype concordance is between TGP38L and TGP38X, as TGP37 and TGP38X are not on the same reference.
switches), improved variant calling leading to fewer false-

positives, and stricter coverage requirements leading to

more false-negatives. The eight mildly affected genomes

have 3.5%–6.7% fewer SNVs in TGP38X than TGP37. In

contrast, the eight strongly affected genomes have 20%–

22% fewer SNVs in TGP38X than in TGP37. These high

missingness values are well beyond the range observed

for the mildly affected genomes (5.14% 5 1.11%), which

are themselves well beyond the range of the majority of ge-

nomes (2.19% 5 0.17%). While the strongly affected ACB

genomes have similar SNV counts in TGP37 to the remain-

ing 89 ACB individuals, they have markedly fewer SNVs in

TGP38X. We also observed reduced genotype concordance

for the strongly affected genomes relative to the other ACB

individuals (Table 2). We evaluated the sizes of CRAM files

and their associated CRAM index (CRAI) files as indicators

of the amount of data in each of these remapped genomes,

and found that those of the affected individuals are some-

times significantly smaller than for other genomes, likely

leading to undercalling of variants (Figure S1). Finally,

comparison with the TGP38H and TGP38N versions,
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which were constructed using an independent set of

sequence reads, shows that the SNV counts in these indi-

viduals are concordant between TGP37, TGP38H, and

TGP38N (Figure 3). Taken together, these differences sug-

gest that TGP38X erroneously excludes a set of 0.8–0.9

million SNVs from the strongly affected ACB genomes;

these SNVs are included by independent analyses (e.g.,

TGP37 and TGP38N). TGP38S is similarly affected.

Evaluation of the associated samples of related

individuals

We evaluated the 698 related individuals in TGP38Nr and

the 150 related individuals in TGP38Xr (Figure 2B), expect-

ing all of them to show some degree of relatedness to at

least one of the individuals in the main TGP cohort.

(Due to the similarity between TGP38Sr and TGP38Xr,

we elected to only report results for the latter.) We

computed fingerprints for all TGP38Nr individuals, then

compared them among themselves, and with TGP38N.

All TGP38Nr individuals are indeed closely related to at

least one other individual in TGP38N or TGP38Nr



Figure 3. SNV count comparisons
Change in biallelic SNV counts (inmillions)
relative to TGP37, as observed in TGP38H
(crosses), TGP38N (open circles) and
TGP38X (filled circles). TGP38X and
TGP38N universally report fewer SNVs
than TGP37; 16 genomes are visibly excep-
tional in TGP38X. In particular, eight indi-
viduals from the ACB population have
significantly fewer SNVs in TGP38X relative
to TGP37. TGP38Huniversally reportsmore
SNVs than TGP37, but without obvious out-
liers. Dashed line, no SNV count change;
dotted lines, addition (or loss) of 100,000
SNVs.
(fingerprint correlations, ⍴ > 0.53). We similarly computed

fingerprints for all TGP38Xr individuals, then compared

them with all TGP38X individuals and with each other

(Table S2). Over two-thirds of the TGP38Xr individuals

can indeed be recognized as closely related to TGP38X in-

dividuals, with fingerprint correlations ⍴ > 0.45 (see sec-

tion ‘‘materials and methods’’). On the other hand, at least

28 of the TGP38Xr individuals seem not to be related to

anyone else in TGP38X or TGP38Xr (fingerprint correla-

tion, ⍴ < 0.4).

One of the related individuals in TGP38Xr (HG03982,

from the STU population) has fingerprint correlation of

0.868 to an individual in TGP38X (HG03858, also STU).

This fingerprint correlation level would suggest these are

the same individual, and yet, in IGSR, HG03858 is anno-

tated as female, while HG03982 is annotated as male.

Neither individual has any relatives annotated in either

TGP38X or TGP38Xr, nor could we identify any relatives

by fingerprint comparison. We considered various hypoth-

eses, including whether these individuals could be sex-

discordant monozygotic twins (as a result of sex change,

through differential resolution of XXY karyotype, mosai-

cism, etc.), the result of mislabeling of twin samples, or

mislabeled, redundant samples of the same individual.

TGP37 data support HG03858 being genetically female,

with two copies of chrX and no chrY. To test these hypoth-

eses, we evaluated whether HG03982 could indeed be a

male sample, as annotated.

1. No chrY variant calls were released for TGP38Xr, and

chrXvariant calls are available only in thepseudoauto-
Human Genetics and Gen
somal regions (PARs, which combine

data from chrX and chrY). We

computed chromosome-specific fin-

gerprints, including for the PARs.

