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Evaluating cell lines as models for metastatic breast
cancer through integrative analysis of genomic data
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Cell lines are widely-used models to study metastatic cancer although the extent to which

they recapitulate the disease in patients remains unknown. The recent accumulation of

genomic data provides an unprecedented opportunity to evaluate the utility of them for

metastatic cancer research. Here, we reveal substantial genomic differences between breast

cancer cell lines and metastatic breast cancer patient samples. We also identify cell lines that

more closely resemble the different subtypes of metastatic breast cancer seen in the clinic

and show that surprisingly, MDA-MB-231 cells bear little genomic similarities to basal-like

metastatic breast cancer patient samples. Further comparison suggests that organoids more

closely resemble the transcriptome of metastatic breast cancer samples compared to cell

lines. Our work provides a guide for cell line selection in the context of breast cancer

metastasis and highlights the potential of organoids in these studies.
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Cancer cell lines were initially derived from tumors and
cultured in a two-dimensional environment. Due to the
merit of cell culture, they have been widely used as models

to study cancer biology and test drug candidates1. However, the
fact that many drugs with promising preclinical evidence fail in
the clinic urges the reinvestigation of cell lines as tumor models2.
The differences between cell lines and tumors have raised the
critical question to what extent cell lines recapitulate the biology
of tumor samples3,4.

The emergence of large-scale genomic data provides an
unprecedented opportunity to quantify the biological differences
between cancer cell lines and human tumors. The Cancer Gen-
ome Atlas (TCGA) project characterized both genomic and
transcriptomic profiles for more than 10,000 human tumor
samples across over 32 tumor types5. The Cancer Cell Line
Encyclopedia (CCLE) characterized both genomic and tran-
scriptomic profiles for more than 1000 cell lines6. Domcke et al.7

performed a comprehensive comparison of molecular profiles
between 47 ovarian cancer cell lines and ovarian tumor samples
and showed that several rarely used cell lines more closely
resembled high-grade serous ovarian tumor samples than popular
cell lines. We examined the transcriptome similarity between
hepatocellular carcinoma (HCC) cell lines and HCC tumor
samples and demonstrated that nearly half of the HCC cell lines
did not resemble HCC tumor samples8. Jiang et al.9 conducted a
comprehensive comparison of molecular portraits between breast
cancer cell lines and primary breast cancer samples, and uncov-
ered both similar and dissimilar molecular features.

Cancer metastasis is the most common cause of cancer-related
death, thus there is an urgent need of new drugs for treating
cancer metastasis10,11. Previous cell line evaluation analysis was
mainly performed in reference to primary tumors. It remains
unknown whether cell lines closely resemble metastatic cancer
and thus are appropriately used in translational research.
Robinson et al.12 performed whole-exome and transcriptome
sequencing on 500 adult patients with metastatic solid tumors
and recently released their dataset (MET500). This large-scale
genomic profiling combined with existing genomic data allows
the evaluation of the utility of cell lines as models for metastatic
cancer. Using breast cancer as a case study, we comprehensively
compare multiple types of molecular features between breast
cancer cell lines and metastatic breast cancer samples (Fig. 1a–e).
Based on our analyses, we identify cell lines that closely resemble
the transcriptome of different subtypes of metastatic breast cancer
samples. In addition, we evaluate patient-derived organoids and
show their potential in preclinical studies. Our work provides
useful guidance for choosing cell lines in metastasis-related
translational research and could be easily extended to other
cancer types.

Results
Comparison of genomic profiles. We first compared somatic
mutation profiles between MET500 breast cancer samples and
CCLE breast cancer cell lines. Whole-exome sequencing was
performed for MET500 breast cancer samples, while hybrid
capture sequencing was performed for CCLE cell lines. We thus
only focused on the 1630 genes genotyped in both studies. We
were particularly interested in two types of genes that may play
important roles in breast cancer metastasis: genes that are highly
mutated in metastatic breast cancer and genes that are differen-
tially mutated between metastatic and primary breast cancers.

Consistent with previous research, we identified a long-tailed
mutation spectrum of the 1630 genes in MET500 breast cancer
samples and 69 of them were highly mutated (mutation frequency
>0.05; Supplementary Fig. 1a). The five most-altered genes were

