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Gamma-delta (γδ) T cells are a small subset of T cells that are reported to have a

proinflammatory role in the pathophysiology of cerebral ischemia stroke (CIS). Upon

activation by interleukin-1 beta (IL-1β), IL-23 and IL-18, γδ T cells are stimulated to

secrete various cytokines, such as IL-17a, IL-21, IL-22, and interferon-gamma (IFN-γ).

In addition, they all play a pivotal role in the inflammatory and immune responses in

ischemia. Nevertheless, the exact mechanisms responsible for γδ T cell proinflammatory

functions remain poorly understood, and more effective therapies targeting at γδ T cells

and cytokines they release remain to be explored, particularly in the context of CIS.

CIS is the second most common cause of death and the major cause of permanent

disability in adults worldwide. In this review, we focus on the neuroinflammatory and

immune functions of γδ T cells and related cytokines, intending to understand their roles

in CIS, which may be crucial for the development of novel effective clinical applications.
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INTRODUCTION

Stroke, a common disease, is the second leading cause of death and the third leading cause of
disability in adults worldwide and places an increasing burden on families and communities
(1). Stroke can be broadly divided into the ischemic and hemorrhagic stroke, and the former
makes up ∼87% of all stroke cases (2). Nowadays, clinical treatment of ischemic stroke is limited
to interventions that restore blood flow through either pharmacological thrombolysis—tissue
plasminogen activator (tPA), the only approved therapeutic agent—or mechanical thrombectomy.
However, due to the moderate recanalization rate, limited time window, adverse effects, and some
thrombolytic contraindications, only a small number of patients could receive and benefit from the
therapies in time (3). Therefore, it is necessary to continue to explore the pathogenic mechanisms
contributing to neurologic injury following a stroke to develop alternative therapeutic strategies.

Severe stenosis or occlusion of a cerebral artery, especially the middle cerebral artery, deprives
nerve cells, including neurons and glial cells, of nutrition, such as oxygen, glucose, and lipids
(4). Ischemia triggers a complex cascade of events that include energy failure (5), ion imbalance,
excitotoxicity (6), oxidative stress (7), cell death, activation of microglia and complement system
(8–10), and initiate the inflammation and immune responses. The cascades eventually lead to
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irreversible brain damage (11). After recanalizing successfully,
restoring blood flowing to the ischemic brain causes secondary
reperfusion injury. Reperfusion results in the production
of reactive oxygen species (ROS) and the amplification of
inflammation and immune responses, which subsequently
cause undue neural death, impairment of the integrity of
the blood-brain barrier (BBB), and activation of innate and
adaptive immune systems, and eventually lead to brain damage
even worse (12–15). In addition, the affected brain tissue
also accumulates specific proinflammatory cells, especially
neutrophils, macrophages, and T cells; Of which, T lymphocytes
are one of the critical factors to the entire pathophysiology
process of CIS (16, 17).

T lymphocytes develop from bonemarrow-derived precursors
and mature in the thymus after a complex developmental
sequence associated with differentiation, selection, and
proliferation episodes. They exert a central role in the adaptive
immune system and are important in the crosstalk between
innate and adaptive immune systems (18). T cells recognize
antigens through T cell antigen receptor (TCR) composed of two
distinct polypeptide chains (19), two possible pairs of which have
been identified: TCRα and TCRβ, or TCRγ and TCRδ, defining
αβ and γδ T cells, respectively. Certainly, all types of T cells are
closely involved in inflammatory events in stroke (20). Notably,
an interest in γδ T cells grows rapidly owing to their essential
contributions to immunopathology in many diseases including
CIS, therefore, γδ T cells are the focus of our review.