The resulting 0.928 correlation of

PAR-specific fingerprints of

HG03858 and HG03982 suggests

these two samples have the same

sex-chromosome karyotype (XX)

and the same chrX haplotypes,

consistent with being the same indi-
vidual, or identical twins. For comparison, we observe

0.954 correlation of PAR-specific fingerprints of samples

HG00578 and HG00635 (female siblings, with overall

autosomal fingerprint correlation of 0.689), and 0.622

correlation of samples HG00512 and HG00501 (male

and female siblings, respectively, with overall autosomal

fingerprint correlation of 0.687).

2. We observed 91.8% genotype concordance in the

PARs of HG03858 and HG03982, consistent with

these being the same person or female siblings.

For comparison, the PAR genotype concordance of

female siblings HG00578 and HG00635 was

94.1%, and the PAR genotype concordance of

male and female siblings HG00512 and HG00501

was 45.1%.

3. Based on the coverage levels along chrX and chrY

(from low-coverage data), we estimated the number

of chrX and chrY copies for all STU samples and

found that HG03982 clusters with the female sam-

ples (Figure S2A).

We conclude thatHG03858 andHG03982 are both genet-

ically female. Lacking further information about the individ-

uals, we hypothesize that these two samples derive from the

same individual or from identical twins, and that HG03982

mayhavebeenannotatedasmaleas a resultof a clerical error.

When comparing, through fingerprinting, the partially

overlapping sets of related individuals in TGP38Xr and

TGP38Nr (Figure 2B), we identified pairs of individuals

with different identifiers but with genome fingerprint cor-

relations consistent with them being the same individual,
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Figure 4. Distributions of fingerprint self-correlations in pairwise dataset comparisons
We compared fingerprints across TGP versions for each individual (color coded by population), resulting in a distribution of Spearman’s
⍴ (y axis) for each pair of versions (columns, labeled with numbers above, and with the versions being compared, below). Self-correla-
tions of fingerprints for the same individual are expected to be high (⍴ > 0.75) irrespective of genome version or analysis pipeline; lower
self-correlations across versions show some genomes are unrecognizable as the same individual. Low outliers (⍴ < 0.75) are shown on a
compressed scale under the dashed line.
suggesting identifier swaps: genome HG03797 in TGP38Xr

is equivalent to genome HG03799 in TGP38Nr, and

conversely genome HG03799 in TGP38Xr is equivalent

to genome HG03797 in TGP38Nr. Since HG03797 and

HG03799 are, respectively, the father and mother in

different trios (Bengali families BD16 and BD17), we were

able to determine, through fingerprint comparisons with

the offspring in these trios, that the genome identifiers

were inadvertently swapped in TGP38Xr (and similarly in

TGP38Sr). We similarly observed a potential identifier

swap involving genomes HG03699 and HG03700, which

are respectively the father and mother in Punjabi family

trio PK59. In this case, fingerprint comparisons with the

offspring could not elucidate the nature of the discrepancy,

since both parents are equally related to their child. We

instead estimated chrX/chrY copy numbers in the

TGP38Nr data, as described above, to determine that

HG03699 is male and HG03700 is female, consistent

with the metadata on these individuals (Figure S2B).

Thus, we conclude that the identifiers were again mistak-

enly swapped in TGP38Xr (and TGP38Sr).
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Evaluation of fingerprint differences across TGP versions

While comparison of results pertaining to a high-quality

genome (NA12878) can validate that a data processing

pipeline has the capacity to perform its intended task

well, it cannot assess whether the pipeline performs consis-

tently across different input data. Since in-depth compari-

son of every genome would be low throughput and

expensive, we used genome fingerprints for their primary

purpose: to perform rapid self-comparison of every

genome across the different processing pipelines (Figure 4).

The comparisons among TGP37, TGP38L, and TGP38C

(Figure 4, columns 1–3) corresponded well for every

genome (⍴ > 0.96). In addition, the low variability in

fingerprint correlation, both within and across TGP popu-

lations (colors), suggests that the liftOver and CrossMap

pipelines perform very consistently across individuals.

The TGP38S and TGP38X versions of each genome differ

by whether indels were reported as variants (TGP38X only)

