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Abstract

Accurate assessment of the association between continuous variables such as gene

expression and survival is a critical aspect of precision medicine. In this report, we provide a

review of some of the available survival analysis and validation tools by referencing pub-

lished studies that have utilized these tools. We have identified pitfalls associated with the

assumptions inherent in those applications that have the potential to impact scientific

research through their potential bias. In order to overcome these pitfalls, we have developed

a novel method that enables the logrank test method to handle continuous variables that

comprehensively evaluates survival association with derived aggregate statistics. This is

accomplished by exhaustively considering all the cutpoints across the full expression gradi-

ent. Direct side-by-side comparisons, global ROC analysis, and evaluation of the ability to

capture relevant biological themes based on current understanding of RAS biology all dem-

onstrated that the new method shows better consistency between multiple datasets of the

same disease, better reproducibility and robustness, and better detection power to uncover

biological relevance within the selected datasets over the available survival analysis meth-

ods on univariate gene expression and penalized linear model-based methods.

Introduction

Overview of survival analysis with categorical variables

The realization of precision/personalized medicine requires quantitation of relevant prognos-

tic biomarkers for each individual that guide their diagnosis and treatment. Of course, beyond

the identification of disease subtypes, one component in the identification of the relevant

panel of biomarkers is the association of those variables with patient survival outcomes [1–4].

These biomarkers can be generalized to represent variables that are categorical with a limited

number of discrete values. Conveniently, categorized or discrete covariates including clinical

features such as pathological cancer stage or genomic features like gene mutation status can be

directly used to classify patients for survival analysis (reviewed in [5]). Such categorical
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variables that can be classified into two or more categories based on corresponding covariates,

e.g., KRAS mutation vs. wild type, can be subjected to the Kaplan-Meier estimator method to

produce survival curves and a logrank test can be performed to assess the significance of the

difference in survival outcome between the groups [1]. As a result, categorical genomic alter-

ation covariates including mutation status have drawn a great deal of attention as prognostic

biomarkers and methods that deal with this type of data are well established (reviewed in [6–

8]). However, since such genomic alterations are generally sparse in the population except for

genes in core oncogenic processes such as the RAS pathway, e.g., KRAS with high mutation

rate in LUAD, PAAD, and COAD [9–10], they have limited applicability and remain contro-

versial for various reasons [11].

Survival analysis with continuous variables

In contrast to the categorical assessment described above, many of the clinical determinants

and genomic features such as age, smoking duration or gene expression represent continuous

variables. The abundance of gene expression data has facilitated the validation of derived bio-

markers in datasets from different sources [12–15] addressing a major challenge in the field. In

addition, it seems that larger studies are needed to derive robust biomarkers, for example, to

confirm whether a specific KRAS mutation might lead to a clinically relevant prognostic effect

[11,16,17].

As such, there is a great interest in identifying gene expression biomarkers that show prog-

nostic value for survival outcome. This effort will not only help uncover underlying mecha-

nisms for the diseases of interest but also provide more reliable and feasible biomarkers for

clinical application (reviewed in [18–19]).

Perhaps surprisingly, gene expression has shown great promise in producing better prog-

nostic biomarkers than clinical factors. For example, gene expression-based classification of

cancer patient samples showed a better association with survival outcome than histological

classification [20–22]. However, many issues have emerged in applying gene expression-based

survival analysis to clinical application. In a newly reported breast cancer study, the previously

identified prognosis markers were not able to show anticipated association with survival out-

come in new patient cohorts, likely due to the diverse collection of cancer patients including

differences in the therapy or treatment methods between the old and new patient cohorts [23].

A similar problem was also found in another cancer study, where differential genes showed a

correlation with outcome in a large dataset [24] but failed to be confirmed in a different dataset

[25]. In addition to the variations in expression measurement, lack of accuracy and complete-

ness of clinical information is a factor leading to the large variations in survival analysis results

between datasets [13]. Beyond sampling and validation issues, such failures can also be par-

tially due to the fact that many of the published studies did not follow basic statistical and/or

analysis guidelines. Consequently, the choice of statistical models, as well as analysis methods

and tools, are critical to derive robust biomarkers for prognosis of survival outcome [12–

14,26].

Available gene expression-based survival analysis methods and existing

pitfalls

Many survival analysis methods which have been developed and applied to gene expression-

based survival analysis have helped understand the outcome related underlying biology. A par-

tial list of these methods includes gene expression cluster-based sample classification [27–29],

multiple-gene decision tree-based sample classification [30], Cox regression model based

semi-supervised method [31] and cancer subtype-oriented semi-supervised method [32].
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Consequently, multiple genes or gene signatures have been derived as potential prognostic bio-

markers. It is also very common to see gene expression subjected to survival analysis using a

multivariate Cox regression model (or proportional hazards regression), which is the most

widely used semiparametric survival model in the health sciences [3–4].

Using the Kaplan-Meier method and logrank test to help visually show the estimated sur-

vival functions and statistically assess the difference in survival outcome between groups

respectively using derived gene expression-based prognostic biomarkers has become a popular

approach. However, to our knowledge, there is no single report using them as a discovery tool

to directly derive prognostic biomarkers, particularly in the case of gene expression data. Part

of the reason for this is because of difficulty in classifying samples with continuous gene

expression levels categorically. As a result, it is very common to cast gene expression from a

continuous to a binary variable or represent it as a multi-segmented covariate to assess the

prognostic impact on survival outcome. Median or quartile-based cutpoint approaches are

commonly used to classify the samples into two or more groups to assess differences in their

survival outcome in many publicly available survival analysis tools (reviewed in [5]). The same

approach has resulted in many published reports as described below with the obvious problem

that the cutpoint selection becomes critical.

Although the discovery of outcome-related biomarkers from gene expression data faces large

challenges in validation, many analysis tools and databases that use the logrank test as the pri-

mary method have been made available to the medical research community. Many of these

tools either claim to be or are intended to be biomarker validation tools. For example, there is a

popular web-based tool (http://www.kmplot.com) that mainly focuses on Kaplan-Meier plots to

compare two patient groups that are defined according to a median point (or quartile/tertile

points) of expression of the selected gene [33–34]. This tool has been used to validate the associ-

ation of survival outcome with genes of interest in some highly ranked publications [35–36].

Similarly, kmplot has been used for top quintile vs bottom quintile to compare the survival out-

come as represented as a difference [37]. In addition, another web-based tool, PROGgene, is

available for survival analysis of gene expression association with the patient outcome by bifur-

cating samples at the median expression of a gene of interest for multiple types of cancers [38].

However, methods that choose a limited set of predefined cutpoints fail to convey the

behavior of survival association with expression along the expression gradient. Unfortunately,

they also do not provide counsel to the user regarding what to do when only some of the

selected cutpoints produce a significant association allowing for the possibility to distort the

interpretation [6].

An improvement—PrognoScan

A unique tool called PrognoScan is distinguished from other gene expression-based survival

analysis tools in terms of how it chooses the cut-points for grouping the samples. PrognoScan

also provides multiple datasets from different sources and/or different array platforms to

cross-validate the results and enhance confidence. In addition, it employs a minimal p-value

approach that helps uncover the optimal cutpoint in a continuous gene expression gradient,

which is unlike other tools that use prior biological knowledge or assumptions, or fixed cut-

points to arbitrarily classify samples [39]. However, since the native use of this minimal p-

value approach was found to be associated with a considerable inflation of the type I error rate

(false positive rate [6]), a maximally selected chi-square statistics-based p-value correction

method [40] was applied to the derived minimal p-value to obtain the final corrected p-value

[39]. Thus, PrognoScan has provided a great advance compared to other methods, since it

now considers the minimal p-values of the relevant logrank test across the entire set of all
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possible cutpoints along the gene expression gradient. However, in our view, since only the

corrected minimal p-value is retrieved to represent the p-value for the association relation

across the gradient, the valuable information regarding how the association behaves through

the continuum is lost. In addition, whereas the correction of the derived minimal p-value in

the PrognoScan method [39] was done by the maximally selected chi-square statistics-based p-

value correction method [40], it was suggested previously that the probability of failing to

detect a real association would be increased by the minimal p-value method [6].

A new method for survival analysis—GradientScanSurv

In summary, as we will demonstrate in this report, many of the survival analysis tools and pub-

lished studies that have utilized these tools may be sensitive to an analysis pitfall that can lead

to an incorrect assessment of survival association of the data. With kmplot, the pitfall is that

the user may be misled by fortuitously evaluating the only user-selected cutpoint that shows

significance, or worse, by reporting only the point(s) that did. With PrognoScan and indeed

kmplot as well, the pitfall is that with only a single readout for the association, the trend across

the gradient is not made available. Our sense is that with these pitfalls, the robustness of the

identified biomarkers, particularly in the context of a discovery approach has room for

improvement. Therefore, we propose a novel Gradient-based Cutpoint Scan for Survival Anal-

ysis approach, we call GradientScanSurv, which extends the logrank test method from han-

dling discrete variables to handling any continuous variable. Since our method provides a

summary across the entire gradient with coupled statistical significance, we feel that this ame-

liorates the aforementioned pitfalls in many existing tools. The novel method appears to have

better overall performance within the tested example datasets in uncovering and validating the

association of gene expression with survival outcome.