TP53 (0.67), PIK3CA (0.35), TTN (0.29), OBSCN (0.19), and
ESR1 (0.14). We identified 19 differentially mutated genes
between MET500 and TCGA samples (FDR < 0.001) and the
five most significant genes were ESR1, TNK2, OBSCN, CAMKK2,
and CLK1 (Supplementary Fig. 1b). Interestingly, all of these 19
differentially mutated genes had higher mutation frequency in
MET500 than TCGA, which is consistent with a previous study
showing that metastatic cancer has increased mutation burden
compared to primary cancer12. Sixty-eight percent of them were
also among the 69 highly mutated genes mentioned above. After
merging the two gene lists, 75 unique genes remained (Fig. 2a and
Supplementary Data 1). The median mutation frequency of the
75 genes across CCLE breast cancer cell lines was 0.07 and only
9% of them (PRKDC, MAP3K1, TTN, ADGRG4, TP53, FN1, and
AKAP9) were mutated in at least 50% of cell lines, suggesting that
majority of these gene mutations could be recapitulated by only a
few cell lines. Surprisingly, 9 of the 75 genes (ESR1, GNAS,
PIKFYVE, FFAR2, RNF213, MYBL2, KAT6A, MAP4K4, and
FMO4) were not mutated in any cell line. Notably, ESR1 has been
identified as a driver gene of cancer metastasis and associated
mutations can cause endocrine resistance of metastatic breast
cancer cells13,14, yet none of the cell lines could be used to
appropriately model it.

We next asked whether there were genes specifically hyper-
mutated in breast cancer cell lines. To address this question, we
examined the mutation spectrum of the 32 genes that were
mutated in at least 50% of the breast cancer cell lines.
Surprisingly, 25 of them had low mutation frequency (<0.05) in
MET500 breast cancer samples. Further analysis of somatic
mutation profiles of the 25 genes in TCGA breast cancer samples
confirmed their hypermutations were specific to breast cancer cell
lines (Supplementary Fig. 1c).

In addition to somatic mutation spectrum, we also compared
copy number variation (CNV) profiles between MET500 breast
cancer samples and CCLE breast cancer cell lines. We observed a
high correlation of median CNV values across the 1630
commonly genotyped genes (spearman rank correlation= 0.81;
Fig. 2b). However, we also noticed that the gain-of-copy-number
events in cell lines appeared to resemble metastatic breast cancer
while loss-of-copy-number events did not. For the 711 genes
showing copy-number-loss in CCLE breast cancer cell lines
(median CNV < 0), their cell line derived median CNV values
were significantly lower than that from MET500 breast cancer
samples; however, no statistically significant difference was
detected in the 919 genes with copy-number-gain (Supplemen-
tary Fig. 1d).

Out of the 57 CCLE breast cancer cell lines, 24 were derived
from metastatic sites (Supplementary Data 2). We further divided
the cell lines into two groups (according to whether derived from
metastatic sites or not) and then compared the CNV profile of
each group with MET500 breast cancer samples. We found cell
lines derived from metastatic sites more closely resembled the
CNV status of the 109 genes with high copy-number-gain
(median CNV ≥ 0.4) in MET500 breast cancer samples (Fig. 2c, d
and Supplementary Fig. 1e).

Correlating cell lines with MET500 patient samples. Tran-
scriptome correlation analysis (TC analysis) is proven to be an
effective approach to evaluate cell lines for research purpose7,8,15.
Therefore, we performed TC analysis and ranked all 1019 CCLE
cell lines according to their transcriptome similarity with
MET500 breast cancer samples (see Methods). The top 20 cell
lines were all breast cancer cell lines, suggesting metastatic breast
cancer cells retain the transcriptomic signature from the tissue
they originated in and cell lines have the potential to resemble the
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transcriptome of them (Fig. 3a). MDA-MB-415 and HMC18 were
the two breast cancer cell lines that had highest and lowest
transcriptome similarity, respectively (Spearman rank correlation
of 0.415 and of 0.087).

We next assessed whether cell lines resembling the transcrip-
tome of samples from different metastatic sites were identical. We
were only able to consider liver and lymph node (the two sites
which have at least nine samples) due to the lack of enough
samples from other sites in the MET500 dataset. For each of
them, we performed metastatic-site-specific TC analysis (i.e.,
compute transcriptome similarity of cell lines with samples
derived from a specific metastatic site) and found the results were
highly correlated (Fig. 3b) with MDA-MB-415 being the most-
correlated cell line for both sites. In addition, we detected no
statistically significant difference in expression correlation (with
MDA-MB-415) between the two sites (Supplementary Fig. 2a).

Given the genomic heterogeneity of breast cancer, we further
asked whether cell lines resembling the transcriptome of
metastatic breast cancer of different subtypes were identical. To
address this question, we first determined the PAM50 subtype of
MET500 breast cancer samples with R package genefu and then
applied t-SNE to visualize them (Fig. 3c). We found Basal-like
samples clustered together and separated from other subtypes;
additionally, the majority of LuminalA/LuminalB/Her2-enriched/
Normal-like samples were mixed together except two skin-
derived samples. HER2-enriched samples seemed to be separated

from LuminalA/LuminalB samples but the boundary was not
clear. These results suggested that subtype information was well
maintained in metastatic breast cancer samples and additionally
confirmed the feasibility of using PAM50 for subtyping metastatic
breast cancer though it was initially developed using primary
breast cancer data. We further confirmed the subtyping results by
performing the same analysis on a combined dataset which
contains both MET500 and TCGA breast cancer samples
(Supplementary Fig. 2b). Next, we performed subtype-specific
TC analysis (i.e., compute transcriptome similarity of cell lines
with samples of a specific subtype) and found high correlation
within LuminalA/LuminalB/Her2-enriched subtypes, in contrast
to their relatively lower correlation to Basal-like subtype (Fig. 3d).

