
GENOMIC PREDICTION

Genomic Prediction of Additive and Non-additive
Effects Using Genetic Markers and Pedigrees
Janeo Eustáquio de Almeida Filho,* João Filipi Rodrigues Guimarães,† Fabyano Fonsceca e Silva,‡

Marcos Deon Vilela de Resende,§ Patricio Muñoz,** Matias Kirst,†† and Marcio Fernando Ribeiro de
Resende Júnior**,1

*Genetic Plant Improvenent Lab, Norte Fluminense “Darcy Ribeiro” State University, Campos dos Goytacazes RJ,
28013-602, Brazil, †Futuragene Ltda, Itapetininga SP, 18207-780, Brazil, ‡Animal Science Department, Federal University
of Viçosa, Viçosa, MG 36570-000, Brazil, §EMBRAPA Forestry, Colombo, PR 83411-000, Brazil / Statistics Department,
Federal University of Viçosa, Viçosa, MG 36570-000, Brazil, **Horticultural Sciences Department, University of Florida,
Gainesville, FL 32611, and ††University of Florida Genetics Institute, School of Forest Resources and Conservation,
Gainesville, FL 32611

ORCID IDs: 0000-0002-3906-8884 (J.E.d.A.F.); 0000-0002-3849-9834 (J.F.R.G.); 0000-0001-9536-1113 (F.F.e.S.); 0000-0001-8973-9351 (P.M.);
0000-0002-2367-0766 (M.F.R.d.R.J.)

ABSTRACT The genetic merit of individuals can be estimated using models with dense markers and pedigree
information. Early genomic models accounted only for additive effects. However, the prediction of non-additive
effects is important for different forest breeding systems where the whole genotypic value can be captured
through clonal propagation. In this study, we evaluated the integration of marker data with pedigree information,
in models that included or ignored non-additive effects. We tested the models Reproducing Kernel Hilbert
Spaces (RKHS) and BayesA, with additive and additive-dominance frameworks. Model performance was
assessed for the traits tree height, diameter at breast height and rust resistance, measured in 923 pine individuals
from a structured population of 71 full-sib families. We have also simulated a population with similar genetic
properties and evaluated the performance of models for six simulated traits with distinct genetic architectures.
Different cross validation strategies were evaluated, and highest accuracies were achieved using within family
cross validation. The inclusion of pedigree information in genomic prediction models did not yield higher
accuracies. The different RKHS models resulted in similar predictions accuracies, and RKHS and BayesA
generated substantially better predictions than pedigree-only models. The additive-BayesA resulted in higher
accuracies than RKHS for rust incidence and in simulated additive-oligogenic traits. For DBH, HT and additive-
dominance polygenic traits, the RKHS- based models showed slightly higher accuracies than BayesA. Our results
indicate that BayesA performs the best for traits with few genes with major effects, while RKHS based models can
best predict genotypic effects for clonal selection of complex traits.
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Pedigree and high-density DNA markers have been used to predict
genetic merit of individuals in animal (Wiggans et al. 2011) and plant

breeding (Resende et al. 2012a; Resende et al. 2012; Crossa et al. 2014).
Initially, genomic prediction models were developed to select sires in an-
imal breeding, accounting only for additive effects (Meuwissen et al. 2001).
However, the prediction of dominance effects represents an important
component of models designed for breeding program that focus on cross-
bred populations and/or hybrid production (Zeng et al. 2013; Nishio and
Satoh 2014; Resende et al. 2017). In vegetatively-propagated species, non-
additive effects are especially relevant because selection takes advantages of
dominance effects. Hence, breeders can transfer whole-genotypic values of
individuals to the next generation through clonal selection strategies.

Many statistical methods for genomic prediction have been pro-
posed,whichdifferwith regards to the assumed trait genetic architecture
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(Gianola 2013; de los Campos et al. 2013). For instance, BayesA con-
sists of a whole-genome multiple regression (WGR) model where each
marker regression coefficient assumes one specific variance
(Meuwissen et al. 2001). Consequently, BayesA should provide a good
fit for oligogenic traits where few genes explain a large proportion of the
observed genetic variation (Meuwissen et al. 2001). However, predic-
tion of non-additive effects introduces new SNP-covariates associated
with these effects (Toro and Varona 2010), which may prohibitively
increase the number of estimated parameters. The semi-parametric
Reproducing Kernel Hilbert Space (RKHS) method has been proposed
to account for non-additive effects, and is less computationally de-
manding than BayesA, especially when the number of individuals is
substantially lower than the number of markers. RKHS combines fea-
tures of non-parametric kernel regression with mixed-effect linear mod-
els (Gianola et al. 2006; Gianola and vanKaam2008). RKHS is equivalent
to the animal model in BLUP (de los Campos et al. 2009a), but uses
kernel matrices that are different than the numerator relationship matrix
(Morota et al. 2013; Tusell et al. 2014; Morota and Gianola 2014). In fact,
the numerator relationship matrix is a special case of RKHS matrices.

Empirical results showed that the inclusion of dominance in BayesA
improved thepredictionaccuracy in complex real andsimulated traits in
a pine breeding context. The additive-dominance BayesA was also
superior to other Bayesian models for oligogenic traits (de Almeida
Filho et al. 2016). In addition, reports that analyzed complex traits in
other forest species showed improvement of accuracy in genomic se-
lection models with inclusion of pedigree information in additive-only
models (Beaulieu et al. 2014a, b). Thus, it is hypothesized that inclusion
of pedigree information in additive-dominance BayesA can also in-
crease prediction accuracy in structured breeding populations. The
same hypothesis can be considered for alternative methods to BayesA,
such as RKHS, which may also provide higher prediction accuracies
when combined with pedigree data (Crossa et al. 2010, 2013).