along with the SNVs. For the majority of genomes, self-

comparisons between these versions (Figure 4, column

12) corresponded well and varied little across genomes



Table 3. Statistics of pairwise comparisons of the six GRCh38 callsets

Set 1 Set 2 Shared SNVs

Unique SNVs % Unique in hard regions

Genotype concordanceTo set 1 To set 2 In set 1 In set 2

TGP38L TGP38C 77,311,452 82,520 260,502 11.2 11.0 0.9999

TGP38L TGP38S 68,021,487 9,344,300 3,407,548 5.2 24.5 0.9594

TGP38L TGP38X 68,077,971 9,287,798 3,413,699 5.2 24.5 0.9593

TGP38L TGP38H 74,767,408 2,605,724 29,944,460 15.6 18.6 0.9435

TGP38L TGP38N 50,748,581 26,569,818 8,785,284 2.9 16.8 0.9264

TGP38C TGP38S 68,143,522 9,400,227 3,285,493 5.2 25.0 0.9593

TGP38C TGP38X 68,200,090 9,343,642 3,291,561 5.2 25.0 0.9592

TGP38C TGP38H 74,862,849 2,687,911 29,848,665 15.7 18.6 0.9435

TGP38C TGP38N 50,853,713 26,642,369 8,679,853 2.9 16.8 0.9263

TGP38S TGP38X 71,334,231 123,182 185,835 5.3 5.5 0.9711

TGP38S TGP38H 68,970,797 2,473,081 35,748,569 27.9 15.4 0.9535

TGP38S TGP38N 48,313,920 23,069,356 11,221,574 4.3 12.0 0.9367

TGP38X TGP38H 69,028,474 2,478,010 35,690,845 27.9 15.4 0.9507

TGP38X TGP38N 48,331,682 23,114,098 11,203,663 4.3 12.0 0.9322

TGP38H TGP38N 57,792,440 46,932,927 1,809,657 10.7 32.0 0.9993

Number of shared SNVs, number of SNVs unique to each set, percentage of unique SNVs in hard genomic regions (spanning 8.76% of the autosomal sequence),
and average genotype concordance over the 2,503 individuals included.
(⍴ > 0.97). However, a subset of 17 genomes (‘‘strongly

affected’’ in Table S3) show very reduced fingerprint corre-

lations, very reduced SNV counts, and low genotype con-

cordances. These include nine genomes from the ACB pop-

ulation, adding HG02436 (which is absent from the TGP37

set) to the eight ACB genomes described above. A further

set of 15 individuals (‘‘mildly affected’’ in Table S3) showed

an intermediate, outlying level of degradation in self-corre-

lations, SNV counts, and genotype concordance. Since

these same 32 individuals include the outliers in all other

comparisons involving versions TGP38S or TGP38X

(Figure 4, columns 7–17), while the comparisons not

involving these TGP versions do not produce comparable

outliers (Figure 4, columns 1–6 and 18–21), we deduce

that the pipelines used to create the TGP38S and

TGP38X versions were less successful in processing these

genomes than the rest of the cohort.

While TGP38H and TGP38N are based on the same high-

coverage data, these two versions differ in many ways

(Table 1), not just in TGP38N being phased. In particular,

variants are represented in very different formats. Further-

more, the TGP38H versions of each genome include many

additional variants, particularly around centromeric re-

gions (see next section). This leads to reduced self-correla-

tions in comparisons between TGP38H and other TGP

versions (Figure 4, columns 16–21).

Identification of genomic regions with excess variation

or missing variation

The various TGP versions differ significantly in the total

number of SNVs reported.We compared in pairwise fashion
Hu
the four versions of the TGP expressed relative to GRCh38,

by tallying (from the VCFs) how many variants are shared

(i.e., both datasets have an SNV at a given coordinate,

with the same REF and ALT alleles), and how many are

unique to each set. We based this analysis on the 2,503 ge-

nomes shared by all TGP versions (i.e., all genomes in the

original TGP37 set, minus NA18498). We found that each

TGP version has a large number of SNVs absent from the

other versions (Table 3). We evaluated whether these mutu-

ally unique SNVs are located in ‘‘hard’’ regions of the

genome, namely centromeres, microsatellite repeats, and

low-complexity regions.21 While in some comparisons,

and particularly in comparisons involving TGP38X and

TGP38S, there is an enrichment of unique variants in

hard regions, most of the unique variants are nevertheless

outside these more difficult-to-sequence regions. In fact,

the chromosomal distribution of these discrepancies is a

combination of (1) a nearly uniform background level char-

acteristic to each dataset, and (2) multiple clusters of vari-

ants unique to one dataset (Figure 5).

A particularly noteworthy signal involves a very large

number of SNVs in and around centromeric regions,

unique to TGP38H (Figure 5 lower inset, and Figure S3).