To confirm the robustness of our TC analysis results derived
from the comparison between CCLE and MET500 RNA-Seq data,
we downloaded CCLE gene expression data profiled by micro-
array and then searched the GEO database and assembled a
microarray dataset containing the expression values of another
103 independent metastatic breast cancer samples. We repeated
the TC analysis with microarray data and found results obtained
from the two platforms were highly consistent with each other.
First, there was a large overlap of the top-ranked cell lines. Out of
the 10 cell lines having highest transcriptome similarity with the
103 metastatic breast cancer samples, 6 of them were within the
10 cell lines having highest transcriptome similarity with MET500
breast cancer samples. Second, both metastatic-site-specific and
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subtype-specific TC analysis results showed high correlations
(Supplementary Fig. 3). Due to such high consistency, it is not
surprising that we observed similar correlation trends in
metastatic-site-specific (and subtype-specific) TC analysis results
(Supplementary Figs. 4 and 5).

About 24% of the 103 samples in the microarray dataset was
derived from bone. Remarkably, the metastatic-site-specific TC
analysis result of bone showed lower correlation with other sites
(Supplementary Fig. 4). To exclude the possibility that this was
caused by tumor purity issues, we applied ESTIMATE16 on the
microarray dataset and found the tumor purity of bone-derived
samples was not significantly lower than that of liver, lymph
node, and lung (Supplementary Fig. 6). Our results may not be
too surprising given the fact that bone provides a very unique
microenvironment including enriched expression of osteolytic
genes17; however, this result needs to be confirmed in the future
as more data become available.

Subtype-specific cell line evaluation. We attempted to identify cell
lines which closely resemble the transcriptome of different subtypes
of metastatic breast cancer based on the results of subtype-specific
TC analysis. Given a subtype, we noticed that for a random CCLE
cell line, its transcriptome similarity with MET500 breast cancer
samples of that subtype approximately followed a normal distribu-
tion (Supplementary Fig. 7). Therefore, those breast cancer cell lines
showing significantly higher transcriptome similarity were of our
interest. Driven by this finding, for each subtype we first fit a normal
distribution (the null distribution) with the transcriptome similarity
values (derived from subtype-specific TC analysis) of all non-breast-
cancer cell lines and then assigned each of the 57 breast cancer cell
lines a right-tailed p-value. The most significant cell lines for
LuminalA, LuminalB, Her2-enriched, and Basal-like subtypes were
MDA-MB-415 (p-value= 3.59e-05), BT483 (p-value= 2.22e-07),
EFM192A (p-value= 0.11e-03), and HCC70 (p-value= 0.40e-03),
respectively. Using criteria of FDR ≤ 0.01, we identified 20, 28, and
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Fig. 2 Comparison of genomic profiles between MET500 breast cancer samples and CCLE breast cancer cell lines. a Somatic mutation profile of the 75
genes across MET500 breast cancer samples and CCLE breast cancer cell lines. The top-side color bar indicates data sources (MET500 or CCLE) and the
right-side color bar indicates mutation frequency. b Comparison of CNV profiles between MET500 breast cancer samples and CCLE breast cancer cell
lines. c Comparison of CNV profiles between MET500 breast cancer samples and the 33 primary-site derived CCLE breast cancer cell lines. d Comparison
of CNV profiles between MET500 breast cancer samples and the 24 metastatic-site-derived CCLE breast cancer cell lines. In panels b–d, each dot is a
gene, with y-axis representing its median CNV value across MET500 breast cancer samples, and x-axis representing its median CNV value across CCLE
breast cancer cell lines. In panels c and d, genes with high copy-number-gain in MET500 breast cancer samples were marked by red. Source data are
provided as a Source Data file
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24 significant cell lines for LuminalA, LuminalB, and Her2-enriched
subtypes, respectively. Notably, most of these significant cell lines
were derived from metastatic sites and 18 were shared by the three
subtypes. Surprisingly, no cell line passed the criterion for Basal-like
subtype. We further examined whether this was due to the limited
number of Basal-like MET500 breast cancer samples, but found that
the number of LuminalA samples was even less than that of Basal-
like samples. After we used a more loosened FDR cutoff of 0.05, we
obtained 22 significant cell lines for Basal-like subtype. All statistical
testing results are listed in Supplementary Data 3.