Materials and methods

Datasets for performance comparison

Survival data and gene expression data from lung adenocarcinoma (LUAD) including micro-

array data were downloaded from the PrognoScan website (http://www.prognoscan.org/).

Briefly, Unix curl command-based customized scripts were used to download all of the LUAD

expression data and metadata for survival outcome, as well as the analysis results of the Prog-

noScan method from PrognoScan website for all RAS pathway genes. Customized R scripts

were used to parse the downloaded data to be used for comparison. The survival data and

RNAseq data from TCGA (The Cancer Genome Atlas) for selected tumor types were down-

loaded from the TCGA data portal (https://portal.gdc.cancer.gov/). Australian pancreatic ade-

nocarcinoma (PAAD) cancer data was downloaded from the ICGC website (https://dcc.icgc.

org/projects/PACA-AU) as AusPanc_Set dataset.

Selected survival analysis methods for performance comparison

All RAS pathway genes have been run through customized R scripts that implemented each of

the selected survival analysis methods including PrognoScan, univariate Cox Regression on

gene expression, univariate Cox Regression using gene expression ranks, median cutpoint-

based logrank test, and tertile cutpoint-based logrank test. The Australian pancreatic adeno-

carcinoma (PAAD) cancer data and TCGA data were analyzed in a similar way using custom-

ized R scripts that implemented the same methods.

The R code for the PrognoScan analysis method was obtained through email communica-

tions with the original author of PrognoScan [39], who referred to the original S-plus codes as
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a starting point for implementation of the functions for the PrognoScan methods using the

appendix of a previously published paper [41]. The implemented functions for the PrognoScan

method in R were tested on downloaded LUAD data from the PrognoScan website, and the

derived results were verified to match those from the website.

Penalized linear model-based methods including Lasso and Elastic Net methods, which are

Cox models with the added feature that allows them to be able to do variable selection, were

implemented in customized R scripts using glmnet R package, and run on the TCGA data of

different tumor types using multiple seeds (100) for multiple trials. The recurrent genes across

multiple trials were collated into the aggregated lists based on a dynamic cutoff empirically

determined for each tumor type with a minimal 85% percent times of all trials.

For multiple genes’ results such as results for all 225 RAS pathway genes, multiple compari-

sons were corrected by B-H (Benjamini & Hochberg method [42]) using the R function to

obtain adjusted p-values for each of the RAS pathway genes. For a side-by-side comparison

with PrognoScan, we compared selected genes on an individual basis and so no multiple test

correction was applied.

GradientScanSurv procedure

As illustrated in Fig 1, the GradientScanSurv method first ordered all the measured values of

the input gene or biomarker across the gradient. Then at each cutpoint along the ordered gra-

dient, a logrank test was used to derive a p-value to assess the difference of survival outcome

between the two groups split by the corresponding cutpoint. These p-values are collected,

assessed, and counted to obtain a GoodCount for the real data. GoodCount was defined as

numbers of cutpoints where the corresponding separated two groups had significant p-value

(p< = 0.05 as the default setting) for their logrank tests.

Suppose we observe n observations with the vector of survival outcome yn×1 and censoring

indicator δn×1. For gene expression j, we observe n subjects with gene expression value xj = (x1j,

x2j,. . .,xnj)T. Our approach first calculates the logrank test at each possible cutting point of the

ordered gene expression values xj. To be specific, denote the ordered gene expression values as

~x j ¼ ðxð1Þj; xð2Þj; . . . ; xðnÞjÞ
T
, and let the correspondingly ordered outcome and censoring indicator

as ~y and ~δ, we then test, for all possible cutpoints, the logrank test statistics and obtain the p-value.

logrank pvalueð~x j � xðkÞj; ~y; ~δÞ

This is essentially treating the binary indicator ~x j � xðkÞj as the group label in the logrank test.

Note that these logrank test p-values at each cutpoint do not directly provide grounds for

significance for the overall association relation, but they do form the basis for the next level of

aggregate statistics described below as GoodCount and GoodCount p-value that are indicative

of a significance level of the overall association relationship. In our typical graph view, our

method provides green lines as tentative significant cutpoints along the gradient, which pro-

vides not only the basic metrics for the next level of aggregate statistics but also the visual cue

for the likelihood of the significance for the overall association (number and positions of the

lines along the gradient).

A GoodCount is then defined as the number of significant tests (using α as the significance

level, the default setting of 0.05) across all possible cutpoints:

GoodCountðxj; y; δÞ ¼
Xn� 1

k¼1

Iflogrank pvalueð~x j � xðkÞj; ~y; ~δÞ < αg
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In order to obtain the p-value of this count statistic, we employ the bootstrap [43] approach:

we first randomly permute the xj values into x�j by reshuffling. Then a new GoodCount value

based on this permuted data is obtained: y ¼ GoodCountðx�j ; y; δÞ. This procedure is then

repeated M times and obtain the corresponding M GoodCount values {θ1,. . .θM}. The boot-

strapped p-value is obtained by checking how many of the permuted GoodCount values are

larger than the original GoodCount value, i.e.,

GoodCountPval ¼
1

M

XM

m¼1

IfGoodCountðxj; y; δÞ � ymg

The GoodCount p-value (GoodCountPval) was defined as the proportion of the times that

the GoodCounts of permutated datasets were no less than that of the original dataset. By com-

paring the GoodCount values from real data and those from permutated data, which work

against each other and respond to the alpha level simultaneously, the derived GoodCount p-

value is the final deterministic statistic for whether there is a significance of the association.

Explicit derivation of the theoretical p-value under this situation could be difficult. Hence, we

Fig 1. GradientScanSurv procedure for exhaustive association test of gene expression with survival outcome. Expression data was permutated to form

trials of datasets (n> = 1000). GoodCounts were derived for each trial dataset and real dataset as the numbers of cutpoints that created significant logrank test

p-values. From this, the GoodCount p-value (GoodCountPvals) is derived as the proportion of the times that the GoodCounts of permutated trial datasets is no

less than that of real data. See Material and methods for details.

https://doi.org/10.1371/journal.pone.0207590.g001
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choose to use the robust bootstrapping method, to derive the GoodCount p-value for an

unknown distribution.

Practically, to create the permutated datasets, the original survival data and expression data

were permutated for at least M> = 1000 times by shuffling the expression data between sample

names. The GoodCountPval is the key statistics produced by the GradientScanSurv method

that is used to assess the significance of the association of the individual gene expression or

biomarker with the survival outcome.

ROC analysis procedure

ROC analysis was performed on the results of each survival analysis method under evaluation

(see above) using independently derived datasets of the same disease from different sources as

the Training Set and Testing Set respectively. Alternatively, shared positive gene lists from at

least two of the methods from the Training Set were used as Truth lists for each method in the

Testing Set data. To test whether the selection of which dataset was used as the Training Set

and which was used as the Testing Set had an impact on the results, the datasets used for Train-

ing Set or Testing Set were switched so that any potential bias imposed would be tested and

evaluated in our comparison. Specifically, PrognoScan LUAD data and TCGA LUAD data

were downloaded and have been used separately as either the Training Set or the Testing Set in

the ROC analysis respectively. Alternatively, the TCGA LUAD data was used as the Training

Set and the PrognoScan LUAD data was used as the Testing Set. Thus, our aggregate results

are composed of multiple datasets of PrognoScan LUAD data and multiple trials of analysis

results using the TCGA LUAD dataset.

To make sure the results of the GradientScanSurv method were reliable and robust, multi-

ple trials (100) of analysis results for GradientScanSurv method were obtained. Since other

methods do not have a permutation test, their results for an input data set remain constant.

Our comparison applied the results from multiple trials of GradientScanSurv with results from

other methods analyzing the same TCGA data as described. There are also multiple PrognoS-

can datasets (total of 9) from various microarray platforms and derived from different studies.

Each of these datasets was analyzed by all methods to obtain corresponding results, which

were combined as the PrognoScan results of multiple trials.

Ultimately, the ROC analysis was then used to assess the performance of each method

between these Training Sets and Testing Sets of multiple trials to derive the overall perfor-

mance statistics for each method i.e., percentage of the total times that each of these selected

methods being compared had the largest AUCs compared to other methods in each of the

combined trials. In addition, the average AUCs were derived for comparison between the

selected methods for each subset of total trials of data defined by each of the 9 PrognoScan

datasets in combination with the 100 TCGA trials of data, simply because the PrognoScan

datasets are much more diverse in platforms and data sources compared to trials of the same

TCGA data.

