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Abstract: Neuropathic pain (NP) is a complex and chronic disease caused by lesions or defects 

of the somatosensory nervous system. The treatments normally used for managing NP usually 

lack efficacy. Several animal models of NP have been engineered in order to understand the 

molecular mechanisms underlying NP and to find alternative molecules to use as new thera-

peutic agents. Preclinical in vivo studies identified the epigallocatechin-3-gallate (EGCG), a 

main active component of green tea (Camellia sinensis), as a possible therapeutic molecule 

for NP treatment due to its anti-inflammatory and antioxidant properties. Interestingly, it has 

been shown that EGCG reduced bone cancer pain. The purpose of this article is to discuss the 

potential use of EGCG for control and treatment of NP, by reviewing the preclinical studies 

reported in the literature and by shedding light on the potential schemes based on EGCG’s 

application in clinical practices.
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Introduction
Neuropathic pain (NP) is a complex and chronic disorder caused by lesions or defects 

of the somatosensory system.1–3 Because NP can arise anywhere in the nervous system, 

it is commonly divided into three different types: 1) central NP (caused by defects 

of central nervous system [CNS]), 2) peripheral NP (caused by defects of peripheral 

nervous system [PNS]), and 3) mixed NP (due to alterations of PNS and CNS).

Central NP can arise from different disorders involving the brain or the spinal cord. 

Most frequent is the occurrence of peripheral NP which is a consequence of multiple 

disorders, such as neurotoxic chemicals, infections, metabolic diseases, mechanical 

trauma, and tumor invasion.4,5 Moreover, it is of note that iatrogenic pain syndromes 

are due to many cancer treatments or palliative care such as radiation therapy, che-

motherapy, and surgery.6 For these reasons, NP dramatically affects the quality of 

life of patients.

Unfortunately, with the pharmacological approaches to treat NP, no encouraging 

results were obtained in patients suffering from NP.7 Thus, new alternative therapies 

have been proposed.

To understand the molecular mechanisms underlying NP to find new effective 

therapies as well as to bypass the problem of diverse etiology of NP, several animal 

models have been generated.8 Models largely used to study peripheral NP were obtained 

by ligation-mediated peripheral nerve injury, as schematized in Figure 1. Moreover, 
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additional models for NP induced by different agents and/or 

causes (chemotherapeutic agents, HIV, ethanol, and diabetes) 

have also been designed (see the study by Jaggi et al8 for a 

review on this topic).

Thanks to studies performed by using these animal 

models, new therapeutic agents for NP management have 

been discovered, shedding a light on the possibilities for 

translating these new approaches to clinical practice.

Indeed, NP is extremely difficult to treat because it is 

a very complex disease with several mechanisms involved 

in the generation, propagation, as well as maintenance and 

enhancement of the stimulus through a central and/or periph-

eral pain processing.

Epigallocatechin-3-gallate (EGCG), the most abundant 

and active component of green tea, has multiple biological 

activities. Thus, it is considered as a compound with poten-

tial therapeutic effects in many diseases, including cancer.9 

Several preclinical studies have shown that EGCG is involved 

in the regulation of different molecular signaling pathways 

by inhibiting the inflammation10,11 and by modulating the 

oxidative stress, processes directly connected to tumorigen-

esis. Importantly, emerging roles for EGCG have been also 

described in tumor microenvironment’s modulation.12–14

In order to understand the role of EGCG in NP, we 

carried out a bibliographic research on the principal data-

bases (PubMed and Embase) of the articles reported in 

the literature, in the last decade, regarding the effects of 

EGCG in animal model NPs. With this approach, we iden-

tified and included interesting research articles (n=10) on 

the specified topic in the present review. Data from these 

studies showed that EGCG has antinociceptive effects due 

to its anti-inflammatory15,16 and antioxidant properties.16–18 

Moreover, it has been reported that novel EGCG derivatives 

are able to modulate NP by decreasing the nuclear levels of 

nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) and the synthesis of proinflammatory cytokines such 

as interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha 

(TNF-α). Recently, it has been reported that EGCG is able 

to reduce the pain due to bone cancer.19

In order to dissect the underlying molecular mechanisms 

and elucidate the therapeutic potential of EGCG in the treat-

ment of NP, we summarize the preclinical studies reported 

in the literature.