We next searched PubMed to examine the popularity of the 57
breast cancer cell lines (see Methods and Supplementary Data 2).
MCF7 is most commonly used in metastatic breast cancer
research (43.6% of total PubMed citations). In our analysis,
although it was a significant cell line (according to criteria FDR ≤
0.01) for LuminalB subtype, it was less correlated with LuminalB
MET500 breast cancer samples than BT483 (Supplementary
Fig. 8a). Following MCF7 is MDA-MB-231 (40.2% of total
PubMed citations); however, it was not a significant cell line for
any subtype. The third most commonly used cell line was T47D
(3.9% of total PubMed citations), which was a significant cell line

for LuminalA and Her2-enriched subtypes. It did not show
significantly lower correlation with LuminalA MET500 breast
cancer samples than MDA-MB-415 (Supplementary Fig. 8b);
however, compared to EFM192A, it was significantly less
correlated with Her2-enriched MET500 breast cancer samples
(Supplementary Fig. 8c).

We further explored cell line MDA-MB-231, one of the most
widely used triple-negative cell lines in metastatic breast cancer
research. We ranked all of the 1019 CCLE cell lines according to
their transcriptome similarity with Basal-like MET500 breast
cancer samples and the rank of MDA-MB-231 was 583.
Consistent with this, MDA-MB-231 was significantly less
correlated with Basal-like MET500 breast cancer samples than
HCC70 (Fig. 4a). We observed similar patterns with CNV data
(Fig. 4b). We also examined how MDA-MB-231 recapitulated the
somatic mutation spectrum of Basal-like metastatic breast cancer
samples and found only three of the 25 highly mutated genes
(mutation frequency ≥ 0.1 in Basal-like MET500 breast cancer
samples) were mutated in MDA-MB-231 (Fig. 4c). Since CCLE
data for MDA-MB-231 was generated in vitro, to confirm our
finding we obtained another independent microarray dataset
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which profiled the gene expression of MDA-MB-231 cell lines
derived from lung metastasis in vivo18. We found, however, that
even these MDA-MB-231 cell lines in vivo did not most closely
resemble the transcriptome of lung metastasis breast cancer
samples. The breast cancer cell line which showed highest

correlation with lung metastasis breast cancer samples was
EFM192A (Fig. 4d).

To further confirm the low transcriptome similarity of MDA-
MB-231 with Basal-like MET500 breast cancer samples, we re-
processed the RNA-Seq data of CCLE breast cancer cell lines
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(with the pipeline used to process MET500 RNA-Seq data); in
addition, we also re-processed the RNA-Seq data of another seven
MDA-MB-231 cell line samples collected from SRA database. We
re-performed TC analysis between the breast cancer cell lines
(with re-processed data) and Basal-like MET500 breast cancer
samples and drew similar conclusion as our previous analysis
(Fig. 4e). Recently, Nguyen et al.19 performed single cell RNA-Seq
on human breast epithelial cells and confirmed that KRT14
expression was a hallmark of Basal cells. Strikingly, we found
KRT14 expression in the eight MDA-MB-231 cell line samples
was significantly lower than that of Basal-like MET500 breast
cancer samples (p-value= 0.0007); however, such significant
KRT14 differential expression was not detected between MDA-
MB-231 and MET500 breast cancer samples of non-Basal-like
subtypes (Fig. 4f). Our analysis indicates that although MDA-
MB-231 was classified as Basal-like subtype and bears the triple-
negative phenotype, its cell type of origin may not be Basal cell,
which could partially explain why its genomic profile is
substantially different from Basal-like MET500 breast cancer
samples.

Comparing cell lines with organoids. Owing to the advancement
of three-dimensional (3D) culture technology, more and more
tumor patient-derived organoids have been established and
widely used in translational research20,21. However, their utility to
model metastatic cancer has not been comprehensively evaluated
with large-scale genomic data. To fill this gap, we performed
additional TC analysis on 26 patient-derived breast cancer
organoids using RNA-Seq data. The aforementioned subtype-
specific TC analysis showed that the Basal-like subtype had
relatively lower correlation with other subtypes and we also
observed similar trend in organoids (Fig. 5a). We next asked
whether organoids outperformed cell lines in resembling the
transcriptome of metastatic breast cancer. For each of the non-
Basal-like organoids, we computed its transcriptome similarity
with non-Basal-like MET500 breast cancer samples and found
organoids had significantly higher transcriptome similarity than
CCLE breast cancer cell lines (Fig. 5b, left panel). The superiority
of organoids was also observed in the TC analysis of Basal-like
subtype (Fig. 5b, right panel). The previous analysis revealed that
MDA-MB-415, BT483, and EFM192A were the three most sig-
nificant cell lines for LuminalA, LuminalB, and Her2-enriched
subtypes, respectively. Interestingly, for all the three subtypes
MMC01031 was the organoid showing highest transcriptome
similarity and had significantly higher correlation with MET500

breast cancer samples than the corresponding most significant
cell line. Organoid W1009 had the highest transcriptome simi-
larity with Basal-like MET500 breast cancer samples and the
expression correlation values were also significantly higher than
HCC70, the triple-negative cell line that is most significant for
Basal-like subtype (Fig. 5c).