To date, few studies have compared the prediction of non-additive
effects from models using only genetic marker data, with models that
integrate genetic markers and pedigree information. Moreover, the
ability of RKHS models to predict whole genotypic values has not been
assessed in the context of forest tree breeding. This study had as
objectives: 1) evaluate the impact of including pedigree information
in genomic predictionmodels applied to forest tree breeding, 2) evaluate
RKHSand compare itwithBayesAwhen it includesnon-additive effects
or not and 3) contrast different cross-validation strategies in the context
of a structured breeding population. We applied and evaluated these
methods to traitswithdistinct genetic architecturemeasured ina loblolly
pine breeding population, and to simulated oligogenic and polygenic
traits with different levels of dominance.

MATERIAL AND METHODS

Loblolly pine population and phenotypes
In this study, we used the traits tree height (HT), diameter at breast
height (DBH) and two measures of fusiform rust infection: presence or
absence of rust (RFbin) and gall volume (RFgall). These traits were
measured in the loblolly pine (Pinus taeda) CCLONES breeding pop-
ulation, as previously described (de Almeida Filho et al. 2016). The
traits HT and DBH are polygenic (Resende et al. 2012b), and HT also
shows a significant non-additive genetic contribution (Muñoz et al.
2014). In contrast, rust resistance is thought to be controlled by fewer
genes, including loci of large effect (Resende et al. 2012b; Quesada et al.
2014). The CCLONES population where these traits were measured
was created from 42 founders, which were crossed to create 71 full-sib
families, with an average of 13 individuals per family (SD = 5). In total,

923 individuals were genotyped for 7,216 single nucleotide polymor-
phic markers (SNP) as previously described (de Almeida Filho et al.
2016). From the total set, all 4,722 polymorphic loci were used in this
study. Traits HT and DBH were measured in a field trial established in
Nassau under alpha lattice design (Florida, USA), when the plants were
six years old, in eight clonal replicates (Baltunis et al. 2007). Rust re-
sistance traits (RFbin and RFgall) were measured in greenhouse, under
randomized complete block design, as previously described (Kayihan
et al. 2005, 2010). The phenotypes for these traits were adjustedwith the
following linear model:

yijk ¼ mþ bk
�
rj
�þ rj þ gi þ eijk

Where yijk is phenotype of the ith clone evaluated in the jth repetition
and the kth incomplete block, m is the intercept, bkðrjÞ is the random
effect of kth incomplete block nested in the jth repetition
bkðrjÞ � Nð0;s2

bÞ, rj is the fixed effect of the jth repetition and gi is
the effect of the ith clone (considered as fixed to estimate the least-
square means or adjusted means) and eijk is the error of observation
ijk eijk � Nð0;s2Þ. This model was used for analysis of DBH and HT.
For rust resistance, the incomplete block term was excluded. The
analysis of variance of these traits is described in Table S1.

Simulated population and phenotypes
We also analyzed six traits with different genetic architecture, in a
simulated population described previously (de Almeida Filho et al.
2016). This analysis included traits with oligogenic and polygenic in-
heritance, and three levels of dominance (none, median and high). The
simulated population was created following a standard forest breeding
program model, in two steps. First, a base population with 1,000 indi-
viduals was created by randomly sampling 2,000 haplotypes from a
population with effective size of 10,000, generated by 1,000 generations
of a neutral coalescence model, with mutation rate 2.5 · 1028 per
generation (Willyard et al. 2007). Next, the breeding population was
created by phenotypic selection of 100 individuals from the base pop-
ulation. These selected individuals were randomly mated to create
1,000 individuals to be used in the first breeding cycle. From the
1,000 individuals of the first breeding cycle, 42 were phenotypically
selected and crossed following the same mating design used in the
loblolly pine CCLONES population (Baltunis et al. 2007). Ten inde-
pendent replicates were carried out for each simulated trait.

The simulated genome had 12 chromosomes with 100 cM. A set of
10,000 bi-allelic loci (e.g., SNP) were used in developing prediction
models, and 30 or 1,000 QTL were simulated for oligogenic and poly-
genic traits, respectively. All traits had narrow sense heritability of 0.25.
Three levels of dominance were evaluated: d2: 0, 0.1 and 0.2, where d2 is
the proportion of phenotypic variance explained by dominance devia-
tion - d2 ¼ Vd=Vp; Vd and Vp are dominance deviation and pheno-
typic variances respectively (Falconer and Mackay 1996). The additive
effect of a gene (a) was defined as half of the difference between the
alternative homozygotes, and the dominance effect (d) was estimated
by the difference between the heterozygote and the mean of the homo-
zygotes. The distribution used for a in oligogenic traits were gamma
(rate = 1.66, shape = 0.4) with sign (positive or negative) sampled with
equal probability (Meuwissen et al. 2001). For polygenic traits, a was
simulatedwith standard normal distribution (mean = 0, sd = 1) (Hickey
and Gorjanc 2012). When dominance was present, it was simulated by:
di ¼ ai · ti, where ti was sampled from a normal distribution with
mean zero and standard deviation 1 and 2 for traits with medium-
and high-dominance-levels, respectively. To achieve the targeted values
of d2, only samples that provided d2 between 0.09 and 0.11 formedium-
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dominance traits and between 0.19 and 0.21 for high-dominance traits
were kept. The simulated populations showed very similar allele fre-
quencies, when compared across scenarios. Hence, d2 was mostly de-
fined by a larger or smaller sampled value of ti.