eGCG: a natural compound with multiple 
biological functions
It has been shown that 30% of the weight of the plant C. sin-

ensis is composed of EGCG.20 Belonging to the family of 

catechins, EGCG has redox activities since it is able to reduce 

reactive oxygen species (ROS).21,22 Moreover, this natural 

compound is subjected to many biological transformations 

and binds to target proteins and enzymes involved in the 

regulation of several molecular complex signaling pathways.9 

Due to its multiple biological functions, several preclinical 

studies have been conducted during these years using EGCG 

in different types of diseases. Data from these experimen-

tations established that EGCG is a chemopreventive and 

chemotherapeutic agent23 since it is able to modulate many 

pathological conditions (eg, cancer,9,24 inflammation,25,26,31 

diabetes,27 neurodegenerative disorders,28,29,32 liver disease,30 

and metabolic syndrome27). The most relevant properties of 

EGCG are summarized in Table 1.

In contrast to preclinical studies, data from epide-

miological investigations based on the use of EGCG in the 

prevention of cancer in humans were not enthusiastic and 

lacked consistency, probably due to several factors (eg, 

genetic profile and lifestyle factors) interfering with the 

human’s response to EGCG’s treatment.33–35 Similarly, no 

Figure 1 Schematic representation of the major animal models of nerve injury.
Notes: A) SNL obtained by ligations around L5 and L6; B) Sciatic nerve transection; C) CCi obtained by ligations around the sciatic nerve; D) SNi obtained by transection 
of the tibial and the peroneal branches without affecting the sural nerve.
Abbreviations: CCi, chronic constriction injury; SNi, spared nerve injury; SNL, spinal nerve ligation.
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encouraging results were obtained in human interventional 

trials conducted with EGCG in cancer patients.36–42 To date, 

few human investigations with the use of EGCG have been 

completed in other pathologies (eg, cystic fibrosis,43 Down 

syndrome,44 and multiple sclerosis45) and no clinical trials 

have been conducted so far in patients suffering from NP. 

Thus, adequate and well-designed clinical studies aiming to 

improve the quantification of EGCG consumption in humans 

are needed.

The effects of eGCG on NP: an overview 
of in vivo studies
Thanks to the establishment of animal models of pain, it has 

been proved that EGCG has protective effects on pain or 

neuronal injuries, such as thermal hyperalgesia, peripheral 

nerve damage, and diabetic neuropathy.16,17,46–54 The first 

study on the effect of EGCG on NP was reported in 2012, by 

Kuang et al.16 The authors showed that NP induced by chronic 

constriction injury (CCI) of the rat sciatic nerve was reduced 

after intrathecal injection of EGCG (1 mg/kg) through the 

inhibition of Toll-like receptor 4 (TLR4)/NF-κB pathway. 