Transcriptome differences between models and patients. Our
TC analysis has shown that in vitro models such as cell lines and
organoids could resemble the transcriptome of metastatic breast
cancer to some extent. However, they are still different in many
aspects. To characterize such differences, we performed differ-
ential gene expression analysis among MET500 breast cancer
samples, CCLE breast cancer cell lines, and organoids (Supple-
mentary Fig. 9). For non-Basal-like subtypes, 2348 genes (2143
up-regulated, 205 down-regulated) were identified as differen-
tially expressed in both MET500-vs-CCLE and MET500-vs-
organoids comparisons. For Basal-like subtype, there were 1378
common differential expressed (DE) genes (1117 up-regulated,
261 down-regulated). After intersecting the above two common
DE gene lists, we finally obtained 1017 subtype-and-model-
independent DE genes (947 up-regulated, 70 down-regulated)
and then performed GO enrichment analysis. For the 947 up-
regulated ones, 29 GO terms were identified as significant (FDR <
0.001) and most of them were immune-related, illustrating the
large gap between culture media and tumor microenvironment
(Supplementary Data 4). The two terms “platelet degranulation”
and “chemotaxis” were also detected as significant. Besides
microenvironment, our results also implicated the difference of
intrinsic characteristics between metastatic breast cancer cells and
in vitro models. For example, the enrichment on “steroid meta-
bolic process” suggested that both cell lines and organoids may
not sufficiently resemble the reprogrammed metabolism of
metastatic breast cancer. Surprisingly, for the 70 down-regulated
subtype-and-model-independent DE genes, no GO terms passed
the FDR < 0.001 criteria, which could be due to the small gene
number. We decreased the FDR cutoff to 0.1 and observed four
significant terms with “dna replication” being the most significant
(FDR= 0.037). To further confirm that batch effects were not
dominating DE analysis results, we used RUVg22 to infer the
values of hidden factors (k= 1) and re-performed DE analysis
mentioned above and identified 749 subtype-and-model-
independent DE genes, all of which were among the previously
identified 1017 subtype-and-model-independent DE genes.

Fig. 4 MDA-MB-231 has substantial genomic difference with Basal-like metastatic breast cancer samples. a The left panel shows the ranking of all 1019
CCLE cell lines according to their transcriptome similarity with Basal-like MET500 breast cancer samples. The top-left scatter plot within the first panel
shows the expression of the 1000 genes used in TC analysis, with the x-axis representing expression value in MDA-MB-231, and the y-axis representing
median expression value across Basal-like MET500 breast cancer samples. The boxplot on the right shows the distribution of expression correlation with
Basal-like MET500 breast cancer samples for MDA-MB-231 and HCC70. In each box, the central line represents the median value and the bounds
represent the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. b The left panel shows the ranking
of all 1019 CCLE cell lines according to their CNV similarity with Basal-like MET500 breast cancer samples; the boxplot on the right shows the distribution
of CNV correlation with Basal-like MET500 breast cancer samples for MDA-MB-231 and HCC70. In each box, the central line represents the median value
and the bounds represent the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. c Somatic
mutation profile of the 25 highly mutated genes across MDA-MB-231 and Basal-like MET500 breast cancer samples. d Boxplot of expression correlation
between cell lines and lung-derived metastatic breast cancer samples. This includes CCLE breast cancer cell lines and lung-metastasis-derived MDA-MB-
231 (colored red). In each box, the central line represents the median value and the bounds represent the 25th and 75th percentiles (interquartile range).
The whiskers encompass 1.5 times the interquartile range. e Ranking CCLE breast cancer as well as additional seven MDA-MB-231 cell lines according to
their transcriptome similarity with MET500 Basal-like breast cancer samples. Each dot is a cell line; the x-axis represents rank and the y-axis represents
transcriptome similarity with Basal-like MET500 breast cancer samples. MDA-MB-231 cell lines were colored red. f Boxplot of KRT14 expression in
MET500 breast cancer samples and MDA-MB-231 cell lines. The p-value is computed with the two-sided Wilcoxon rank-sum test. In each box, the central
line represents the median value and the bounds represent the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the
interquartile range. Source data are provided as a Source Data file
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We further performed gene set differential activity (DA)
analysis on the 50 MSigDB hallmark gene sets to characterize
differences regarding to specific biological processes (Fig. 6a,
Supplementary Fig. 10). For non-Basal-like subtype, we identified
35 and 32 significant gene sets in MET500-vs-CCLE and
MET500-vs-organoids comparisons, respectively (FDR < 0.001;
Supplementary Data 5). There were 26 significant gene sets in
common and for 23 of them the p-values derived from MET500-
vs-CCLE comparison were lower than that derived from
MET500-vs-organoid comparison, which may be unsurprising
given that organoids more closely resemble the transcriptome of
metastatic breast cancer samples (Fig. 6b, left panel). We also
performed DA analysis for Basal-like subtype, identifying 19 and
24 significant gene sets in MET500-vs-CCLE and MET500-vs-
organoids comparisons, respectively (Fig. 6b, right panel). For
each of the subtypes, we classified the 50 hallmark gene sets into
four categories according to DA analysis results:

● Category 1: Only significant in MET500-vs-organoids com-
parison (e.g., ANDROGEN RESPONSE).

● Category 2: Only significant in MET500-vs-CCLE compar-
ison (e.g., E2F TARGETS).

● Category 3: Significant in both MET500-vs-organoids and
MET500-vs-CCLE comparisons (e.g., COMPLEMENT).

● Category 4: Not significant in either comparison (e.g., FATTY
ACID METABOLISM).

Interestingly, 27 gene sets could be consensually classified into
one specific category, regardless of the subtype. Figure 6c shows
the distribution of ssGSEA scores of the representative gene set
for each category.

Discussion
In cancer research, cell lines have been traditionally used to test
drug candidates and study disease mechanism. The genomic
profile comparison showed that breast cancer cell lines poorly
recaptured somatic mutation patterns of metastatic breast cancer
samples, while their CNV profiles were more consistent. More-
over, it is worth noting that cell lines carried many specific
genomic alternations, possibly due to culture effects. Examples
included the 25 genes presenting cell-line-specific hypermutation.
Such large genomic differences and variations revealed by the
comparison indicates the importance of selecting cell lines to
represent heterogeneous metastatic cancer samples. This study
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investigated two important factors (i.e., metastatic site and cancer
subtype) that need to be considered during cell line selection.

Metastatic sites have their distinct microenvironment that has
a large impact in shaping the genomic profiles of metastatic
cancer cells. However, the metastatic-site-specific TC analysis did
not identify cell lines with metastatic-site-specific utility, which
seems not to reflect the impact of microenvironment. Further
differential gene expression analysis revealed higher expression of
immune-related genes in metastatic cancer samples (compared to
cell lines), suggesting that the media used to culture cancer cell
lines did not model tumor microenvironment appropriately.
Therefore, we conclude cell lines evaluated in this study do not
carry indicative genomic signatures that are shaped by the
microenvironment of individual metastatic sites and that might
be the reason why we did not find metastatic-site-specific
cell lines.

Breast cancer is quite heterogeneous and we showed that
PAM50 subtypes were maintained in metastatic breast cancer
cells. Considering the large genomic difference between Basal-like
and other subtypes, it is not surprising that in subtype-specific TC
analysis Basal-like subtype showed lower correlation with others.
Our analysis reveals the importance and necessity of subtype-
specific cell line selection. In the future as data continue to
accumulate, more factors can be considered for appropriate cell
line selection and we can start building an ad-hoc mapping
algorithm: inputs would be the characteristics of metastatic can-
cer samples (subtype, metastatic site, even age, race, stage, etc.) as
well as the specific scientific question of interest and the output
would be a list of appropriate cell lines.

Surprisingly, we found MDA-MB-231, the widely used triple-
negative cell line in metastatic breast cancer research, was dra-
matically different from Basal-like metastatic breast cancer sam-
ples. According to our analysis, HCC70 seems to be a better
model, but this does not mean it can be directly employed to
study cancer metastasis as many other criteria are needed for the
assessment. Triple-negative breast cancer is itself highly hetero-
geneous. In a recent study, Nguyen et al.19 showed that breast
epithelial cell populations corresponded to breast cancer sub-
types. Previous researchers have associated MDA-MB-231 with
Claudin-low subtype and our analysis suggested that the cell type
of origin of MDA-MB-231 cell line may not be Basal cells23. In
the future, as more single-cell RNA-Seq data become available, it
would be valuable to accurately determine the cell type of origin
of MDA-MB-231 and optimize its usage in cancer metastasis-
related studies.

Organoids are recently established using 3D culture methods.
Our analysis suggested that compared to cell lines, they resemble
the transcriptome of patient samples more closely, which is a
critical characteristic in drug testing. It is also important to note
that cell lines evaluated in our study were established much earlier
than organoids. During the culturing process, they could have
accumulated additional genomic alternations, which may par-
tially explain why organoids are more tightly correlated with
patient samples. Recent studies have shown that organoids pre-
serve the histological architecture, gene expression, and genomic
landscape of the original tumor24. Together with our comparative
studies, we conclude that although the value of organoids in
translational research has not been fully recognized, while their
high genomic similarity with patient samples warrants further
investigation.