Statistical methods
We evaluated models that consider just SNP or pedigree information,
and models that combined both. The DNA marker (SNP) component
was fitted with the following methods: a) semi parametric Reproducing
Kernel Hilbert Space models (RKHS), using different kernels (Ka and
Ka-Kd), and b) BayesA considering additive and additive-dominant
effects. BayesA was the choice of WGR because it was previously shown
to generate better predictions than theBayesian Lasso andBayesianRidge
Regression, and to have similar accuracies as BayesB, for oligogenic traits
(de Almeida Filho et al. 2016). The full basemodel can be represented by:

y�j ¼ mþ gj þ uj þ dj þ ej

Where y�j is the phenotype (adjusted clonal mean in real traits) of
individual j; m is the intercept; gj is the genotypic value for each jth

individual, estimated from SNP data — this term changed among
methods adopted, as can be seen bellow; uj is the additive polygenic
effect (when included) of individual j; dj is the dominant polygenic
effect (when included) of individual j; ej is the error term. The joint
data distribution, the prior distribution for the constant m, and the
prior distributions for the vectors g, u and d (containing information
of all evaluated individuals) are given by:

y�j
���m; gj; uj; dj;s2

e � IID Nðmþ gj þ uj þ dj;s
2
eÞ;

m � Nð0; 106Þ;

u
��As2

u � Nð0;As2
uÞ;   and

d
��Ds2

d � Nð0;Ds2
dÞ:

Where A and D are the additive relationship matrix and dominance
relationship matrix, respectively, calculated using standard methods
(Henderson 1984; Lynch and Walsh 1998; Mrode 2014). In the ped-
igree model, the gj term was absent and u and d are the breeding
values and dominance deviation vectors, respectively.

BayesA: TheBayesAmodel adopted in this studyused thechanges in the
formulation proposed by Gianola et al. (2009), modified from the
original version (Meuwissen et al. 2001) to estimate the shape param-
eter of the inverted chi-square (x22). This modification is expected to
reduce the influence of the hyperparameter and consequently improve
the bayesian learn. The full BayesA model included additive and dom-
inant effects from SNP and pedigree. This model can be represented by:

y�j ¼ mþ
Xk
i¼1

�
xijai þ wijdi

�þ uj þ dj þ ej

Where xij and wij are the functions of SNP i in individual j, for
genotypes AA, Aa and aa. xij is composed of values 1 (AA), 0 (Aa)
and -1 (aa) and wij of 0 (AA), 1 (Aa) and 0 (aa). ai and di are the
additive and dominance effect of marker i, respectively. The domi-
nance effect was fitted only in the additive-dominance model. The
priors used in linear regression coefficients for additive-dominance
and additive models are described below:

aijs2
ai � Nð0;s2

ai
Þ; s2

ai

��na; Sa � x22ðna; SaÞ;Sajsa; ra � Gðsa; raÞ;
dijs2

di
� Nð0;s2

di
Þ; s2

di jnd; Sd � x22ðnd; SdÞ; Sdjsd; rd � Gðsd; rdÞ.
Where x22 and G represent the scaled inverse chi square and Gamma
distributions, respectively.

RKHS Kernel averaging model: From the full base model represented
above, the term g in RKHS represents the whole genotypic values
explained by the markers, including additive and non-additive effects
such as dominance and gene interactions (Gianola et al. 2006; Gianola
and van Kaam 2008). Here, g was modeled in two forms referred to as
RKHS Ka and RKHS Ka-Kd.

RKHS-Ka: In the RKHS-Ka, the whole genotypic effect (g) was
explained by 3 SNP functions:

g ¼
X3
r¼1

gr

where

gr
���Kars

2
gr � Nð0;Kars

2
gr Þ

s2
gr

���ng ; Sg � x22ðng ; SgÞ

Kar ¼ expð2uarD
2
aÞ

D2
a is the square of the Euclidean distance matrix among the individ-

uals using the SNP additive incidence matrix X that takes values -1,
0 and 1. The ua is a bandwidth parameter that controls for the re-
lationship measure between individuals j and j’, for a given distance
(squared Euclidean in this case). Large positive values of bandwidth
result in the relationship of j and j’ being close (or equal) to 0. Small
positive values result in the relationship of j and j’ being close (or
equal) to 1. The kernel averaging method (De los Campos et al. 2010)
was used to determinate the bandwidth components in this study. In
this approach, each SNP function g is replaced for two or more SNP
functions with the same distance (squared Euclidean in this case), but
with different bandwidth values — in kernel averaging these band-
widths are not regular parameters, they are constants. The bandwidth
values ðuar ) used in g1, g2; and g3 are 5/h, 1/h and 0.2/h respectively,
where h is 5th percentile of D2

a leading to local, intermediate and global
kernels, respectively (González-Camacho et al. 2012; Tusell et al. 2014).