The TCGA and PrognoScan data are independent datasets from different sources but

derived from the same disease (LUAD, lung adenocarcinoma). The corresponding Training

and Testing Sets were derived for a total of 225 RAS pathway genes for each method for each

trial of the analysis. The analysis results of each trial are essentially adjusted p-values of each

gene derived from each method that were subjected to multiple test correction by the Benja-

mini & Hochberg method [42].

The ROC analysis used to compare methods was based on the assumption that when we

used independent datasets of the same disease for ROC analysis with one as the Training Set

and the other as the Testing Set (e.g., TCGA or PrognoScan downloaded LUAD data

An exhaustive association test method for survival analysis
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respectively), if the method is better, we would get better AUCs in the ROC analysis, since we

would expect more consistent results in the classification of Ras pathway genes either associ-

ated or not associated with survival outcome. We did the analysis this way since there is no

valid truth set of survival data available for our purpose that reports which genes are truly asso-

ciated with survival outcome for this particular disease.

By design, the GradientScanSurv method uses a permutation (bootstrap) method to derive

the GoodCount p-value. Permutations naturally caused some variation in results from trials to

trials. However, the method is not impacted by those fluctuations. The default setting for the

number of permutations was 1000 that was identified as a practical level from our initial tests

with many datasets that were observed to have relatively stable results.

Although functions of the pROC R package were used as the main procedure for ROC anal-

ysis and plotting, customized R scripts were used to collect the statistics from pROC analysis

on multiple trials of both Training and Testing Sets for the purpose of performance compari-

son of the selected survival analysis methods.

Results

Examples of common pitfalls in web-accessible survival analysis tools and

the biological studies that used them

We began by characterizing the pitfalls associated with methods that offer a limited set of pre-

defined cutpoints that split the data into categories for subsequent survival association assess-

ment. We observed several common pitfalls in many publicly available survival analysis web

tools that are used for putative biomarker validation or analysis of the association between sur-

vival and gene expression data. These tools have been previously described [5] and have been

used by researchers in the community with the analysis results presented in publications.

Because of the frequency and potential impact of such cases, we feel it is important to bring

their pitfalls to the attention of the community in more detail.

We detail two examples chosen as representative of the issues we identified that appeared in

highly ranked journals [35–36], although many additional examples can be found (see

Table A in S1 File). In no way does our selection reflect or judge those manuscripts other than

to use them as examples of the potential pitfalls associated with these tools. In the original Fig

3B in [36] of the first study, the authors reported survival analysis results for stage II lung can-

cer patients with high and low KIAA1522 expression using the Kaplan-Meier Plotter website

(kmplot.com, [5]). Their figure legend and main text of the first study [36] mentions only that

they performed a survival analysis between KIAA1522 high expression and low expression

patients, but did not provide any further details about how the samples were grouped into

high and low expression categories. These details were also not provided in the methods sec-

tion. To dig into the details, we went to the Kaplan-Meier Plotter website and used the

KIAA1522 gene as input to run the analysis. For accuracy purpose, according to their figure

legend of the first study [36], we selected only stage II lung cancer patients for the analysis. For-

tunately, the KIAA1522 gene has only one Affymetrix probeset, 224746_at, for the database of

lung cancer. The website provides 5 options to “Split patients by” - 5 possible cutpoints: lower

quartile, lower tertile, median, higher tertile, and higher quartile for the logrank test analysis.

We obtained the analysis results for all of the 5 options as shown in Figure A in S1 File. Inter-

estingly, we found the result of one option (lower quartile) gave a very similar result to that

reported in the original Fig 3B in [36] of the first study that was significant. However, all 4 of

the other options gave non-significant results (Figure A in S1 File). Thus, it appears that the

authors reported the only positive result of the 5 options and made no reference to the other

possible outcomes. We are by no means condemning their work as they simply used the tool

An exhaustive association test method for survival analysis
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as advertised. However, this is a perfect example of how a user can become the victim of unin-

tended consequences through inadvertent or otherwise selective parameter choices. This sug-

gests the need for a more unbiased method for parameter selection in these survival

association tools.

In the original Fig 6E in [35] of the second study, the result of Kaplan-Meier Plotter website

(kmplot.com) on the RELN gene for lung adenocarcinoma (LUAD) is reported. In this study

[35], the figure legend clearly specified that the median-based cutpoint was selected for the

analysis. We wanted to explore the behavior of survival outcome differences using all possible

cutpoints along the expression gradient. We applied our method (details below) to the same

microarray dataset (the merged microarray data for LUAD was kindly provided by the authors

of the Kaplan-Meier Plotter website) to analyze the association of RELN gene expression with

survival. In fact, this dataset showed consistent significant logrank p-values at the cutpoints

that split the samples across almost entire expression gradient (Figure B in S1 File). In con-

trast to the first study [36] where only a single option produced significance, here choosing

any cutpoint around the median, quartile, and tertile cutpoints that were given as options on

the Kaplan-Meier Plotter website showed similarly significant logrank test results.

To test the robustness of this result, we ran our method (see below) on the RELN gene

using downloaded TCGA LUAD RNAseq data (Figure C in S1 File). Here, the logrank p-

value is non-significant at either the median point or all of the quartile or tertile points, in con-

trast to the result using microarray data [35]. Thus, one can imagine that if the Kaplan-Meier

Plotter website ran their analysis of the TCGA RNAseq data, there would not be any cutpoints

from their available options that show a significant logrank test p-value, even though there are

a lot of such cutpoints available that have significant p-values (vertical green lines on the

Figure C in S1 File). Of course, consistency across different platforms would be desired of any

useful biomarker and so this observation is worrisome if RELN indeed is associated with lung

cancer survival.

More examples of common pitfalls of survival analysis in publicly available survival analysis

web tools and biological studies that have used these tools are listed in Table A in S1 File.

In summary, these observations suggested that using a limited set of predefined cutpoints

such as median, quartile, tertile points overly simplifies the assessment of whether gene expres-

sion is associated with survival outcome. Further, the use of a small number of predefined cut-

points offered by the tools permits a user to either through luck or design to report only the

particular cutpoint(s) that produces the desired result. This led us to propose a novel approach,

termed GradientScanSurv, to assess and visually present the gene expression and survival rela-

tionships in a more comprehensive way by considering all the cutpoints along the expression

gradient.

As a quick proof of concept, with respect to the RELN gene example just described, we do

observe a significant GoodCountPval as 0.0405 using GradientScanSurv to analyze the TCGA

RNAseq data (shown at the top left corner in Figure C in S1 File), indicative of the potential

association of this gene with survival outcome (see below). This result is consistent with the

microarray data result and would have been missed if using the methods of Kaplan-Meier Plot-

ter website (kmplot.com) to analyze the TCGA RNAseq data.

Introduction and overview of the GradientScanSurv method

Our novel method is designed to address the shortcomings encountered by the existing meth-

ods for analysis of the association between gene expression and survival outcome discussed

above. We hypothesized that if there is a significant association of gene expression with sur-

vival outcome, there would be a significant number of cutpoints along the expression gradient
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that should show significant differences in survival outcome when compared with random

chance. Given the possible variations in sample handling, tumor heterogeneity, gene expres-

sion measurement, or metadata collection, it seems unlikely that even if there exists an associa-

tion between the gene expression and survival outcome, each cutpoint applied to split the

samples into high and low expression groups, would result in a significant difference in sur-

vival outcome assessed by the logrank test method. However, it is reasonable to assume that a

significant number of cutpoints with tentative significance in corresponding logrank tests

would be more than expected by random chance.

This is the major hypothesis that fueled our motivation to develop the GradientScanSurv

method (Fig 1; also see the Materials and methods section for the formal mathematical

description of the procedure). It has been long recognized that more pre-specified cutpoints

are recommended [6]. However, only our method exhaustively evaluates all of the cutpoints

along the expression gradient and then aggregates their statistics using permutation. We feel

this addresses the issues of all current approaches that have the pitfall of choosing from the

predefined limited set of cutpoints. Our method is inspired by the Random Forest method

[44], which is one of the most accurate machine learning methods to date. The rule at each

splitting step of the tree construction is that random forest will search all cutting points

exhaustively, and choose the best one. The advantage of such a procedure is that the method

will be able to handle many different types of underlying model effects such as non-monotone

effects, or even symmetric structures. As pointed out previously [45], the best cutting point is

actually the point where the underlying function has the steepest slope, making the left and

right groups the most distinct. Hence our GradientScanSurv method that considers all cutting

points exhaustively but resolves into an aggregate statistic instead of taking the best one as

the solution as implemented by the PrognoScan method (see below in the Side-by-side com-

parison with the PrognoScan method section) will be also able to benefit from similar

advantages.

In addition, we introduce the GoodCount p-value (GoodCountPvals) metric as the key sta-

tistical assessment of whether there is a significant number of cutpoints along the expression

gradient that shows a significant difference in survival outcome compared with a random

chance that was assessed through expression data permutation-based trials of datasets (Fig 1).