Prior to this study, researchers have proposed different com-
putational methods to measure the similarity between cell lines
and patient samples7,9. It has been shown that gene expression is
one of the most informative features to predict drug response and
weighting cell lines based on their transcriptome similarity with
patient samples increases predictive power in gene expression-

based drug discovery8,25–27. Therefore, in this paper we ranked
cell lines according to TC analysis results. Note that different
expression features could be employed to measure transcriptome
similarity depending on the question. For example, for
researchers who specifically focused on the molecular mechan-
isms of cancer metastasis, it may not be necessary to require the
cell line model (such as MDA-MB-231) to resemble the whole
transcriptome of patient samples as long as it could mimic the key
biological processes in cancer metastasis. In such scenario,
ranking cell lines according to their invasiveness might be more
appropriate.

In summary, by leveraging publicly available genomic data, we
comprehensively evaluated the utility of breast cancer cell lines as
models for metastatic breast cancer. Our study introduces a
simple framework for cell line selection which can be easily
extended to other cancer types. Although there are concerns
about data quality and discrepancies between different studies/
platforms, our large-scale analysis and cross-platform validation
hopefully addresses these concerns and demonstrates the power
of leveraging open data to gain biological insights of cancer
metastasis. We hope that the recommendations in this study may
facilitate improved precision in selecting relevant cell lines for
modeling in metastatic breast cancer research, which may accel-
erate the translational research.

Methods
Datasets. The raw RNA-Seq data of MET500 breast cancer samples (diagnosed as
“Breast Invasive Ductal Carcinoma”) were downloaded from dbGap (under
accession number phs000673.v2.p1) and further processed using RSEM28,29. FPKM
values were used as gene expression measure. To keep consistent with other RNA-
Seq datasets, only the RNA-Seq samples profiled with PolyA protocol were con-
sidered. The somatic mutation and CNV data of MET500 samples were down-
loaded from MET500 web portal (https://met500.path.med.umich.edu/
downloadMet500DataSets).

All CCLE pre-processed data (including gene expression profiled by RNA-Seq
and microarray, somatic mutation and CNV) were downloaded from the CCLE
data portal (https://portals.broadinstitute.org/ccle). The raw RNA-Seq data of 55
CCLE breast cancer cell lines were downloaded from GDC Legacy Archive
(https://portal.gdc.cancer.gov/legacy-archive/search/f; HMEL and HS274T were
missing due to unknown reasons) and further processed by RSEM. For each CCLE
breast cancer cell line, we computed spearman rank correlation between gene
expression values quantified by CCLE pipeline and RSEM. Supplementary Fig. 11a
shows the distribution of the derived spearman rank correlation values. The
median of the distribution is 0.9, suggesting that the gene expression values
quantified by the two pipelines are highly consistent. As an example,
Supplementary Fig. 11b shows such consistency in MCF7 cell line. We noticed
that for MET500 cohorts both tumor and matched normal DNA were profiled in
exome sequencing while for CCLE cell lines the somatic mutation was called by
MuTect2 using a mode that does not require matched normal DNA6,30. Therefore,
in our analysis we used the filtered version of CCLE somatic mutation MAF file
(CCLE_hybrid_capture1650_hg19_NoCommonSNPs_NoNeutralVariants_CDS
_2012.05.07.maf) in which common polymorphism variants have been excluded.

For TCGA Breast Invasive Ductal Carcinoma samples, somatic mutation calling
results were downloaded from cBioPortal31,32 on 12 April 2018 (using R package
cgdsr) and RSEM-processed gene expression data were downloaded from UCSC
Xena data portal (https://xena.ucsc.edu/)33.

The RNA-Seq data of patient-derived organoids were from BC Organoids
Biobank34.

We searched GEO and manually assembled a microarray dataset containing
gene expression values of 103 metastatic breast cancer samples35–38. The GEO
accession numbers used were GSE11078, GSE14017, GSE14018, and GSE54323.

The gene expression data of lung-metastasis-derived MDA-MB-231 were
downloaded from GEO under accession number GSE2603. The RNA-Seq data of
non-CCLE MDA-MB-231 were downloaded from SRA and the accession numbers
are ERR1982279, ERR1982280, ERR2022825, SRR2532366, SRR4822549,
SRR6451704, and SRR6451705.

Detailed statistics of the above datasets are listed in Supplementary Data 6.

Gene filtering. We downloaded the list of 1650 genes covered by CCLE hybrid
capture sequencing from CCLE data portal (https://data.broadinstitute.org/ccle_
legacy_data/hybrid_capture_sequencing/CCLE_hybrid_capture1650_HGNC_info_
2012.02.20.txt). Then, we applied the following steps to get the final 1630 highly con-
fident genes.
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1. Ten gene symbols which do not have associated HGNC records were
removed.