RKHS-Ka-Kd: In addition to the information contained in the X
matrix described above, RKHS-Ka-Kd also includesW, that is the SNP
incidencematrix for dominance effects in additive-dominance Bayes A.
The g in this case for each SNP matrix (X and W) used three SNP
functions:

g ¼
X3
r¼1

ðgar þ gdrÞ

The gar consists of the same SNP functions used in RKHS-Ka, and for
gdr we assumed:

gdr
���Kdrs

2
gdr � Nð0;Kdrs

2
gdr Þ

s2
gdr

���ngd; Sgd � x22ðngd; SgdÞ

Kdr ¼ expð2udrD
2
dÞ
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D2
d is the square of the Euclidean distancematrix using the dominance

SNP matrix W that takes values 1 for heterozygote and 0 for both
homozygotes, as described in the additive-dominance-BayesA model.
The same bandwidth values used in RKHS-KA were used for gar in
RKHS-Ka-Kd, and for gd1, gd2 and gd3, the bandwidths values (udr)
were 5/hd, 1/hd and 0.2/hd respectively, where hd is 5th percentile
of D2

d , similar to Morota et al. (2014). In both RKHS models (Ka
and Ka-Kd) the whole genotypic value was predicted but cannot be
separated into the components: breeding value, dominance devi-
ation and epistasis. The summary of models compared are avail-
able in Table S2.

Models validation
The prediction accuracies were calculated using 10-fold cross-
validation (Resende et al. 2012b; de Almeida Filho et al. 2016).
In order to infer the impact of the training population (TP) on the
prediction accuracy, the TP was defined following three different
schemes: a) prediction across families –individuals from a group of
families were used to fit the model and the genetic potential was
predicted in individuals from different families; b) prediction
within families – the genetic merit of was predicted in individuals
belonging to the same families included in the TP; c) random
sample of individuals for TP. These validation approaches were
also applied to each of the ten replicates of the simulated data. For
data collected from the CCLONES population, the 10-fold based
on random sample process was applied 10 times with independent
groups of individuals in each fold. Prediction of accuracies and
regression coefficients of parametric values on validation data
were estimated for each of the 10 folds. A graphical representation
of the 10-folds cross-validation schemes used in this study is avail-
able in Figure S1.

Breeding values and dominance deviation
The expected breeding value (EBV) and the expected dominance de-
viation (EDD) were estimated as described below:

EB̂Vj ¼
X
i

�
I
�
xij ¼ 1

�
2qi þ I

�
xij ¼ 0

��
qi 2 pi

�
2 Iðxij

¼ 2 1Þ2pi
�
âi þ ûj

and

ED̂Dj ¼
X
i

�
2I

�
xij ¼ 1

�
2q2i

þ I
�
xij ¼ 0

�
2piqi 2 I

�
xij ¼ 2 1

�
2p2i

�
d̂i þ d̂j

Where pi is allele frequency of allele A of SNP i, qi = 1-pi, âi is the
average effect of substitution, âi ¼ âi þ d̂iðqi 2 piÞ, and I is an in-
dicator function of SNPs; ûj and d̂j are terms from additive and
dominant polygenic effects, respectively. The whole genotypic value
is the sum of EB̂Vj and ED̂Dj. In RKHS-based models, the whole
genotypic value is predicted, and therefore the partitions between
EB̂Vj and ED̂Dj cannot be estimated.

Variance components
The variance components from WGR are extensions of estimators
previously reported (Zeng et al. 2013; Ertl et al. 2014) that assume
absence of epistasis, linkage equilibrium among markers and Hardy-
Weinberg equilibrium (Gianola et al. 2009). The general estimator of
additive variance (VA) and the variance due to dominance deviation
(VD) are:

V̂A ¼ 2
X
i

piqi
h
ŝ2
ai þ

�
qi2pi

�2
ŝ2
di

i
þ ŝ2

u

and

V̂D ¼ 4
X
i

�
piqi

�2
ŝ2
di þ ŝ2

d

The components ŝ2
u and ŝ2

d in each model above are associated with
the polygenic effect. The remaining equation of V̂A and V̂D are due to
marker effects. The whole genotypic variance is the sum of additive
and dominance variance. The h2, d2 and H2 are the proportion of
additive, dominance and genotypic variance in the phenotypic vari-
ance. In RKHS models the genetic variance estimated by markers is
the whole genotypic variance. All models were fitted with the R pack-
age BLGR (de los Campos and Perez 2014), using 100,000 iterations,
burn-in of 20,000, thinning of 3 and default hyperparameters pre-
viously described (Pérez and de los Campos 2014).

Data availability
All phenotypic and genotypic data utilized in this study have been
previously published as a standard data set for development of genomic
prediction methods (Resende et al. 2012b). Simulated data available
from the Dryad Digital Repository: http://dx.doi.org/10.5061/dry-
ad.3126v. Supplemental material available at FigShare: https://
doi.org/10.25387/g3.8379059.

RESULTS

The prediction within families was more accurate than
prediction across families
To infer the impact of population structure and the choice of training
population (TP) in the estimates of prediction accuracy, we carried the
cross-validation across families, within families and at random. For all
models and traits, the prediction accuracies were lowest when the
predicted individuals came from families not included in the TP (across
family cross-validation). The reductions in accuracy ranged from�15–
59% in both real and simulated data (Figure 1-2). Conversely, the
within-family cross validation resulted in highest accuracy for the ma-
jority of cases. In CCLONES, the superiority of the within-family TP
ranged from 1.5–2.4%, 2.7–6.8% and 3.6–5.6% for HT, RFbin and
RFgall, respectively (Figure 1). In simulated traits, the within-family
cross validation was slightly superior (0.15–3.3%) than the random
sample TP in �85% and �80% of cases for prediction of breeding
values and whole genotypic values respectively (Figure 2). There model
comparison, however, was very similar across TP schemes, and no
interaction between models and TP was observed (data not shown).
Hence, the followingmodel comparisons and general conclusions, were
performed using random-sample cross-validation.