Their absence in TGP38L and TGP38C is not surprising,

since GRCh37 lacked centromeric sequence models and

thus there were no centromeric variants in TGP37 to be

lifted over; as for TGP38S and TGP38X, the method used

for generating these versions filtered out variants in centro-

meres.6 The density of centromeric variants in TGP38H

also significantly exceeds the density observed elsewhere

along the chromosomes (Figure S3).
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Figure 5. Density map of shared and unique variants along the chromosomes
The main plot shows the comparison between TGP38L and TGP38X, with shared variants in light brown, variants unique to TGP38L in
red, those unique to TGP38X in blue, and the union of all variants in dark brown. Top inset (red outline): detail of a 36-Mb region on chr2
showing patches enriched in variants unique to TGP38L (absent from TGP38X). Middle inset (blue outline): detail of the first 40 Mb of
chr12 showing a segment with only variants unique to TGP38X and no variation at all in TGP38L. Neither version has variants in the
centromeric region. Lower inset (green outline): the same chr12 region when comparing TGP38X and TGP38H, highlighting the overall
higher density of TGP38H-unique variants (in green), and the excess variation unique to TGP38H in centromeric regions.
Through pairwise comparison of the TGP versions, we

identified 104,572 genomic segments significantly en-

riched (or depleted) in SNVs unique to one TGP version

relative to the other (see examples in Figure 5 insets) and

evaluated them for overlap with genomic features. We

found that the segments with the largest counts of unique

variants correspond to centromeric, telomeric, and other

heterochromatin and satellite sequences. After excluding

these segments, we merged the 95,843 remaining ones

by overlap into 12,307 regions.
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The longest of these regions was a gene-dense 2.96-Mb

segment on chromosome 12 erroneously lacking variation

in TGP38L (Figure 5, middle inset). This segment

(chr12:6889106-9847458, between dbsnp:rs143703503

and dbsnp:rs111979444) has 71,946 variants unique to

TGP38X (112,750 in TGP38H) but no variants shared with

TGP38L, and no SNVs unique to TGP38L. In fact, the only

variation reported in this region in TGP38L includes two in-

dels (dbsnp:rs11394173 and dbsnp:rs56027063) with alter-

nateallele frequencyof1, suggestinganerror in the reference
2



Table 4. Discrepant ALT alleles of pairwise comparisons of the six GRCh38 callsets

Set 1 Set 2

ALT change Observed/expected

All AC>0 AC>9 Exonic Coding Exonic Coding

TGP38L TGP38C 184 184 103 16 6 1.70 2.31

TGP38L TGP38N 75,729 74,471 8,122 3,828 1,174 0.97 1.10

TGP38C TGP38N 75,942 74,696 8,154 3,852 1,169 0.97 1.09

TGP38S TGP38N 74,137 71,845 7,126 4,268 1,571 1.13 1.53

TGP38X TGP38N 73,690 71,691 6,952 4,260 1,565 1.13 1.53

TGP38L TGP38S 28,351 28,323 3,484 1,614 549 1.08 1.35

TGP38C TGP38S 28,397 28,227 3,418 1,605 539 1.08 1.33

TGP38S TGP38X 0 0 0 0 0 NA NA

TGP38L TGP38X 28,358 27,886 3,105 1,598 547 1.09 1.37

TGP38C TGP38X 28,328 27,807 3,047 1,590 537 1.08 1.35

TGP38S TGP38H 13,535 9,111 3,899 459 190 0.95 1.46

TGP38X TGP38H 13,852 9,012 3,871 451 190 0.94 1.47

TGP38L TGP38H 21,106 17,693 4,989 876 307 0.93 1.21

TGP38C TGP38H 21,484 18,114 5,059 932 312 0.97 1.20

TGP38H TGP38N 7,818 6,998 2,004 220 102 0.58 1.01

All: number of autosomal variants (SNVs and indels) with different stated ALT alleles. AC > 0: number of ALT-discrepant autosomal SNVs with ACs of at least 1 in
both datasets. AC > 9: number of ALT-discrepant autosomal SNVs, further requiring the sum of the ACs in both datasets to be at least 10. Exonic: number of
AC > 0 ALT-discrepant autosomal SNVs mapped to any exons (coding and non-coding). Coding: number of AC > 0 ALT-discrepant autosomal SNVs mapped
to coding exons. Observed/expected (exonic, coding): ratio of AC> 0 ALT-discrepant SNVs in exons and coding regions, respectively, relative to their correspond-
ing expected values from non-exonic and non-coding densities.
sequence. On the other hand, the corresponding range in

GRCh37 (chr12:6999223-10000058) includes 43,406 vari-

ants (SNVs and indels) in TGP37. We verified that it is

possible, using the liftOver tool, to transform coordinates

in this region from GRCh37 to GRCh38. We conclude that

a bioinformatic pipeline error likely caused this extensive

set of variants to fail to lift over from TGP37 to TGP38L,

yielding a significant gap in the reference variation. We

note that this is a large and gene-dense region, including

100–150 transcript clusters, 75 of which are not pseudo-

genic. Bioinformatic analyses in this region,usingannotated

variation in TGP38L as reference, may have been

confounded by this issue.