In addition, the graphical display of the GradientScanSurv results provides additional insights

regarding the extent and direction of the association that facilitates the assessment of associa-

tion significance (Figure D in S1 File). Most, if not all of the publicly available survival analysis

web tools only provide directionality for the overall relationship between survival outcome

and expression change direction (e.g., higher gene expression is associated with faster death) at

the predetermined points by Kaplan-Meier plots. Our tool also provides visual cues including

vertical green lines across the expression gradient for cutpoints with tentatively significant p-

values from logrank tests and brown diamonds at either the top or at the bottom for direction-

ality of the gene expression changes versus survival outcome. This provides a visual measure of

the consistency of the direction across the gradient as well.

Many of the genomic feature-based biomarkers, especially transcript-based biomarkers dis-

covered in survival analysis, lack of reproducibility and robustness when applied to different

datasets. This represents the major technical obstacle in the clinical application of genome-

based biomarkers [14]. One possible reason is that when only one or a few cutpoints are used

to classify the samples, because of the limited view of the data, there are more difficulties later

in the validation process. In contrast, the systematic and aggregate statistical scheme in our

GradientScanSurv method can potentially remove this possible source of inconsistency,

thereby providing higher confidence and statistical power in validation results.
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Side-by-side comparison with the PrognoScan method

As described in the introduction, the PrognoScan method addresses the selection of cutpoints

from a predefined list by evaluating all possible cutpoints and returning a corrected p-value for

the optimal cutpoint. In order to directly compare our method with the PrognoScan method,

we ran the PrognoScan analysis on its website (www.abren.net/PrognoScan/) for genes from

the RAS pathway such as NRAS, KRAS, and MAP2K1genes for Lung adenocarcinoma

(LUAD) data. We then downloaded the raw data from the PrognoScan website for these genes

and then ran our GradientScanSurv method so that we could compare the results side by side

with those produced by the PrognoScan method. Interestingly, PrognoScan has multiple data-

sets for the same disease for the same genes, which allowed us to assess how consistent the

results were for each method.

We chose to use LUAD data since LUAD is a subtype of lung cancer that has been clearly

defined, whereas the other types of cancer data in PrognoScan such as COAD and OV have no

clearly defined subtypes. Using this clearly defined subtype for LUAD data should increase the

chance of validation and consistency in results between the multiple datasets. Of course, one of

the difficulties in substantiating any survival association method is the lack of a definitive truth

set. Therefore, we are forced to base our selections on known genes or pathways implicated in

cancer for validation purposes.

KRAS and NRAS mutations are known to be critical oncogenesis driver genes mutated in

LUAD, although NRAS mutations are relatively rare [46]. NRAS expression has been shown

to correlate with KRAS mutation status in LUAD samples from TCGA [47]. Therefore, its

expression could be associated with survival outcome. As expected, we found that 4 out of 8

datasets of NRAS (with different probesets for the NRAS gene and from different sources)

showed significant GoodCountPvals (p<0.05), whereas only 3 out of 8 datasets showed signifi-

cant for PrognoScan results (Fig 2A). This is confirmed by the GradientScanSurv method with

a very significant GoodCountPvals (= 0.001 with permutation n = 1000) (Figure E in S1 File)

using the TCGA LUAD dataset with RNAseq data for expression values. This shows that even

extending to data derived from a different platform (RNAseq), our method shows better con-

sistency compared with the microarray platform for PrognoScan data. Given the sample size

limitation of these datasets, platform differences, data source differences, the relatively high

proportion of the multiple datasets showing consistent positive results we observed in our vali-

dation is very reasonable and of relatively high confidence.

For the dataset indicated by the red arrow in Fig 2A, where the GradientScanSurv method

obtained a significant p-value that the PrognoScan method missed, the GradientScanSurv

method accumulates the significant logrank test p-values that are scattered along the gradient

making the GoodCountPvals significant (Fig 2D), whereas the PrognoScan method did not

attain significance because the minimal p-value is of insufficient magnitude (Fig 2B) in spite

of widespread cutpoints along the expression gradient showing significant p-values. This con-

firms the importance of aggregating statistics across all cutpoints along the expression gradient

in the GradientScanSurv method rather than just using predefined cutpoints (even the mini-

mal p-value cutpoint from PrognoScan) used by other methods.

We also compared another important RAS pathway gene, MAP2K1, which is downstream

of RAS and may also be expected to be associated with survival outcome. We observed 3 out of

11 datasets that showed a significant association with survival outcome for MAP2K1 by the

GradientScanSurv method (Figures F and G in S1 File), whereas only 1 out of 11 datasets

showed a significant association with the PrognoScan method (Figures F and G in S1 File).

This is also confirmed by the GradientScanSurv method with a significant GoodCountPvals

(0.031 with permutation n = 1000) (Figure H in S1 File) with the TCGA LUAD dataset using

An exhaustive association test method for survival analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0207590 December 5, 2018 11 / 28

http://www.abren.net/PrognoScan/
https://doi.org/10.1371/journal.pone.0207590


the RNAseq platform for expression data. For the dataset indicated by arrows on Figure F,

panel A and Figure G, panel A in S1 File, the GradientScanSurv method obtained a signifi-

cant p-value whereas the PrognoScan method did not.

At the mutation level, KRAS is believed to be one of the most critical oncogenic genes in

LUAD. When we examined the association between KRAS expression and survival, we found

that 4 of 17 datasets showed a significant association with survival outcome using our Gra-

dientScanSurv method (Fig 3). Conversely, only 3 out of 17 datasets showed a significant

association with the PrognoScan method (Fig 3). This is also confirmed with the GradientS-

canSurv method by a significant GoodCountPvals (= 0.004 with permutation n = 1000)

(Figure I in S1 File) using the TCGA LUAD dataset with the RNAseq platform for expression

data. In addition, the cue from the GradientScanSurv plot shows that higher expression of the

Fig 2. Comparison of GradientScanSurv with PrognoScan results for NRAS gene in LUAD datasets downloaded from PrognoScan website. (A). A joined

table of GradientScanSurv results and direct results from the PrognoScan website for the NRAS gene in LUAD (lung adenocarcinoma) datasets from the

PrognoScan website. The red arrow indicates a dataset where GradientScanSurv called a significant association with GoodCountPval = 0.047, but PrognoScan

missed the call with CORRECTED.P.VALUE = 0.092. (B). Screenshot of PrognoScan’s expression gradient-based logrank p-values plot. The blue vertical line

indicates where the minimal p-value is that was used for the final CORRECTED.P.VALUE. (C). Screenshot of the PrognoScan report with final CORRECTED.

P.VALUE at 0.092. (D). GradientScanSurv gene expression gradient-based logrank p-values plot with GoodCountPval at 0.047. The green vertical lines indicate

specific cut-points where the corresponding logrank p-values are significant at p-value< = 0.05. Univariant expression-based coxph p-value and expression-

rank based coxph p-value are also reported here as in panel A. This result was consistent with the TCGA validation result in GoodCountPval (0.001). The plot

of the results also illustrates that higher expression of NRAS is associated with faster death, which is indicated by the brown diamonds along the top part of the

plots (Figure E in S1 File).

https://doi.org/10.1371/journal.pone.0207590.g002
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KRAS gene is associated with faster death (Figure I in S1 File), which is expected from the

known RAS biology in LUAD cancer study [47].

Looking at different probes, however, the GradientScanSurv result using microarray data

from PrognoScan showed that lower expression measured by KRAS probeset 204010_s_at is

associated with faster death (Fig 3C). This is further supported by the GradientScanSurv result

with two additional KRAS datasets measured by the same probeset 204010_s_at (Figures J

and K in S1 File). In contrast, another dataset using a different probeset 214352_s_at that also

measures KRAS gene expression showed a consistent result with TCGA result: higher expres-

sion of KRAS gene is associated with faster death (Figure L in S1 File). Interestingly, a dataset

that used another probeset (204009_s_at) for the KRAS gene also showed the same direction at

the cutpoints with significant logrank test p-values (Figure M, panel C in S1 File), where

higher expression of KRAS gene is associated with faster death, even if the dataset overall did

not show significant GoodCountPvals.

Fig 3. Comparison of GradientScanSurv with PrognoScan results for the KRAS gene in LUAD datasets downloaded from PrognoScan. (A). A joined table

of GradientScanSurv results and direct results from the PrognoScan website for the KRAS gene in the same LUAD datasets. The red arrow indicates a dataset

where GradientScanSurv called a significant association with GoodCountPval = 0.004, but PrognoScan barely missed the call with CORRECTED.P.