Similar findings were described by Choi et al.17 The authors 

demonstrated that EGCG displayed an antiallodynic effect 

against spinal nerve ligation (SNL)-induced NP through the 

inhibition of the nitric oxide (NO) and neuronal nitric oxide 

synthase (nNOS) protein expression. It should be noted 

that allodynia is a form of pain induced by a stimulus that 

normally is not able to provoke pain. Thus, an antiallodynic 

effect reduces this type of pain. Renno et al47 provided 

evidence that EGCG treatment in rats with impairment of 

skeletal muscle generated by peripheral nerve crush injury 

restores the morphology and the functionality of skeletal 

muscle, by activating antiapoptotic signaling pathway (Bax, 

Bcl-2, and p53 proteins). Interestingly, Chen et al48 reported 

that EGCG was able to reduce adenomyosis and improve 

generalized hyperalgesia by reducing the expression of p-p65, 

cyclooxygenase 2 (COX-2), oxytocin receptor (OTR), col-

lagen I and IV, and transient receptor potential vanilloid type 

(TRPV1) in ectopic endometrium or myometrium. An et al49 

reported an antiallodynic effect of EGCG in a neuropathic 

rat model induced by SNL. Data showed that EGCG modu-

lated NP by attenuating ROS activity at the spinal level and 

inhibiting the expression level of xanthine oxidase (XO) and 

malondialdehyde (MDA). Another interesting study, con-

ducted by Kurupova et al, reported the therapeutic potential 

of EGCG in the treatment of chronic fatigue syndrome.50 The 

authors provided evidence that EGCG significantly inhibited 

the expression of proinflammatory mediators and matrix 

metalloproteinases in vitro system (human intervertebral 

disc [IVD] cells), as well as radiculopathic pain in vivo, 

by modulating the activity of interleukin (IL)-1 receptor-

associated kinases (IRAK-1) and its downstream effectors 

p38, c-Jun N-terminal kinases (JNK), and NF-κB. Different 

data were described in a study conducted on streptozotocin 

(STZ)-diabetic rats.51 The authors demonstrated that EGCG 

was able to reduce diabetic hyperalgesia induced by STZ by 

regulating the expression of 8-hydroxy-2′-deoxyguanosine 

(8-OHdG), a marker for oxidative damage, and of the 

nociceptive neuronal activation (Fos). The antinociceptive 

effects of EGCG and two of its polyphenolic derivatives, 

namely compounds 23 and 30, were also described in a 

mouse model of NP induced by CCI.46 Finally, in a recent 

paper, Bosch-Mola et al52 demonstrated that EGCG reduced 

thermal hyperalgesia by downregulating the expression of 

chemokine fractalkine ligand 1 (CX3CL1). Interestingly, 

for the first time, a role of EGCG in the modulation of NP 

caused by bone cancer, by acting on TNF-α signaling has 

been reported.19 Data from this study are very important and 

need to be potentiated, since bone cancer pain dramatically 

impairs patient’s quality of life.53,54 Table 2 summarizes the 

preclinical results described above.

Molecular mechanisms underlying the 
NP’s regulation mediated by eGCG
Based on data emerged from in vivo studies described in the 

previous section, EGCG is able to inhibit NP through the 

modulation of the expression levels of key proteins involved 

in specific molecular pathways: 1) nNOS/NO; 2) CX3CL1, 

JNK, and NF-κB; and 3) TNF-α. As represented in Figure 2, 

allodynia is reduced by EGCG which interferes with NO by 

inhibiting the nNOS/NO pathway.17 Chronic thermal hype-

ralgesia is attenuated by EGCG through the modulation of 

Table 1 Principal biological activities of eGCG

Chemical structure Properties References

eGCG Antioxidant 23
Anti-inflammatory 31 
Antitumor-progression 9
iron-chelating 32

Abbreviation: eGCG, epigallocatechin-3-gallate.
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the expression levels of CX3CL1,52 which plays an important 

role in mediating the communication between neurons and 

microglia. Hyperalgesia and the reduction of pain perception 

are reduced by EGCG through the modulation of JNK and 

NF-κB activities.52 Bone cancer-related pain, which dramati-

cally impairs the patient’s quality of life, is attenuated by 

EGCG19 through the inhibition of TNF-α pathway.

Concluding remarks and future 
perspectives
Due to the lack of efficacy of therapies for NP treatment, 

new alternative approaches have been tested in preclinical 

study, by using animal models of NP treated with EGCG. 