We evaluated the remaining regions over 250 kb in

length and found them to largely correspond to genomic

loci that were missing (gaps) or misassembled in previous

versions of the reference genome (Table S4). Most of these

regions have since been corrected or partially improved in

GRCh38, and some still include gaps. Of note, since much

knowledge on population variation was annotated (and

submitted to dbSNP) based on older genome reference

versions, and then lifted over to the current version,

many of these regions show significantly reduced variation

compared with the regions surrounding them (e.g., when

visualized via genome browsers). For example, when

comparing TGP38L with TGP38X, we identified a 135-kb

segment on chromosome 6 with 4,588 SNVs unique to

TGP38X, but no variation in TGP38L. These 135 kb
Hum
of sequence in GRCh38 replace a 50-kb clone gap in

GRCh37 (GRC issue HG-564). As a result, this region is

significantly depleted in variants in dbSNP (Figure S4).
Identification of alternate allele discrepancies

One of several improvements in GRCh38 relative to

GRCh37 was the correction of several thousand reference

alleles from a minor/rare allele to the major allele.22

Since TGP38L, TGP38C, TGP38S, TGP38X, TGP38H, and

TGP38N are all represented relative to the same reference

sequence, all variants shared between any two of these

TGP versions have the same reference allele. On the other

hand, while tallying shared and unique variants among

the TGP versions (previous section), we identified SNVs

with discrepant alternate (ALT) alleles. While TGP38S and

TGP38X had the same ALT allele throughout the genome,

and there were few ALT differences between TGP38L and

TGP38C (both being directly derived from TGP37), we

observed (tens of) thousands of discrepant ALT alleles

genome-wide between every other pair of TGP versions (Ta-

ble 4). These discrepancies are enriched in exons and in

coding regions, relative to the number expected from the

densities observed in non-exonic and non-coding regions,

respectively, perhaps due to the inclusion of exome-derived

data in all TGP versions except TGP38H and TGP38N. The

enrichment in coding regions is most prominent in com-

parisons involving TGP38S or TGP38X.
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Figure 6. ALT-discrepant sites span the frequency range
Allele counts (ACs) in log scale, jittered horizontally and vertically to denote density, for ALT-discrepant sites between TGP38N and the
TGP version on the y axis. TGP38C (A–C); TGP38X (D–F).
(A and D) Sites that are multiallelic in either version being compared (black) or in any of the other versions (gray).
(B and E) Indel-related sites in either version being compared (black) or in any of the other versions (gray).
(C and F) Biallelic SNVs not affected by indels.
Several reasons can contribute to the identification

of discrepant alternate alleles. From observational noise

alone, one can expect different alternate alleles to be

observed at low frequencies, particularly for independently

sequenced samples. Some ALT discrepancies can be partially

explained by the fact that TGP38S and TGP38X report

only biallelic sites, while TGP38L, TGP38C, TGP38H, and

TGP38N also include multiallelic sites. For example, at

chr1:44,819,962 (chr1:45,285,634 in GRCh37 coordinates),

TGP38L reports three individuals with ALT ¼ A, while both

TGP38S and TGP38X report one individual with ALT ¼ C.

In contrast, TGP38H reports a triallelic site with three indi-

viduals with ALT¼A, and one with ALT¼ C. In some other

cases, thediscrepancy canbeattributed todifferent represen-

tations of variation in the vicinity of insertions, deletions,

and multi-nucleotide variants (Table S5). We thus tallied all

ALT discrepancies, classified them based on these features

(see section ‘‘materials and methods’’), and visualized the

three resulting classes relative to their ACs (Figure 6).
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While most of the ALT-discrepant variants are rare (a

fraction have AC ¼ 0 in one or more of the TGP versions;

see Table 4), some are high frequency and thus cannot be

explained by observational noise. In fact, for all classes of

discrepant ALTallele sites, we observed loci where every in-

dividual is reported to be homozygous for a non-reference

allele, but for different alleles in the two TGP versions.

Multiallelic sites in TGP38C discrepant with TGP38N

span the frequency spectrum; discrepant sites that are

biallelic in both versions but multiallelic in some other

version (TGP38L, TGP38S, TGP38X, or TGP38H) display

generally higher frequencies in TGP38C than in

TGP38N (Figure 6A). Indel-related variants are enriched

in high frequencies and tend to have higher reported fre-

quency in TGP38C relative to TGP38N (Figure 6B). Simi-

larly, we observed a tendency for higher reported fre-

quencies in TGP38C for simple biallelic SNVs,

unaffected by indels, that are ALT discrepant with

TGP38N (Figure 6C).
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Figure 7. Consistency of phasing between TGP versions
(A) We compared phase-aware fingerprints across TGP versions for each individual (color coded by population), resulting in a distribu-
tion of Spearman’s ⍴ (y axis) for each pair of versions (columns, labeled with numbers above, and with the versions being compared,
below). Low outliers (⍴ < 0.75) are shown on a compressed scale under the dashed line.
(B) Using a phasing accuracy metric to compare TGP38L versus TGP38X (x axis) and TGP38S versus TGP38X (y axis) confirms the low
phasing concordance for most genomes, and the differential phasing concordance by population, as observed in (A), column 12.
When comparing TGP38X with TGP38N, we observed a

strong tendency for higher allele frequencies in TGP38N

relative to TGP38X for multiallelic SNVs (Figure 6D) and

those affected by indels (Figure 6E). We observed

discrepant biallelic SNVs unaffected by indels at all

frequencies (Figure 6F). We also noted an enrichment

in discrepant biallelic SNVs with high frequencies in

TGP38N but lower frequencies in TGP38X, potentially as

a result of undercalling in the latter version.