VALUE = 0.0524 for dataset Jacob-00182-HLM with probeset 204010_s_at. (B). Screenshot of PrognoScan’s report for the dataset indicated by the red arrow in

panel A. (C). GradientScanSurv gene expression gradient-based logrank p-values plot with GoodCountPval at 0.004 for the dataset indicated by the red arrow

in panel A. See text for details.

https://doi.org/10.1371/journal.pone.0207590.g003
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To resolve this seemingly contradictory observation for the different probesets of the KRAS

gene, we used UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTracks) to visual-

ize their genomic locations within the KRAS locus that was provided by Affymetrix (http://

www.affymetrix.com/analysis/index.affx). Interestingly, the two probesets that showed consis-

tent results with TCGA result (204009_s_at and 214352_s_at) aligned with the last exon in

KRAS (Figure N in S1 File), and they correlate very well with each other in the expression

data of these datasets from PrognoScan (Figure O in S1 File). In contrast, the probeset

204010_s_at that showed the opposite direction with the TCGA result indeed is at the far end

and off the last exon of the KRAS gene (Figure N in S1 File). In addition, this probeset corre-

lated to a much lower extent with the other two probesets (Figure O in S1 File). It is very likely

that the last probeset may not really measure the KRAS gene expression or is interfered with

by a transcript from the gene on the other side of the KRAS locus. Thus, its directionality of

survival change may be opposite to that of the real KRAS gene. Therefore, all of these Gra-

dientScanSurv results are consistent in their significance as well as in their change directions.

This suggests that the ability to visualize the direction of the survival change by the GradientS-

canSurv method is valuable and useful in further validation of the analysis results. This allows

for consistency of the survival status direction along the expression gradient to be visualized, a

feature absent from all other methods that focus on predefined or limited cutpoints.

Global and systematic performance comparison with other survival

analysis methods on univariate gene expression

Approach 1: ROC analysis using recurrent genes as truth lists. The examples above

demonstrate that on a limited basis, our new method appears to outperform PrognoScan with

the tested datasets, but we wanted to perform a more systematic assessment of performance

across multiple available methods. In order to test whether the GradientScanSurv method per-

forms better than other survival analysis methods using univariate expression of each gene,

receiver operating characteristic (ROC) analysis was performed on the same datasets for sev-

eral commonly used methods in the field including PrognoScan, univariate Cox Regression on

gene expression levels, univariate Cox Regression on ranks of gene expression, median cut-

point-based logrank test, and tertile cutpoint-based (top quantile vs bottom quantile) logrank

tests. The last two methods are typical methods commonly used by Kaplan-Meier Plotter web-

site (kmplot.com). Univariate Cox regression is also a commonly used method along with the

Kaplan-Meier estimator and logrank test. Rank-based Cox regression is an alternative way to

perform univariate Cox regression on gene expression but using the ranks of gene expression

for regression instead of the absolute expression levels.

The available survival data and associated gene expression data are derived from diverse

platforms and vary in sample sizes, which made the choice of validation survival datasets even

harder. We decided to use independent survival datasets for the same disease to increase the

robustness of result. We chose to use both TCGA LUAD data and LUAD data downloaded

from the PrognoScan website. Due to the concerns with the impact of the sample size on sur-

vival analysis, instead of the common k-fold cross-validation scheme, we decided to use either

the TCGA LUAD data or the downloaded LUAD data from the PrognoScan website as the

Training Set, and then used the other data as the Testing Set for the ROC analysis. Since there

are many PrognoScan LUAD datasets and the GradientScanSurv method uses permutations to

derive p-values, we combined these different trials of TCGA results from the GradientScan-

Surv method and PrognoScan LUAD datasets into multiple trials of data (see the “ROC analy-

sis procedure” in the Materials and methods section for more details). In addition, we focused

only on genes from the RAS pathway (10, 46), which presumably play major roles in a variety
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of cancer types. Thus, these genes are more likely to represent biomarker genes that are associ-

ated with cancer patient survival outcome than randomly selected genes that may accidentally

be called as positive hits [26].

We evaluated the performance of different methods using genes shared between methods

as a Truth Set and also using genes identified by each individual method. In the first case, ROC

analysis was first performed using the consensus gene lists identified and shared between the

selected methods with datasets of Training Sets for validation by each of these individual meth-

ods in datasets of Testing Sets. Briefly, the PrognoScan LUAD data was first used as a Training

Set to create a series of Truth Sets defined by being shared between the comparable lists pro-

duced by the different methods at different frequencies (See legend of Fig 4 for details). Then,

ROC analysis was performed on the TCGA LUAD data as the Testing Set (Fig 4A). Within the

multiple trials of test data that were produced, the GradientScanSurv method has the largest

percentage (48.41%) of total trials with the largest AUCs compared to other methods (Fig 4B).

In addition, the GradientScanSurv method has the largest average AUCs compared to other

methods in 3 out of 4 subsets of trials of data defined by 100 trials of TCGA data combined

with one of the PrognoScan datasets, which have valid AUCs in ROC analysis (Fig 4C). It

should be noted that the results are very different from trial to trial (Tables B and C in S1

File).

In order to test whether the selection of which dataset was used as the Training Set and

which was used as the Testing Set impacted the results, the TCGA LUAD data was first used as

the Training Set to create a series of Truth sets as shared Truth lists at different frequencies of

positive lists derived from each of selected methods. As before, ROC analysis was then per-

formed on the PrognoScan LUAD data as the Testing Set (Figure P, panel A in S1 File). In

spite of smaller margins, the GradientScanSurv method still had the largest percentage

(20.32%) of total trials with the largest AUCs compared to other methods (Figure P, panel B

in S1 File). In addition, the GradientScanSurv method has the largest average AUCs compared

to other methods in 4 out of 9 subsets of trials of data in combination with one of the PrognoS-

can datasets, which is more than any other methods (Figure P, panel C in S1 File). We used

the Truth sets that were shared Truth lists from two or more of these methods to increase the

reliability of the input Truth lists. Again, the GradientScanSurv method consistently per-

formed the best in spite of variations between the datasets.

Approach 2: ROC analysis using each method to derive truth lists. In order to directly

test which of the methods made more consistent calls with different datasets of the same dis-

ease, ROC analysis was performed using the individual gene lists identified by each of the

selected methods with datasets of Training Sets for validation by each of these individual meth-

ods in datasets of the Testing Sets. Either TCGA LUAD data was used as the Training Set and

PrognoScan LUAD data as the Testing Set, or vice versa. For the first scenario where TCGA

LUAD data was used as the Training Set and the PrognoScan LUAD data as the Testing Set

(Fig 5A), the GradientScanSurv method has the largest percentage (49.56%) of total trials with

the largest AUCs compared to other methods (Fig 5B). In addition, the GradientScanSurv

method has the largest average AUCs compared to other methods in 5 out of 9 subsets of trials

of data defined by 100 trials of TCGA data combined with one of the PrognoScan datasets (Fig

5C). In this particular analysis, the Median cutpoint-based logrank test showed the worst per-

formance with no single positive calls in the Training Set identified in contrast to all other

methods (Tables D and E in S1 File).

For the second scenario where PrognoScan LUAD data was used as the Training Set and

the TCGA LUAD data as the Testing Set (Figure Q, panel A in S1 File), the GradientScanSurv

method still achieved the largest percentage (36.71%) of total trials with the largest AUCs com-

pared to other methods (Figure Q, panel B in S1 File). In addition, the GradientScanSurv
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Fig 4. Performance comparison with ROC analysis by shared truth lists. (A). ROC analysis comparing all listed methods for the same set of truth gene lists that were

shared amongst multiple truth lists derived from individual methods using PrognoScan LUAD data as the Training Set and TCGA LUAD data as the Testing Set. The

settings table shows which datasets were used for the Training Sets and Testing Sets, as well as whether the Truth Set of genes derived from training are shared lists from at

least 2 listed methods. The general ROC analysis procedure was described in the Materials and methods section. (B). Performance comparison table listing numbers of

times/trials that a method has the largest AUC of ROC curves compared to other methods for the same set of truth gene lists (shared by at least 2 listed methods) and same

trial of Testing Set dataset. All truth lists from Training Sets and the result lists derived from Testing Sets are at the adjusted p-value< = 0.05 for each method. The

Freq_2_TruthList consists of the truth gene list shared by at least 2 of these selected methods; Freq_3_TruthList consists of the truth gene list shared by at least 3 of the

selected methods etc.. Column “Total” summarizes the total counts for all scenarios (if a tie, each method would get 0.5 counts). Percentage lists the proportions of those

counts. The details of each trial are shown in Table C in S1 File. (C). Average AUCs of ROC analysis for each method in each subset of total trials of data defined by 100

trials of TCGA data combined with one of the indicated PrognoScan datasets in column “PrognoScan_Datasets” (also see Materials and methods section for details). The

last column”MaxAUCsMethods” shows the method with the maximal AUC for each row. (D). Examples of ROC plots showing AUCs of GradientScanSurv method are

the largest in these trials.

https://doi.org/10.1371/journal.pone.0207590.g004
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Fig 5. Performance comparison by ROC analysis with the same set of Training Set and Testing Set for the same method. (A). ROC analysis comparing all listed

methods, each of which has been applied to the same set of Training Set and Testing Set for the same method. The settings table shows which datasets were used for

the Training Set and Testing Set. The same method has been applied for the same set of TCGA LUAD data as Training Set and PrognoScan LUAD data as Testing Set.