2. Nine gene symbols which do not have associated RefSeq records (downloaded
from UCSC genome browser, hg19) were removed.

3. One Y-chromosome located gene PRKY was removed.

Identification of differentially mutated genes between MET500 and TCGA
samples. Given a gene, we computed the right-tailed p-value to test whether it has
significantly higher mutation frequency in metastatic breast cancer samples as
follows:

p ¼ 1�
Xn

i¼0

Prði;N; q̂Þ; ð1Þ

where Pr is the probability mass function of binomial distribution, N is the number
of genotyped MET500 breast cancer cohorts, n is the number of MET500 breast
cancer cohorts in which the gene is mutated and q̂ is the mutation frequency of the
gene in TCGA dataset (for genes with zero mutation frequency, we used the
minimum mutation frequency across all genes). Similarly, we computed left-tailed
p-value (1−p) to test whether a gene has significantly lower mutation frequency in
metastatic breast cancer samples. To control FDR, we applied the
Benjamini–Hochberg procedure on left-tailed and right-tailed p-values, respec-
tively39. We noticed that somatic mutations of MET500 cohorts were called by
Varscan2 (ref. 40) while TCGA somatic mutation data hosted on cBioPortal were
called by MuTect30. To exclude the possibility that the differences inferred between
MET500 and TCGA primary tumors were due to pipeline batch effects, we
downloaded Varscan2 processed TCGA somatic mutation data from the GDC
portal (https://portal.gdc.cancer.gov/) and found gene mutation frequency was
highly consistent between the two databases (Supplementary Fig. 11c). In addition,
the p-values computed in gene differential mutation analysis (with the formula
mentioned above) were also highly correlated (Supplementary Fig. 11d).

TC analysis with RNA-Seq and microarray data. To perform TC analysis with
RNA-Seq data, we first rank-transformed gene RPKM values for each CCLE cell
line and then ranked all the genes according to their rank variation across all CCLE
cell lines. The 1000 most-varied genes were kept as “marker genes” (we tried
different gene sizes in the early preliminary analysis and did not find the large
variation of results, so we decided to choose 1000 most-varied genes in this study).
Given RNA-Seq profiles of a cell line (or an organoid) and several patient samples,
we compute spearman rank correlation (across the 1000 marker genes) between the
cell line (organoid) and each sample and the median value of computed spearman
rank correlation values was defined as the transcriptome similarity of the cell line
(organoid) with the patient samples. For microarray data, a similar procedure was
applied and the 1000 most-varied probe sets were used to compute correlation
values.

We also extended the above method to compute CNV similarity. Instead of
selecting “marker genes”, all of the 1630 commonly genotyped genes were used.

PAM50 subtyping and t-SNE visualization. The genefu package was used to
determine breast cancer subtype41,42. To visualize tumor samples with t-SNE, we
first computed the pair-wise distance between every two samples as 1 minus the
spearman rank correlation across PAM50 genes and then applied the function
Rtsne to perform 2D reduction43.

PubMed search. The number of PubMed abstracts or full texts mentioning a
CCLE breast cancer cell line was determined using the PubMed Search feature on
10 May 2018 (https://www.ncbi.nlm.nih.gov/pubmed/). For each cell line, we
searched with a keyword”[cell line name] metastasis”. We repeated this step for the
terms “metastatic”, “breast cancer”, and “metastatic breast”. These searches
returned highly correlated results, so we used the search terms which returned the
most results: “[cell line name] metastasis”.

Identification of differentially expressed genes and differentially activated
gene sets. DESeq2 was used to identify differentially expressed genes (FDR < 0.001
and abs(log2FC) > 1) and DAVID bioinformatics sever was used to perform Gene
Ontology enrichment analysis44,45. In our DE analysis, only protein coding genes
were considered.

In DA analysis, we first used the R package GSVA to compute ssGSEA scores
for the 50 MSigDB hallmark gene sets (http://software.broadinstitute.org/gsea/
msigdb/)46–49. Then, for each gene set the two-sided Wilcoxon rank-sum test was
used to assign the p-value in the comparison of ssGSEA scores between
MET500 samples and cell lines (or organoids).

Software tools and statistical methods. All of the analysis was conducted in R.
The ggplot2 and ComplexHeatmap packages were used for data visualization50,51.
Tumor purity was estimated using ESTIMATE16. CNTools was used to map the
segmented CNV data to genes52. If not specified, the two-sided Wilcoxon rank-
sum test was used to compute the p-value in hypothesis testing.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its supplementary information files or from the corresponding author
upon reasonable request. The data are also available at SYNAPSE (https://www.synapse.
org/) under accession number syn18403108. The source data underlying Fig. 2–6 and
Supplementary Figs. S1–S8, S10, S11 are provided as a Source Data file.

Code availability
The code is available at github https://github.com/Bin-Chen-Lab/MetaBreaCellLine.
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