Pedigree information in model prediction
The use of pedigree information has been shown previously to improve
the accuracy of genotypic predictions (Crossa et al. 2014). Here, we
evaluated if this gain in accuracy is also observed in our populations,
based on correlation using parametric genetic values from simulated
data, and phenotypic values from real data. Initially we compared the
prediction accuracy of models based only on pedigree information
againstmodels withmarkers-only data (Table 1). Overall, models based
only on pedigree data had modestly lower accuracy than those using
marker information for traits measured in the pine CCLONES popu-
lation. The improvement in accuracy for breeding and genotypic values
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prediction was much more apparent when markers were used in the
simulated population, compared to when only pedigree data were uti-
lized. This improvement was particularly pronounced for simulated
oligogenic traits (Table 2). Next, we extended the comparison of accu-
racies to include models that combined both pedigree and marker in-
formation. We observed that in only few instances the expanded
models had higher accuracies, and that in general the accuracies were
comparable to those with marker only in the real and simulated data
(Table 1-2). One of such cases was the accuracy in predicting domi-
nance deviation in the simulated traits (Table 2).

Genotypic predictive model accuracy depends on
trait architecture
The two genomic prediction methods tested in this study differ with
respect to the assumptions regarding the genetic architecture of the trait
being predicted. BayesA is a linear regression model that assumes that
each marker has different variance. Consequently, some markers can
explain the effect of major loci, such as in oligogenic traits (e.g., rust
resistance). On the other hand, RKHS is a semi-parametric model that
assumes that all markers with the same MAF contribute equally to the
relationship among individuals. Thus, this assumption has closer re-
semblance with polygenic trait regulation. For phenotypic predictions,
RKHS had higher accuracy for DBH and HT (Figure 3) when

compared to BayesA. Similar results were observed in the polygenic
traits with presence of dominance effects (d2 = 0.1 and d2 = 0.2). In both
cases, the RKHS method resulted in higher accuracies than BayesA
models for genotypic and phenotypic prediction (Figure 4, Table S3).
In contrast, BayesA resulted in higher correlation for RFbin (Figure 3)
and all oligogenic simulated traits (Figure 4), independent of the in-
clusion of pedigree in the genomic prediction and independent of the
simulated dominance effect. The superiority of the additive-dominance
models was trait dependent and in some cases opposite accuracy pat-
terns were observed, as it is the case for HT and RFbin (Figure 3).

Genotypic predictive model strength depends on non-
additive effects
The prediction of genotypic values is valuable for genetic improvement
programs where breeders can capture additive and non-additive effects
by cloning selected individuals. Prediction of dominance effects for each
locus is also critical to optimize crossing designs, such as in mate-pair
allocation. The inclusion of the Kd kernelsmatrix in RKHSwas equal or
worse than the Ka-only kernels for both real traits (Figure 3) and
simulated traits (Figure 4). On the other hand, the inclusion of dom-
inance effects in the BayesA model resulted in a better prediction for
HT (Figure 3). For simulated traits, the additive-dominance-BayesA
showed considerably higher genotypic (Figure 4) and phenotypic

Figure 1 Accuracy distribution of all genomic prediction models fitted for tree height (HT), diameter at breast height (DBH) and two measures of
fusiform rust infection: presence or absence of rust (RFbin) and gall volume (RFgall). These results were achieved from three different 10-fold cross
validation orientations: a) Across families: Each fold is a group of distinct families; b) Within families: The folds were grouped inside families; and c)
Random sample: Each fold is a group of distinct individuals random sampled ignoring family information.

Figure 2 Accuracy average of pre-
diction of breeding values and
genotypic values for all genomic
prediction models fitted in six sim-
ulated traits: Oligogenic and Poly-
genic with three degrees of
dominance (d2 = 0; d2 = 0.1 and
d2 = 0.2). These results were
achieved from three different
10-fold cross validation orienta-
tions: a) Across families: Each fold
is a group of distinct families; b)
Within families: The folds were
grouped inside families; and c)
Random sample: Each fold is a
group of distinct individuals ran-
dom sampled ignoring family
information.
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(Table S3) prediction accuracy compared to the additive-BayesA in
traits with high dominance.

BayesA models generated higher accuracies in breeding
value prediction
The breeding value of one individual represents the component of its
genotypic value that is directly transmitted to the progeny. Thus, the
breeding value is a critical parameter in the selection of individuals to be
used extensively in mating with other individuals in the population.
With BayesA and pedigree-based models, it was possible to predict
directly the breeding values. The RKHS models, however, generate a
prediction of the whole genotypic values, which cannot be split in
breeding values, dominance deviation and epistasis. In the simulated
the traits, we still reported the correlation between predicted genotypic
values andparametric breeding values to assess the accuracy in breeding
value prediction. The traditional additive-BayesA and additive-domi-
nance-BayesA based only in marker information estimated the higher
accuracy for breeding value prediction for all simulated traits (Figure 4),
while pedigree-based models showed the worst accuracies (Table 2).