(B). Performance comparison table listing numbers of times/trials that a method has the largest AUCs of the ROC curves compared to other methods for the same set

of Training Set and Testing Set datasets are shown in panel A. Column “Total” summarizes the total counts of all of the best trials of same Training Set and Testing Set

datasets for each method listed in column Methods. Column “Percentage” lists the proportions of those counts. All truth lists derived from the Training Set and the

result lists derived from Testing Set are at adjusted p-value< = 0.05 for each method. The details of each trial are shown in Table E in S1 File. (C). Average AUCs of

ROC analysis for each method in each subset of total trials of data defined by 100 trials of TCGA data combined with one of the indicated PrognoScan datasets in

column “PrognoScan_Datasets” (also see Materials and methods section for details). The last column”MaxAUCsMethods” shows the methods with the maximal AUC

for each row. (D). Examples of ROC plots showing that the AUCs of the GradientScanSurv method are the largest in these trials. AUC = NA is due to the fact that the

MedianPvals method has no positive calls in Training datasets at adjusted p-value< = 0.05.

https://doi.org/10.1371/journal.pone.0207590.g005
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method has the largest average AUCs compared to other methods in 3 out of 7 subsets of trials

of data defined by 100 trials of TCGA data combined with one of the PrognoScan datasets

with valid AUCs in ROC analysis, which is more than that of any other methods (Figure Q,

panel C in S1 File). A relatively large proportion of the trials with NA’s for most or all methods

may imply that some datasets may have intrinsic issues such as the curation of survival data or

technical issues on expression data (Tables F and G in S1 File) so that none of the methods

could achieve any positive calls.

Approach 3: Alignment with presumed biology. In order to further compare the actual

results in terms of their underlying biological meaning, we collected the shared genes identi-

fied by all of the methods from multiple trials of LUAD datasets combined from both TCGA

and PrognoScan data. Listed in Table H in S1 File are the only cases where at least one of the

methods produced shared genes that significantly overlapped with the gene lists from both

TCGA data and one of the PrognoScan datasets assessed by a one-tailed Fisher’s exact test. We

assume that the overlapping genes with statistical significance between the two datasets are

more likely to reflect the true underlying biology rather than being impacted by unrelated fac-

tors. These unrelated factors include bad datasets due to technical issues such as microarray or

RNAseq issues from either or both datasets, bad survival data annotation and curation etc.

Only the GradientScanSurv and PrognoScan methods have cases from all of the trials showing

significant overlap by the estimated p-values (Table I in S1 File), although in one case (shown

in a row in bold in Tables H and I in S1 File), only the GradientScanSurv method has a signif-

icant p-value indicating that GradientScanSurv has the most consistent performance using the

standard adjusted p-value cutoff (< = 0.05). In addition, NRAS was consistently identified by

the GradientScanSurv method as well as by PrognoScan and Cox regression method (on gene

expression), indicative of presumed biologically relevant results, since NRAS expression is cor-

related with KRAS mutational status in LUAD [47] and thus may contribute to oncogenesis.

To further evaluate the underlying biological relevance from the resulting gene lists from

these methods using different data sources, we compared the shared genes derived from each

of these methods between two independent pancreatic cancer (PAAD) datasets (Table 1): one

from the TCGA PAAD dataset (TCGAPAAD_Set), and the other from Australian Pancreatic

Cancer dataset (AusPanc_Set). Again, only the cases with significant overlapping genes

between the two datasets were considered (Table 1). Interestingly, the NRAS gene was consis-

tently found in the lists of multiple trials of data only from the GradientScanSurv method and

only when there is a statistically significant overlap between the TCGAPAAD_Set and Aus-

Panc_Set (Table K in S1 File). NRAS was only seen in the shared gene lists from the Gra-

dientScanSurv method but not from those of all other methods, indicative of its best

performance in uncovering genes with likely biological relevance. In the case of PAAD, where

more than 94% Pancreatic cancer patients harboring KRAS mutations [48], there is also a

strong association between KRAS mutation status and increased level of expression of NRAS

[47]. Therefore, finding NRAS as a positive gene for PAAD data by the GradientScanSurv

method within these tested datasets is in many ways consistent with the expected biology and

similarly, lack of its detection may represent a shortcoming to any method that does not show

significance.

Performance comparison with penalized linear model-based Elastic Net

and Lasso methods

Since the selected univariate methods that were compared with the GradientScanSurv method

consider genes one at a time, we also wanted to evaluate whether the GradientScanSurv

method performed better than other model methods such as penalized linear model-based

An exhaustive association test method for survival analysis
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Table 1. Comparison of shared genes identified by selected methods on two independent PAAD datasets.

TCGAPAAD_Set AusPanc_Set Adj.GoodCountPvals Adj.

CORRECTED_P_VALUE

Adj.

CoxPvalbyRanks

Adj.COX_P_VALUE Adj.

MedianPvals

Adj.

tertPvals

trial_1 trial_1 NRAS;EGFR;CCNA2;

MCM4;E2F7;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_1 trial_3 NRAS;EGFR;BUB1;

CCNA2;MCM4;RALB;

E2F7;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_1 trial_4 NRAS;EGFR;BUB1;

CCNA2;MCM4;RALB;

E2F7;CASP8;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_2 trial_1 NRAS;CCNA2;MCM4;

EGFR;E2F7;CDK2;TK1

BUB1;MCM4 BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2

BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2;RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_2 trial_3 NRAS;BUB1;CCNA2;

MCM4;RALB;EGFR;

E2F7;CDK2;TK1

BUB1;MCM4 BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2

BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2;RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_2 trial_4 NRAS;BUB1;CCNA2;

MCM4;RALB;EGFR;

E2F7;CASP8;CDK2;TK1

BUB1;MCM4 BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2

BUB1;CCNA2;

MCM4;EGFR;E2F7;

CDK2;RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_3 trial_1 NRAS;EGFR;CCNA2;

E2F7;MCM4;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_3 trial_3 NRAS;EGFR;BUB1;

CCNA2;E2F7;MCM4;

RALB;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_3 trial_4 NRAS;EGFR;BUB1;

CCNA2;E2F7;MCM4;

RALB;CDK2;CASP8;

TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_4 trial_1 NRAS;EGFR;CCNA2;

MCM4;E2F7;TK1;CDK2

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_4 trial_3 NRAS;EGFR;BUB1;

CCNA2;MCM4;RALB;

E2F7;TK1;CDK2

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_4 trial_4 NRAS;EGFR;BUB1;

CCNA2;MCM4;RALB;

E2F7;TK1;CDK2;CASP8

BUB1;MCM4 EGFR;BUB1;

CCNA2;MCM4;

E2F7;CDK2

EGFR;BUB1;CCNA2;

MCM4;E2F7;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_5 trial_1 NRAS;EGFR;CCNA2;

E2F7;MCM4;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_5 trial_3 NRAS;EGFR;BUB1;

CCNA2;E2F7;MCM4;

RALB;CDK2;TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

trial_5 trial_4 NRAS;EGFR;BUB1;

CCNA2;E2F7;MCM4;

RALB;CASP8;CDK2;

TK1

BUB1;MCM4 EGFR;BUB1;

CCNA2;E2F7;

MCM4;CDK2

EGFR;BUB1;CCNA2;

E2F7;MCM4;CDK2;

RASA1

BUB1;

CCNA2;

MCM4

CCNA2;

MCM4

(TCGA PAAD data and Australian Cancer Data). Only the trials that have significant p-values in their one-tailed Fisher’s exact tests for the GradientScanSurv (Adj.

GoodCountPvals) method (rows in bold from Table K in S1 File) assessing the significance of overlapping genes are listed here. All other methods have the same p-

values (for the same data) and so the same shared genes for all trials. The GradientScanSurv method produced different p-values for each trial due to its permutation

step. The full table with all trials is in Table L in S1 File. Identified genes shared by both the TCGA PAAD data (TCGAPAAD_Set) and the Australian Pancreatic

Cancer data (AusPanc_Set) at the cutoff using the adjusted p-value< = 0.05 respectively using the selected methods are shown. Since the GradientScanSurv method has

a permutation step, multiple trials of GradientScanSurv analysis were used in combination with results from other methods to form trials. In addition, whenever the

NRAS gene was identified in the trials of data by the GradientScanSurv method (all trials in this table), the overlap of the identified genes showed the significance of

overlap between the two datasets for the GradientScanSurv method, which was also highlighted in bold in Table K in S1 File.

https://doi.org/10.1371/journal.pone.0207590.t001

An exhaustive association test method for survival analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0207590 December 5, 2018 19 / 28

https://doi.org/10.1371/journal.pone.0207590.t001
https://doi.org/10.1371/journal.pone.0207590


methods including Elastic Net [49] and Lasso methods [50]. These methods consider all vari-

ables together in the model, which is essentially a Cox model with added features that allow

them to do the variable selection. The conventional Cox regression method can also take mul-

tiple variables at a time, but the Elastic Net and Lasso methods are much more comprehensive

than the conventional Cox regression model. Penalized linear model-based methods such as

Elastic Net are about trying to find the minimal set of variables that matter when considered as

a group, whereas our method is looking at the variables individually, which make the direct

comparison much harder and it may be debatable whether ROC analysis is an appropriate way

to evaluate performance. Thus, we decided to compare the results of each method using the

same dataset to discover underlying biological relevance based upon the biological knowledge

available. It is not a perfect heads-up comparison but still should inform us about the potential

of our method in uncovering the underlying biology based on our understanding of RAS biol-

ogy, which our RAS program focuses on.