Interesting results obtained from these in vivo studies proved 

that EGCG is able to ameliorate NP by acting on different 

molecular signaling pathways. Furthermore, a role of EGCG 

for the treatment of pain from bone metastases has also been 

proposed. Despite these encouraging preclinical results, no 

clinical trials have been performed using EGCG in patients 

suffering from NP. For these reasons, more studies are needed 

to translate the use of EGCG into clinical practice for man-

agement of   NP. These studies should be addressed 1) to better 

understand the pathogenesis of NP; 2) to identify the optimal 

animal models of NP (central pain models, drug-induced 

neuropathy models, disease-induced neuropathy models) in 

order to dissect the mechanisms regulated by EGCG in NP; 

and 3) to identify the optimum therapeutic dosage of EGCG 

for intervention trials in patients suffering from NP.

Table 2 Preclinical in vivo studies on the roles of eGCG in NP

Animal 
models

Dose of EGCG 
drugs

Time of treatment Principle of injuries Effects References

Rat 1 mg/kg, iT Once daily from 1 day before 
to 3 days after CCi

CCi inhibition of TLR4/NF-κB 16

Rat 1, 3, 10, and 30 μg, iT 5–60 minutes after injection SNL Attenuation of allodynia through 
inhibition of nNOS protein 
expression and inhibition of the 
pronociceptive effects of NO

17

Mouse 10, 25, 50, and  
100 mg/kg, iP

Daily injections after 
the intrafemoral tumor 
inoculation

Reduction of pain behavior 
through the inhibition of TNF-α 
pathways

19

Rat 50 mg/kg, iP 1 hour after surgery followed 
by adding two more injections 
on days 1 and 2 post-surgery

SNL improvement of morphological 
recovery in skeletal muscle 
after nerve injuries, by activating 
antiapoptotic signaling pathway 
(Bax/Bcl-2 and p53 protein)

47

Mouse 5 mg/kg body (low 
dose); 50 mg/kg body 
(high dose), iT

1–3 weeks Adenomyosis induced 
by oral administration 
of tamoxifen (1 mg/kg)

Reduction of adenomyosis and 
improvement of hyperalgesia by 
reducing the expression of p-p65, 
COX2, OTR, and collagen i/iv

48

Rat 1, 3, and 10 μg, iT 1–10 days post-surgery SNL inhibition of ROS activity and 
reduction of the levels of XO 
and MDA

49

Rat 10–100 μM, OG 1 day post-surgery SNL Reduction of pain perception by 
modulating the activity of iRAK-1 
and its downstream effectors 
p38, JNK, and NF-κB

50

Rat 2 g/L, OG 10 weeks STZ-induced diabetic 
NP

Reduction of diabetic NP by 
restoring the levels of 8-OHdG 
and Fos

51

Mouse eGCG and compounds 
23 and 30 (10–100  
mg/kg, iP)

Daily during the first week 
post-CCi

CCi Reduction of chronic thermal 
hyperalgesia by reduction of 
nuclear localization of NF-κB

46

Mouse 50 mg/kg, iP Once a day during the first 
week post-surgery

CCi Reduction of thermal hyperalgesia 
by reduction of CX3CL1

52

Abbreviations: 8-OHdG, 8-hydroxy-2′-deoxyguanosine; CCi, chronic constriction injury of the sciatic nerve; COX2, cyclooxygenase 2; CX3CL1, chemokine fractalkine 
ligand 1; eGCG, epigallocatechin-3-gallate; Fos, nociceptive neuron activation; iP, intraperitoneally; iRAK-1, interleukin (iL)-1 receptor-associated kinases; iT, intrathecal; 
JNK, jun N-terminal kinases; MDA, malondialdehyde; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; nNOS, neuronal nitric oxide synthase; 
NO, nitric oxide; NP, neuropathic pain; OG, oral gavage; OTR, oxytocin receptor; ROS, reactive oxygen species; SNL, spinal nerve ligation; STZ, streptozotocin; TLR4, toll-
like receptor 4 signaling pathway; TNF-α, transcriptor nuclear factor-α; XO, xanthine oxidase.
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