Variance components and heritability
One of the most important tasks for a breeder is to make decisions
regarding thebreeding strategy. Several geneticparameters are evaluated
to determine breeding strategies, including the estimation of variance
components and the proportion of the genetic variance relative to the
phenotypic variance. Here these parameters were estimated using ge-
netic markers, pedigree information or both, for the real and simulated
traits. For simulated traits, the parametric values are known, which
allowed us to evaluate the capacity of the methods and models to
accurately estimate them.

Considering the parametric values of h2 and d2 in the simulated
population, the BayesAmodels that used only genetic markers resulted
in the least biased estimate of the genetic parameters (Table S4). The
inclusion of pedigree information in BayesA models increased the es-
timates of heritabilities, and in most cases these parameters were over-
estimated. Models based only on pedigree also overestimated these
genetics parameters: the additive-only pedigree model over estimated
h2, and the additive-dominance pedigree models estimated high d2 for
traits with no dominance.

The RKHS based models predict the whole genotypic values. Con-
sequently, estimation of both h2 and d2 is not possible. Nonetheless,H2

can be obtained. The H2 was calculated for the simulated traits and
showed that all RKHS based models, regardless of the pedigree inclu-
sion, overestimated this parameter substantially (on average by�106%,
Table S4). Overestimation is higher in models that included the Kd
kernel (RKHS Ka-Kd). Table S5 reports the results of heritabilities
estimated with all models for real traits. Similarly, to the simulated
data, the estimation of h2 and d2 increased with the pedigree in-
formation, and the RKHS based models resulted in much larger
estimates of H2.

Prediction bias
The regression coefficient (slope) of observed values vs. predicted values
was used tomeasuremodel bias – a slope of one indicates the absence of
any bias. The linear regression of simulated data included parametric
genotypic values and prediction. For the real data, where the parametric
values are unknown, we calculated the slope using phenotype values.
The predictions using real data (Table S6) resulted in regression coef-
ficients near one. Most predictions using simulated data resulted in a
slope similar to one, with the exception of dominance deviation pre-
dictions. In this case, the slopes showed a biased dominance prediction.
More specifically, the slope for dominance deviation prediction was less
than one in the marker-only models with additive-dominance effects,
indicating an underestimation of dominance effects. In contrast, when
the pedigree information was considered, the slopes were higher than
one, suggesting that the pedigree information contributed to an over-
estimation of dominance effects (Table S7).

DISCUSSION
We tested the performance of genomic- and pedigree-based models,
with and without non-additive effects, for the prediction of genetic
values in complex traits. We used real data from a standard pine tree

n Table 1 Average of accuracies for prediction of phenotypic
values for all models based in pedigree-only, in markers-only and
models combining pedigree and markers information

Models DBH HT RFbin RFgall

Pedigree 0.536 0.450 0.331 0.255
Markers 0.545 0.459 0.361 0.288
Markers + Pedigree 0.548 0.465 0.356 0.279

Only-Markers models: Additive-, Additive-dominance-BayesA, RKHS Ka and
RKHS Ka-Kd; Only-Pedigree models: Additive-, Additive-dominance-Pedigree;
Markers + Pedigree are the models id: 2,4,5,7,8,10,11 (Table S2).

n Table 2 Average of accuracies of breeding values, dominance deviation, genotypic values and phenotypic values prediction for all
models based in pedigree-only, in markers-only and models combining pedigree and markers information

Accuracy Models

d2 = 0 d2 = 0.1 d2 = 0.2

Olig Poly Olig Poly Olig Poly

Breeding Value Pedigree 0.564 0.576 0.545 0.560 0.538 0.554
Markers 0.653 0.627 0.645 0.618 0.645 0.613
Markers + Pedigree 0.646 0.626 0.639 0.615 0.638 0.610

Dominance Deviation Pedigree — — 0.179 0.202 0.271 0.259
Markers — — 0.175 0.169 0.273 0.243
Markers + Pedigree — — 0.186 0.185 0.284 0.258

Genotypic Value Pedigree 0.556 0.567 0.488 0.521 0.481 0.479
Markers 0.652 0.626 0.586 0.575 0.569 0.537
Markers + Pedigree 0.638 0.619 0.578 0.571 0.566 0.536

Phenotypic Value Pedigree 0.251 0.259 0.284 0.306 0.313 0.335
Markers 0.297 0.286 0.338 0.331 0.378 0.373
Markers + Pedigree 0.290 0.282 0.335 0.331 0.373 0.373

Only-Markers models: Additive-, Additive-dominance-BayesA, RKHS Ka and RKHS Ka-Kd; Only-Pedigree models: Additive-, Additive-dominance-Pedigree; Markers
+ Pedigree are the models id: 2,4,5,7,8,10,11 (Table S2).
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breeding program in its third generation. Pine traits used for model
testing includedplantheight (HT), diameter atbreastheight (DBH), and
the rust resistance measures RFbin and RFgall, whose narrow sense
heritability, prior to least square mean adjustment, were previous
reported as 0.31, 0.31, 0.21 and 0.12, respectively (Resende et al.
2012b). These traits have different genetic architecture; DBH and HT
are polygenic whereas rust resistance is thought to be an oligogenic trait
(Resende et al. 2012b; Quesada et al. 2014). Moreover, HT has signif-
icant non-additive effects (Muñoz et al. 2014). To expand and validate
our conclusions, we simulated six traits with distinct genetic architec-
tures (polygenic and oligogenic) and three dominance levels.