As expected and discussed above, NRAS was once again identified by both the GradientS-

canSurv and Lasso method in LUAD showing strong association with patient survival outcome

(Table 2). However, the GradientScanSurv method identified the other two RAS genes (KRAS

and HRAS) as positive genes in PAAD, which were missed by the Lasso method. Once again,

with more than 94% Pancreatic cancer patients carrying KRAS mutation [48] and RAS genes

Table 2. Comparison of results by GradientScanSurv and Lasso methods on TCGA tumor data (adjusted p< = 0.05).

Types Common_Genes_Count GSS_Genes_Count Lasso_Genes_Count Common_Genes GSS_Genes_only Lasso_Genes_Only

BRCA 8 17 28 CCNA1;ERF;

EXOC1;FLT3;

ICMT;PLXNB1;

RAC2;STK3

CCND2;IRS2;JUN;PTK2;

PTPN11;ROCK2;STK11;

BRCA1;FANCC

SAV1;RASAL1;EIF4EBP1;

PIK3CA;RASAL3;FGFR1;

CDKN1A;RHOB;DUSP6;

CASP7;FGFR4;RPS6KB1;

RPS6KA3;PRKAG1;RPS6KA6;

RALGDS;SCRIB;PRKAA2;

CASP3;RHEB

COAD 0 0 0

LUAD 4 6 12 NRAS;ECT2;

DUSP5;SHC1

CCNA2;FOSL1 E2F7;GRB10;TYMS;RALGDS;

YAP1;ALK;PIK3CA;RASSF9

PAAD 2 64 2 EXOC7;MET KRAS;NRAS;ALK;BARD1;

BRCA2;BRIP1;BUB1;CASP8;

CBLC;CCNA2;CCND1;

CCND2;CDC6;CDK2;CDK6;

E2F1;E2F7;ECT2;EGFR;

EIF4EBP1;ERBB2;EXOC1;

EXOC3;EXOC4;FANCA;

FANCC;FOSL1;HRAS;KSR1;

KSR2;MCM4;PAK2;PEBP1;

PIK3CA;PIK3R2;PIN1;

PLXNB1;PPP1CA;RAC1;

RALA;RALB;RALBP1;

RALGDS;RASA2;RASA3;

RASAL2;RASSF9;RCE1;RET;

RHOC;SAV1;STK3;TFDP2;

TK1;TSC1;TSC2;TYMS;

UNG;YAP1;DUSP6;FNTA;

RPTOR

READ 0 1 0 MET

Comparison of results derived from GradientScanSurv (GSS) and Lasso methods with TCGA tuor data (adjusted p< = 0.05) for the association of survival outcome with

the expression of RAS pathway genes for a few selected tumor types: BRCA, COAD, LUAD, PAAD, and READ, which more likely have RAS genes involved. For GSS

gene lists, LUAD, PAAD, and BRCA used multiple trials of results—the genes shown here were selected as common genes shared by multiple trials: LUAD (4 of 5 trials);

PAAD (4 of 5 trials); BRCA (2 of 3 trials). Genes in bold are discussed in the text.

https://doi.org/10.1371/journal.pone.0207590.t002
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(KRAS, NRAS, and HRAS) were observed to interact with each other through their mutations

status and gene expression [47], it is highly expected that RAS genes could be highly associated

with survival outcome. In addition, FOSL1 was identified in both LUAD and PAAD by our

method but missed by the Lasso method (Table 2). Very similar results were observed for the

Elastic Net method, which also missed the FOSL1 gene in both LUAD and PAAD results

(Table M in S1 File). FOSL1 was recently identified as a novel downstream effector of KRAS

and higher FOSL1 expression was associated with poor survival outcome in both lung and

pancreatic cancer patients [51]. Therefore, we take the presence of FOSL1 in the GradientS-

canSurv positive lists and its absence in both Lasso and Elastic Net method to be indicative of

more biologically relevant results from the GradientScanSurv method.

We also noticed that there were many genes identified by the GradientScanSurv method in

PAAD, many more than those detected by Lasso (Table 2) or Elastic Net method (Table M in

S1 File). However, both the Lasso and Elastic Net methods identified many more genes in

BRCA data than the GradientScanSurv method. This may suggest that the number of genes in

the positive lists of each method are dataset-dependent rather than method-dependent. Simi-

larly, although LUAD, PAAD, COAD, and READ are associated with RAS mutational status

and oncogenic activity, COAD has no positive genes for all of the test methods. READ had

only one gene (MET) identified by the GradientScanSurv method. Interestingly, high MET

expression has been found to be related to a worse prognosis and mortality for colorectal can-

cer patients [52]. READ and COAD should be very similar considering their physical locations

and the fact that they are both adenocarcinomas. However, the variations between COAD (0

positive hit) and READ (1 positive hit) could be impacted by multiple factors such as sample

collection, subtype differences, data quality, gene mutation relationships with gene expression

etc. One could speculate that the lack of positive hits in TCGA COAD survival analysis could

be due to mixed subtypes amongst COAD patients, which are not clinically homogeneous

[11].

In addition, the genes DUSP6 [53], PIK3CA [54] and YAP1[55] play critical roles in pan-

creatic cancer oncogenesis and tumor maintenance, which consequently impacts survival out-

come. Therefore, finding these genes associated with survival outcome in PAAD is expected

and makes sense given our current understanding of the tumor biology (Table 2 and Table M

in S1 File). All of these observations suggest that despite the caveats associated with this com-

parison, the GradientScanSurv method appears to have better detection power compared to

Lasso and Elastic methods to uncover the biologically relevant genes that are associated with

cancer patient survival outcomes.

Discussion

Historically, survival analysis has been focused on three types of goals: outcome-related gene

finding, class discovery, and supervised prediction [12]. In this report, we mainly concentrated

on outcome-related gene finding with the hope of uncovering relevant underlying biological

mechanisms.

The highlighted examples illustrate the common pitfalls in publicly available survival analy-

sis and validation web tools as well as the biological studies that have used these tools. Looking

through the literature, one can easily find examples of the Kaplan-Meier estimator method

and logrank tests that applied a limited set of predefined cutpoints to separate samples into

high and low categories of genes, biomarkers, or prognostic scores, etc. In most, if not all

cases, there is no justification or rationale provided in the published studies regarding why the

particular cutpoint(s) was chosen if in fact that information is provided at all. They also do not

discuss whether using other cutpoints did or did not produce significance. The first example
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regarding the KIAA1522 gene expression illustrated an implied bias using Kaplan-Meier Plot-

ter website resulting from the fact that the given options for the tool include only a limited set

of pre-defined cutpoints. The second example regarding RELN gene expression especially with

the TCGA RNASeq LUAD dataset showed how we could miss supporting evidence, leading to

a conflicting conclusion. This results from the fact that by chance the relation does not have

logrank test significance at the commonly applied cutpoint.

We have introduced these papers simply as examples of potential pitfalls when using the

available tools in the community. Their use was not meant to criticize the authors of these two

papers for using a popular survival analysis tool, but rather to precaution the field as to how

pitfalls can exist in commonly used tools. We used these two examples to show how a limited

selection of analysis results from used tools could impact research results. In any case, our goal

was to expose these aspects in order to avoid recurrence of such cases.

Such common pitfalls exist widely in the research community simply because no method

has been reported that correctly handles the extrapolation of continuous data to categorical

analysis or that comprehensively derives a p-value to assess, uncover, and validate the associa-

tion of gene expression with survival outcomes. Our GradientScanSurv method potentially

fills this gap by enabling the logrank test method to handle continuous variables and systemati-

cally assess the overall association with survival outcome along the ordered gradient in a com-

prehensive way. In addition, the visualization cues presented in the GradientScanSurv plots as

vertical green lines representing the cutpoints, at which tentative cutpoint-wise significances

of survival outcome were observed, provide a novel and informative way to visually sense the

extent of the association of the expression of the genes with survival outcome. Furthermore,

the directionality of the changes in outcome related to the expression levels can be seen from

the GradientScanSurv plots as well. These visual cues provide good overall indicators of the

data along the expression gradient that can consolidate the GoodCountPval regarding how

well the gene expression is associated with survival outcome.