Analysis of phasing concordance

We evaluated the concordance among the six TGP versions

that are phased (TGP37, TGP38L, TGP38C, TGP38S,

TGP38X, and TGP38N) in two ways: through phasing-

aware fingerprinting, and through a phasing accuracy

metric we described previously, representing the likelihood

that any two heterozygous loci in a diploid chromosome

are correctly phased with respect to each other.23 The

metric ranges from zero (for fully random phasing) to

one (for perfect phasing). Since mutual phasing between

two loci is unperturbed by any intervening incorrectly

phased loci, this metric is robust to high-frequency switch

errors. On the other hand, a single phasing error in the

middle of the sequence could drop phasing accuracy to

zero, effectively penalizing gross phasing errors.

First, we modified the procedure for computing genome

fingerprints tocapturephasing information.Genomefinger-

prints normally capture the presence of alternate alleles but

ignore whether the alternate allele was phased relative to

other variants.Wemodified themethod to considerwhether

the alternate alleles in two consecutive heterozygous vari-
Hum
ants are phased to be on the same haplotype (e.g., both

maternal) or on opposite haplotypes (i.e., one maternal

andonepaternal).We thenencode the latter scenario (oppo-

site haplotypes) by swapping the reference and the alternate

alleles for the second variant. In this way, phasing-aware

genome fingerprints can capture local phasing information

(microhaplotypes), leading to decreased similarity between

genomes that differ in such local phasing.

We computed phasing-aware genome fingerprints for

the six phased TGP versions and evaluated the change in

self-correlation for each individual. When comparing ver-

sions TGP37 and its liftover derivatives TGP38L and

TGP38C (Figure 7A, columns 1–3), we observed that add-

ing phasing information leads to slightly higher self-corre-

lations compared with standard fingerprints (Figure 4), as

expected from consistent phasing. In contrast, in all other

comparisons adding phasing information strongly reduces

correlations, indicating phasing discrepancies between the

TGP versions. This reduction in correlations is generally

stronger for genomes of African individuals. In compari-

sons of either TGP38S or TGP38X with other versions,

we again observed several outliers with reduced correla-

tions (including the degraded ACB genomes). In contrast,

five genomes have much higher correlations than the

rest, suggesting their phasing was much less inconsistent

across versions: NA12878, NA10851, NA10847, and

NA07048 from the CEPH Utah Residents (CEU) popula-

tion, and NA19129 (YRI). An additional four genomes

also have increased correlations when comparing

TGP38S or TGP38X with TGP37, TGP38L, or TGP38C:

NA20910 (Gujarati Indian from Houston, Texas [GIH]),
an Genetics and Genomics Advances 3, 100123, July 14, 2022 13



NA19445 (Luhya in Webuye, Kenya [LWK]), HG00867

(Chinese Dai in Xishuanagbanna, China [CDX]), and

HG00155 (British in England and Scotland [GBR]).

When comparing TGP38S and TGP38X (Figure 7A, col-

umn 12), we observed overall degradation indicating

phasing discrepancies between these two related TGP ver-

sions: there were many outliers (including the degraded

ACB genomes), and one-third of the genomes had much

stronger discrepancies in phasing. Surprisingly, this analysis

revealed a differential effect by population: the most

affected genomes include all the individuals in the South

Asian (SAS) populations Bengali from Bangladesh (BEB), In-

dian Telugu from the UK (ITU), Punjabi from Lahore,

Pakistan (PJL), and STU, but none fromGIH; all the individ-

uals in the African (AFR) populations ESN, GWD, and

Mende in Sierra Leone (MSL), but none from LWK and

YRI; sizable subsets of Admixed American (AMR) popula-

tions ACB, CLM, PEL, and PUR; and a few individuals

from East Asian (EAS) populations CDX and CHS, European

(EUR) populations FIN, GBR, and IBS, and AMR populations

ASW and MXL.