Pedigree information in genomic predictions
Pedigree and marker information were used separately and in combi-
nation, to predict genetic values. In the prediction of breeding andwhole
genotypic values, the genomic selectionmodel and the combinedmodel
(genetic markers + pedigree) were substantially better than the models
accounting only for pedigree information. However, the combined
model did not improve the prediction accuracies. Previous studies
suggest that the use of pedigree data only results in an improvement
in prediction when a low marker density is used, as seen in simulated
studies (Calus and Veerkamp 2007), as well as in wheat (Crossa et al.
2010) and dairy cattle (Vazquez et al. 2010). In contrast, pedigree

Figure 3 Average of phenotypic pre-
diction accuracies and standard error
for four markers-only models: addi-
tive- and additive-dominance-BayesA,
RKHS-Ka and RKHS Ka-Kd for diame-
ter at breast height (DBH), height (HT)
and Rust resistance evaluated as gall
volume (RFgall) and presence or ab-
sence (RFbin) in loblolly pine. The
standard errors (s.e.=s.d.(x)/sqrt(10))
were calculated for each ten-fold pro-
cedure. The error bars are the aver-
ages of s.e. across the ten
independent cross validations.

Figure 4 Accuracy average of
prediction of breeding values and
genotypic values for four marker-
only models: additive-, additive-
dominance-BayesA, RKHS-Ka and
RKHS Ka-Kd for six simulated
traits: Oligogenic and Poligenic
with three degrees of dominance
(d2 = 0; d2 = 0.1 and d2 = 0.2).
Error bars are standard error (s.e.)
considering the 100 independent
samples used to calculate the
mean (s.e.=s.d.(x)/sqrt(100)).
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information did not improve model predictions when a higher density
of genetic markers were used (Calus and Veerkamp 2007; de los Cam-
pos et al. 2009b; Vazquez et al. 2010). An exception was reported in
maize, when prediction models generated with a high-density SNP
panel from genotyping-by-sequencing (GBS) was improved with the
addition of pedigree data (Crossa et al. 2013). A possible explanation
for this outcome rests in the fact that the GBS data contains a high
frequency of missing data (Crossa et al. 2013), resulting in incomplete
genomic information.

Semi-parametric kernel choice
Different kernels can be used to improve the predictions of complex
traits in semi-parametric RKHS models. In the current study, the
genomic predictions of RKHS Ka-Kd models and the simpler RKHS
Kamodels yielded similar results. These findings are in agreement with
those previously reported byMorota et al. (2014) for dairy cattle. These
authors did not find increased accuracies with the inclusion of extra
kernels in the RKHS Ka. Other kernel comparisons in RKHS also
showed that RKHS Ka is a robust choice for the prediction of additive
and non-additive effects (Morota et al. 2013; Tusell et al. 2014).

BayesA resulted in the highest breeding
values accuracy
The BayesAmodels based only on genetic marker information resulted
in the highest accuracies of breeding values prediction in all the
simulated scenarios, regardless of the dominance effects. The addi-
tive-BayesA and additive-dominance-BayesA models also resulted in
similar accuracies for breeding values in additive-dominance traits,
despite the fact that the breeding value is also function of dominance
effects (Falconer and Mackay 1996). While this result was unexpected,
one possible reason for this is the overall low accuracy in the pre-
diction of dominance. The results were also similar to another
simulation study that showed higher genetic gain with the additive
model compared to an additive-dominance model, even in pres-
ence of higher dominance effects (Denis and Bouvet 2012). Fur-
thermore, Nishio and Satoh (2014) also showed that dominance
inclusion did not provide higher accuracies in breeding value pre-
diction, even in traits with dominance effects.

Prediction of whole-genotypic values of traits with
distinct genetic architecture
Modelswithbuilt-in assumptions that some locihavemajor effects, such
as BayesA, usually provide better genomic predictions for simulated
oligogenic traits (de los Campos et al. 2013), and also for real traits
controlled by few genes, such as fat percentage in milk (Habier et al.
2011). For genotypic prediction in this study, BayesA generated better
predictions than RKHS for RFbin and simulated oligogenic traits. This
finding is in agreement with other studies that suggest that rust resistance
is an oligogenic trait (Resende et al. 2012b;Quesada et al. 2014). In the case
of simulated additive-dominance oligogenic traits, the additive-dominant-
BayesA model resulted in the best predictions of genotypic values.

Our analyses of polygenic simulated traits showed that, for additive-
dominant polygenic traits, the RKHS models were better than the
additive-BayesA for whole genotypic predictions. These findings agree
withthoseofotherauthorswhoargue thatRKHSaddressesnon-additive
variation in a non-explicitmanner (Gianola et al. 2006; Gianola and van
Kaam 2008; Morota and Gianola 2014). In addition, RKHS was mod-
estly more accurate when compared to the additive-dominant-BayesA,
confirming that RKHS can be explored for predictions in polygenic
traits.

In CCLONES population, the RKHS models was slightly more
accurate than additive- and additive-dominant-BayesA for HT and
DBH. In addition, the additive-dominant-BayesA model was slightly
more accurate than the additive-BayesA forHT. This result suggests the
presence of non-additive effects in P. taeda tree height, which was also
previously suggested by Muñoz et al. (2014). Similar results were also
observed in a genomic selection study by Bouvet et al. (2016) which
reported higher prediction accuracy of HT in Eucalyptus using models
with non-additive effects. In contrast, El-dien et al. (2016), did not
achieved prediction accuracy increase with inclusion of non-additive
effects in HT in an open-pollinated white Spruce population. Alto-
gether, and as expected, we conclude that the increase of prediction
accuracy with inclusion of dominance depend of the population and
trait.