The PrognoScan method that derives a corrected p-value from the minimal p-value

obtained along the expression gradient, is probably the most comprehensive logrank test

method-based approach prior to the development of our GradientScanSurv method. Its main

drawback is that it fails to provide a comprehensive consideration of the overall behavior along

the whole expression gradient on the survival difference between the high and low expression

groups. Rather, it produces a minimal p-value that is derived from one, albeit optimal, cut-

point. Although PrognoScan does evaluate the continuum of cutpoints to identify the optimal

cutpoint and then derive a corrected minimal p-value from that, it fails to convey information

about the rest of the continuum to uncover the association of gene expression with survival

outcome. We assert that the GradientScanSurv method presumably corrects this deficiency by

assessing the overall behavior of data for all the cutpoints along the expression gradient for the

extent of association between gene expression and survival outcome. The side-by-side compar-

isons between the GradientScanSurv method and the PrognoScan method showed that Gra-

dientScanSurv better tolerates variations in datasets from the same disease but derived from

different sources. Further, a more extensive global comparison with other survival analysis

methods showed that our GradientScanSurv method has better overall performance in terms

of consistency in multiple datasets tested by ROC analysis. It also appears to provide more bio-

logically relevant results by evaluating the positive genes shared within the analysis results

from independent datasets of the same diseases using the same analysis method.

It is possible to conclude that our method categorizes a continuous variable and there are

plenty of methods that treat continuous variables as continuous such as the Cox model etc.

However, we have directly compared our method with Cox models that treat expression data

as a continuous variable in the model or even treat the ranked orders of the expression data as
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a continuous variable and indeed showed that our method is better than Cox models in both

cases. In our view, considering many covariates such as age, tumor size etc simultaneously

would likely confound the impact of gene expression on survival outcome when using the Cox

model. Our method simplifies the question by testing how strongly the expression of an indi-

vidual gene is associated with survival outcome by considering one gene at a time so that only

the strong potential biomarker(s) are captured to move forward with more robust validation

with multiple factors.

In addition, we would like to point out that by considering all cutpoints, comparing them

and combining their logrank test statistics to an aggregate statistic, our proposed method

achieves something that cannot be done by simply categorizing a variable. On the other hand,

nonparametric methods all inevitably involve tuning parameters, for example, in spline, we

have to choose a number of tuning parameters, such as the degrees, the number of knots, etc,

and tuning all these parameters is a much more involved task. In contrast, our method is

extremely simple and straightforward, and it is able to detect most nonlinear relationships.

When we used ROC analysis for global performance comparison, we alternately used either

TCGA LUAD data or PrognoScan LUAD data as the Training Set or Testing Set. Since these

datasets are derived from the same disease, they can be used as Training and Testing datasets

respectively for cross-validation. This is more stringent than k-fold cross-validation within

each dataset as is usually done. We prefer this approach because sample size would be reduced

in the Training and Testing datasets due to a further partitioning of the samples if k-fold cross-

validation were used. Of course, the reduction in sample size would be expected to have a sig-

nificant impact on survival analysis. Therefore, cross-validation within two independent data-

sets of the same disease keeps the sample size as large as in the Training Set and Testing Set

respectively. It also adds more stringent criteria to the cross-validation due to the independent

data sources and even different platforms and technologies that created the datasets. In addi-

tion, it leverages the much better understanding of these diseases for their impact of the genes

in the RAS pathway that can be credited to the accumulated studies in the field over the years

as well as the more recent RAS Initiative (https://www.cancer.gov/research/key-initiatives/

ras). Thus, the analysis results can be consolidated with expected biological themes with much

better confidence.

Although simulation data has been widely used in the field to compare performance

between methods, simulation in this context would require a more detailed understanding of

the associated biology. A statistical simulation would, of course, help us to understand the type

1 error and robustness, however, that approach would make very strong assumptions in the

underlying data generator, such as the true functional form of the hazard, or sparsity etc.

Hence it becomes difficult to evaluate whether this approach would be useful in this particular

context.

In order to compare our method with the more recent appearance of penalized linear

model-based methods such as Lasso and Elastic Net methods, we also did a comparison with

these methods that consider multiple genes together in terms of their ability to capture biologi-

cally relevant results. We were surprised to observe that our GradientScanSurv method was

able to uncover more meaningful results based on alignment with biological expectations

derived from our understanding of RAS biology’s role in a variety of cancer types that has

emerged in recent years. These penalized linear model-based methods mainly focus on linear

relationships of genes and how they relate to survival outcome. It was implied that even co-reg-

ulated genes may not necessarily all be associated with survival outcome simultaneously

despite an attempt to use a network-based approach to explore this aspect [56]. Our prelimi-

nary comparison study comparing GradientScanSurv and penalized linear model-based meth-

ods suggested that GradientScanSurv may be able to take into account these aspects and
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associations that are not linearly related and would have been missed from these linear model-

based methods.

Our GradientScanSurv method assesses one gene at a time, which has Pros and Cons. An

obvious Pro is that this method does not have to include other factors and other genes in the

analysis model presumably diminishing a tendency to over-fit the model since most datasets

have a limited number of patients. This simplifies the method to only consider one variable at

a time, and also make its interpretation more straightforward [3]. The Con is that ignorance of

other factors or other genes may miss consideration of the interaction(s) of these genes. For

example, recent statistical theoretical analysis of the random survival forest [45, 57] model

shows that the exhaustive cutpoint search can be potentially biased if the censoring distribu-

tion also depends on the covariates (https://arxiv.org/pdf/1707.09631v3.pdf), which may lead

to the sub-optimal power of the proposed method. However, our comparison results may sug-

gest the Pro may outweigh the Con side, since there are so many genes encoded by the

genome, considering them altogether may make the model clumsy and hard to interpret. If we

scan the genes one at a time with GradientScanSurv to collect a list, and then use these integra-

tion methods to consider the positive hit genes derived from the first-round of GradientScan-

Surv analysis later, this may be a feasible and reasonable way to study the interactions of these

genes, but this is outside of scope of this study.

As mentioned earlier, gene expression cluster or gene signature-based survival analysis bio-

markers have encountered issues of reproducibility and robustness [14]. Many of the gene sig-

nature biomarkers reported in the literature do not have enough validation in the first place.

In contrast, the single gene expression gradient is a compelling place for us to look for poten-

tial outcome-related biomarkers. First, our expression gradient-based method classifies the

patients based on their ranked order of the expression level, rather than the actual signal inten-

sity, which is much more resistant to variations of measurement types (e.g., microarray probe

intensity, RSEM value of RNAseq etc.). Consequently, a gene uncovered by our gradient-based

method will be easier to use as a biomarker and easier to validate using different data sources

that may be derived using different platforms or technologies. Secondly, the rank order of

expression levels is independent of the data transformation and normalization methods used.

In contrast, data transformation and normalization methods would very likely impact any of

the signature or cluster-based survival analysis methods. Thirdly, our expression gradient-

based method can be used to derive individual biomarker genes as a first round, with subse-

quent application of other methods to derive aggregate scores for each sample by combining

these potential biomarker genes from the first round. From this, the gradient of these aggregate

scores for all samples can be subsequently subjected to our gradient method for survival analy-

sis for the 2nd round. This procedure can be flexibly used for biomarker discovery at the indi-

vidual gene level or at the aggregate level of multiple “good” biomarker genes. The aggregate

biomarkers can be flexibly tested for permutated combinations of the identified potential indi-

vidual biomarkers until better aggregate biomarkers are obtained.

Our method is not limited to application with gene expression data. In fact, any continuous

variable can be used with our method for survival analysis for its association with outcome.

The univariate Cox regression model is sensitive to the actual data range and scale, since as we

tested the Cox regression model with either actual expression levels or ranks based on relative

expression levels and these gave quite different results. This is why we also compared Cox

regression results using the rank of gene expression in addition to using the actual expression

intensities. Our method can be used to derive risk scores that classify the cancer patients either

through a combination of risk scores of each potential gene or through aggregate risk scores of

combined potential gene lists.
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Taken together, our results show that the GradientScanSurv method can be used as either a

validation or discovery tool for biomarkers of continuous variables. It produces better perfor-

mance than all of the selected methods we compared for the selected example datasets. Our

comparisons included most typically existing methods and commonly used public web tools

in the field to directly assess the association of gene expression with survival outcome to our

knowledge, although it is impossible to compare all of the tools in the field at one time. Our

comparative analysis has also revealed the importance of carefully capturing survival data

along with the associated metadata for ongoing genomic disease studies. The data we accessed

have relatively high levels of sample drop out in terms of life-status reporting that significantly

hampered our analysis and we look forward to applying this method to more complete datasets

as they emerge.
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