Second, we studied the VCFs of phased TGP versions on

GRCh38 in pairwise fashion to identify phase switches

(one version relative to the other) in each individual. Using

a phasing accuracy metric,23 we computed for each indi-

vidual the level of phasing agreement between TGP38L

and TGP38X, and separately between TGP38S and

TGP38X (Figure 7B). We observed overall very low phasing

concordance between TGP38L and TGP38X except for the

same nine individuals highlighted in the fingerprint-based

results. Similarly, the TGP38S-TGP38X comparison shows

differential phasing consistency per population (see popu-

lation annotations in Figure 7B), again corroborating the

fingerprint-based results.
Discussion

We presented here a cross-comparison of seven versions of

the TGP dataset, as an effective way to perform QC. The

TGP versions are expressed relative to two versions of the

reference genome (GRCh37 and GRCh38); the ability to

compare genomes across different versions of the reference

sequence was a specific goal in the design of genome fin-

gerprints, which we used for this study.11 In addition to

the overall comparison of the full datasets of phased

SNVs and indels (TGP37 versus TGP38X, and related sam-

ples), other pairwise comparisons of TGP versions provided

insights into the effects of lifting over variants from one

reference version to the other (TGP37 versus TGP38L/C),

of lifting over versus native mapping and variant calling

(TGP38L/C versus TGP38X), of different variant-calling

procedures (TGP38X versus TGP38S), and of high-coverage

sequencing (TGP38H/N). Through these comparisons, we

identified multiple discrepancies between the datasets,

pointing at changes in the list of included genomes,

some additional cryptic relationships, overall changes in
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biallelic SNV counts, more significant changes in SNV

counts and reduced genotype concordance affecting a sub-

set of the individuals, and low concordance of variant

phasing. These observations illustrate the value of employ-

ing data reduction techniques, such as the genome finger-

prints used here, to enable quality evaluation of the output

from every input to an automated pipeline, and not just a

gold-standard subset of the individuals.

The utility to perform QC of large genome datasets

through cross-comparison is not unique to genome

fingerprinting. Multiple methods and tools have been

developed for comparing genomes, aiming to establish

whether two samples represent the same individual, or

to robustly estimate their degree of relatedness. Notable

examples include HYSYS,24 which uses the concordance

of homozygous germ-line variants as a metric of related-

ness; NGSCheckMate,25 which compares allele read frac-

tions of known exonic SNPs and can take multiple data

types as input; and the recently published Somalier,26

which extracts ‘‘sketches’’ of variant information for

fast comparison. To achieve robustness against diversity

of technologies, pipelines, and noise, these methods

focus on a few thousand well-studied, high-quality

marker SNPs that are typically exonic, sometimes with

additional population frequency requirements, and

avoiding difficult genomic regions. Such methods would

be applicable for performing some of the aspects of cross-

comparison QC we described; e.g., the cross-matching of

individuals among TGP versions, the analysis of the

additional 45 individuals in TGP38X/S, and the study

of related individuals. On the other hand, since these

methods are by design limited to exonic marker SNPs

(a gold-standard subset of the genome), they are unable

to assess the quality of the reported genome variation

elsewhere (i.e., in the vast majority of the genome).

Thus, in the context of QC, this specific method of

achieving robustness to representational differences

may be detrimental. In contrast, genome fingerprinting

achieves robustness to representational differences by lo-

cality-sensitive hashing of most reported SNVs, regard-

less of their location in the genome and their population

frequency. In this way, genome fingerprint correlations

are a more sensitive and informative QC tool than

robust and precise measures of degree of relatedness,

enabling our analysis of the overall degraded quality of

a subset of the genomes and, by adding phasing informa-

tion into the fingerprints, to easily quantify phasing

concordance.

Minor reference alleles are a problem for identifying and

reporting clinical variants,27,28 and discrepant ALT alleles

could produce similar issues. Cross-comparison of TGP ver-

sions identifies many discrepancies of alternate alleles

observed. While some reflect infrequent observations (low

ACs), many discrepantly observed alleles seem to be very

frequent in the population. There can be multiple causes

for ALT allele discrepancies, including the presence of mul-

tiple alleles, and overlap or vicinity with indels and more
2



complex variants. In many cases, these can only be

identified through comparison with an additional dataset.

For example, an ALT-discrepant biallelic SNV between

TGP38C and TGP38X may overlap by coordinate with an

indel reported in TGP38N. This suggests that there is still

room for improvement in variant-calling and variant-re-

porting pipelines, particularly in the presence ofmultiple al-

leles, indels, and low-complexity sequences. Differences in

reference sequences were shown to lead to discrepancies

in variant calls in the exome.29 We observed these discrep-

ancies to be genome-wide, with an enrichment in ALTallele

discrepancies in coding regions, particularly when

comparing TGP versions based on a mixture of exome

and low-pass WGS versus versions based solely on 303

WGS. This suggests there may still be some difficulty inte-

grating the two data types, and that less biased results

may be obtained from comprehensiveWGS, particularly us-

ing long reads.30

We evaluated the consistency of phasing among TGP

versions using two methods: phasing-aware fingerprinting

and a phasing accuracy metric, which respectively empha-

size high-frequency or low-frequency switch errors.23

These comparisons revealed significant discrepancies in

phasing among the different TGP versions for most (but

not all) genomes. While pairwise comparisons can reveal

discrepancies, it is not always evident which one is the cor-

rect result. In the context of phasing, it is reasonable to as-

sume that TGP38N is the better phased version, since its

phasing method included multiple related individuals.