Similar to Xavier et al. (2016), we also fit a model that combined
BayesA and RKHS in a single model. This combined model resulted in
lower accuracies than additive BayesA for RFbin and simulated oligo-
genic traits with d2 = 0 and d2 = 0.1. In addition, the BayesA+RKHS
combined model provides lower accuracy than RKHS for HT, DBH
and polygenic additive-dominance traits (Table S8). However, the
BayesA+RKHS model was slightly more accurate than BayesA for
genotypic prediction in oligogenic traits with high dominance (d2 =
0.2) and more accurate than RKHS in additive polygenic traits for
breeding and genotypic values prediction (Tables S9). In soybean,
Xavier et al. (2016) reported that BayesA+RKHS and BayesB+RKHS
were the most accurate genomic prediction models. These authors
suggested that this model could be capturing the breeding values
through BayesA and the remaining genetic components with RKHS.
In our dataset, this advantage of the combinedmodel was not clear, but
further evaluation of this model could be made.

Heritabilities estimation
When using RKHS based models and pedigree information, the pa-
rameters h2, d2 and H2 were often overestimated. Similarly, others
genomic prediction studies in forest species also suggested that pedigree
basedmodels generate large and unrealistic estimates of h2, when com-
pared with GBLUP (Bouvet et al. 2016; El-dien et al. 2016).

In quantitative genetics theory, the additive and non-additive effects
are typically assumed to be orthogonal and can be divided as indepen-
dent components from the whole genotypic variance (Falconer and
Mackay 1996; Hallauer et al. 2010; de los Campos et al. 2015). However,
in practical situations (absence of Hardy-Weinberg equilibrium, non-
random matting), these presuppositions do not hold, and additive and
dominance effects are related to each other and not orthogonal. The
inability to partition the components can lead to bias estimates of the
variance components, affecting the estimates of selection gain as well as
the interpretation of the trait architecture. Muñoz et al. (2014) indi-
cated that this bias was stronger in pedigree models and recommended
the use of genetic markers to partition the additive and non-additive
components.

Themarker specific variances and therefore the variance component
estimates can be influencedby the effect of the priors inBayesianmodels
(Gianola et al. 2009). Nonetheless, in our study, the BayesA models
using only markers, generated more reasonable variance components
estimates, compared to the parametric values. The inclusion of domi-
nance effects in BayesA resulted in less biased heritabilities estimation
for additive-dominance traits, and the traditional additive-BayesAwere
less biased for h2 estimation in additive traits. This suggests that addi-
tive-dominant models should be used for estimation of heritability in
cases where the inclusion of dominance effects increase the prediction
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accuracy. Based on this observation, the estimates for tree height of h2

and d2 using the additive-dominant model equal 0.37 and 0.17 respec-
tively. For DBH, RFbin and RFgall, the additive model is suggested and
theirs respective h2 are estimated in 0.52, 0.39 and 0.29 (Table S13). The
h2 estimated for HT in this report were similar to the value found in
Resende et al. (2012b), but higher than reported in Resende et al.
(2012a). The estimates of d2 for HT were similar to previous report
(Muñoz et al. 2014), which used the same population but different
methods. For DBH, and rust resistance, the h2 obtained in this study,
were higher than other authors (Resende et al. 2012a, 2012b). Calus and
Veerkamp (2007) reported that the inclusion of polygenic effects
resulted in better estimates of variance components when compared
with models that included only markers - this result that was not
replicated in our study.

Prediction accuracy is affected by the choice of
training population
This study contrasted three schemes of training population (TP). The
results showed that across families cross validation resulted the lowest
accuracy, whereas the setup towithin families cross validation produced
thebest results inmost part of cases, being slightly superior than random
sample individuals for TP. These results were expected, and further
emphasize the importance of genetic relationship among individuals
used to fit the model and target individuals for genomic prediction.
Genomic Selectionmodels have been shown to capture not only linkage
disequilibrium between the markers and causal alleles, but also genetic
relationship (Habier et al. 2007). The scheme based on random sam-
pling has been commonly used, because it represents a balance between
within and across families. These results agree with other studies in
forest breeding that showed higher accuracies in the prediction within
families than across families (Beaulieu et al. 2014b, 2014a). In addition,
Albrecht et al. (2014) reported higher accuracies in the prediction in-
side genetic groups than across genetics groups. Hence, one of the most
important factors when outlining a genomic selection breeding pro-
gram is the definition of the target population. The TP needs to re-
semble, as close as possible, the level of relationship of the target
population where GS will be applied.

CONCLUSION
In summary, we conclude that, in theCCLONESpinepopulation and in
our simulation studies, genomic selection is effective compared to
phenotypic pedigree selection. The inclusion of pedigree information
did not improve the prediction accuracies, suggesting that pedigree
computation is not required in genomic prediction programs with
reasonable SNP panels. This study also supports the findings that the
individuals used to compose the training population should be genet-
ically related to the individuals in the target breedingpopulation. Finally,
the BayesAmodels overcame the RKHS-basedmodels for breeding and
genotypic prediction for oligogenic traits, while in polygenic traits,
BayesA was suitable for breeding value prediction and RKHS for
whole-genotypic prediction.
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