Notably, a small subset of genomes showed more consis-

tent phasing; these genomes include those most

commonly studied and used for evaluatingmethodologies.

Current best practices for benchmarking variant calls are

largely based on the use of truth set resources of the

GIAB Consortium.12–14 Specifically, TGP38Xwas evaluated

by comparing the variant call sets observed for the plat-

inum NA12878 genome, and computing false-positive

and false-negative call rates in regions for which the

GIAB considers calls to be high confidence.6 Strathern’s

generalization of Goodharts Law, ‘‘When a measure be-

comes a target, it ceases to be a good measure,’’31 would

seem to apply; since the Platinum NA12878 genome and

other GIAB truth sets are used to train experimental and

computational technologies, it seems inappropriate to

also use them for QC purposes. We observe that such veri-

fication may be insufficient for global evaluation of large

genome datasets including samples from diverse popula-

tion backgrounds, which may be differentially affected

by reference and software changes.

As a partial way to mitigate this deficiency, we recom-

mend performing global dataset comparisons using

genome fingerprints, and other general-purpose32 or

domain-specific metrics. Such relative benchmarking, in

which each individual genome can serve as its own refer-

ence, can supplement absolute benchmarking relative to

truth sets. As a result of such relative benchmarking, mul-

tiple discrepancies may become evident that cannot be
Hum
immediately resolved in the absence of a truth set;

resolving such discrepancies would certainly necessitate

further computational analyses and, in some cases, exper-

imental testing.

For most researchers, though, the existence of multiple

versions of the TGP dataset raises an important question:

what version should be used? The answer will naturally

depend on the specific analysis goals and available data.

For studying genomes expressed relative to GRCh37,

TGP37 is the obvious choice. For genomes expressed rela-

tive to GRCh38, though, there are multiple options avail-

able, differing from each other in multiple ways (Table 1).

Since the beginning of this comparison work, version

TGP38L was formally withdrawn, leaving TGP38C as the

version most similar to TGP37 in content, and thus

perhaps yielding the most comparable results. Versions

TGP38S and TGP38X are limited to biallelic content; we

also found multiple quality issues in these versions.

TGP38H is the only version that includes variants in

centromeric regions, which may be an important benefit,

or a negative, depending on the study. It is also by far

the most difficult version to work with due to its size.

Finally, TGP38N seems to have the most advantages, being

based on comprehensiveWGS resequencing of the original

samples and phasing using families. We noted, though,

that both TGP38C and TGP38N require some preprocess-

ing due to their unusual representation of multiallelic var-

iants and, in the case of TGP38N, the inclusion of 698

additional genomes that may not be needed for many

studies.
Data and code availability

Genome fingerprints for all datasets are available through the

genome fingerprints project website: db.systemsbiology.net/

gestalt/tgpqc. Code for computing genome fingerprints is avail-

able from Github: github.com/gglusman/genome-fingerprints.
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Web resources

Project website: db.systemsbiology.net/gestalt/tgpqc

Genome fingerprints project website: db.systemsbiology.

net/gestalt/genome_fingerprints

Genome fingerprints Github page: github.com/

gglusman/genome-fingerprints

IGSR: International Genome Sample Resource, http://

www.internationalgenome.org

liftOver tool: http://genome.ucsc.edu/cgi-bin/hgLiftOver

TGP37: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/

TGP38L: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/supporting/GRCh38_positions/

TGP38C: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000G_2504_high_coverage/working/

phase3_liftover_nygc_dir/

TGP38S: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000_genomes_project/release/20181203_

biallelic_SNV/

TGP38X: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000_genomes_project/release/20190312_

biallelic_SNV_and_INDEL/

TGP38H: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000G_2504_high_coverage/working/

20190425_NYGC_GATK/

TGP38N and TGP38Nr: http://ftp.1000genomes.ebi.ac.

uk/vol1/ftp/data_collections/1000G_2504_high_coverage/

working/20201028_3202_phased/

TGP37r: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/supporting/related_samples_vcf/

TGP38Sr: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000_genomes_project/release/201812

03_biallelic_SNV/supporting/related_samples/

TGP38Xr: http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/1000_genomes_project/release/201903

12_biallelic_SNV_and_INDEL/supporting/related_samples/
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