CHARACTERISTICS OF γδ T CELLS

γδ T cells are divided according to the type of Vγ and Vδ chain
they express at the TCRs. Of note, classification is one of the
differences between human and mouse γδ T cells. In human,
three main Vδ gene segments, Vδ1, Vδ2, and Vδ3, are most
frequently used in the rearrangement of the δ chain, while seven
functional Vγ gene segments, Vγ2, Vγ3, Vγ4, Vγ5, Vγ8, Vγ9,
and Vγ11 are used for rearrangement of the γ chain (21). In
human beings and Non-human primates along with a few other
species, Vγ9Vδ2 T cells are the major γδ T cell subset and are
the potential therapeutic target in many diseases (22, 23). While
in mice γδ T cell subsets are named according to the Vγ chain
used, which contains Vγ1, Vγ4, Vγ5, Vγ6, and Vγ7. Thus, the
characteristics describing the γδ T cell subsets of one particular
species cannot be applied to another species directly because
each repertoire is unique (24). Hence, the experimental results
obtained frommurine studies need further validation before they
are applied to clinical practices.

During fetal thymic development, γδ T cells are the first T
cells to appear in the thymus. However, the relative proportion
of γδ T cells decreases with the emergence and development of
αβ T cells. In adult humans, γδ T cells make up 3–10% of T cells
in the peripheral blood (25–27). Certain tissues, including lung,
skin, thymus, lymph node, spleen, and breast, also find a similar
frequency of γδ T cells (26, 28, 29). In comparison, γδ T cells can
constitute up to 30% of all T cells in some compartments of the

intestinal tract (30). While in adult mice, γδ T cells constitute 1–
4% of total T cells in the blood, lymph node, liver, and spleen (31–
33). Moreover, γδ T cells are also widespread within epithelial-
rich tissues that form the inner and outer surfaces of the body,
such as the reproductive tract, intestinal epithelial cells, and skin
epidermis and dermis (34–38). They have the potential to be the
source of γδ T cells infiltrating into the ischemic brain, which will
be mentioned later.

Strikingly, a unique feature of murine γδ T cells is the
preferential expression of different Vγ segments in different
tissues. For example, Vγ5 + γδ T cells are present in the
epidermis, Vγ7 + γδ T cells lie in the gut epithelia, Vγ6 +

γδ T cells localize to the reproductive mucosa (39). Likewise,
in humans, Vδ1 + T cells are a major subset in many tissues,
such as thymus, spleen (40), breast (41), decidua (42), liver (43),
lung, intestinal epithelia (44, 45) and skin dermis and epidermis
(46), and Vγ9Vδ2 T cells are the major γδ T cell subset in the
peripheral blood. Understanding of γδ T cell subtypes and their
specific distribution fully and then developing therapies that
target the specific cell subtype and their tissue specificity could
increase effectiveness and reduce side effects of medicines or
other treatments.

THE ROLE OF γδ T CELLS IN CEREBRAL
ISCHEMIC STROKE

Source of γδ T Cells
In the context of stroke, γδ T cells infiltrate into affected
brain parenchyma and leptomeninges and participate in the
inflammatory and immune responses in brain ischemic injury
(39, 47). CC chemokine receptor 6 (CCR6) is required for
the infiltration of IL-17-producing γδ T cells in experimental
stroke. Genetic deficiency of CCR6 is associated with diminished
infiltration of IL-17-producing γδ T cells and a significantly
improved neurological outcome (48). In addition, dysbiosis in
some tissues also influences the infiltration of γδ T cells. The
article by Benakis et al. (47) made the point that intestinal
dysbiosis altered immune homeostasis in the small intestine, d
decreased the number of γδ T cells in the meninges, suppressed
the function of effector IL-17-positive γδ T cells, and then
affected ischemic stroke outcome. Inspired by the proximity, Brea
et al. explored and found that nasal-associated lymphoid tissue
(NALT) is not the source of stroke-associated IL-17a+ γδ T cells
(49). Whether γδ T cells can migrate from tissues with a high
frequency of γδ T cells mentioned above, such as reproductive
tract and skin dermis, remains to be further explored and
confirmed. Moreover, the specific mechanisms leading to the
migration of γδ T cells remain to be further elucidated. Recently,
de Lima et al. (34) have found a high representation of γδ T cell
receptor-expressing cells without expression of the conventional
T cell coreceptors CD4 and CD8 in the dura mater. Of note,
these cells can regulate anxiety-like behavior via IL-17a signaling.
It is worth considering whether dura-associated γδ T cells are
involved in the pathophysiology of CIS just like infiltrated γδ T
cells; certainly, if they do, the mechanisms they work in CIS need
to be explored.
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Activation of γδ T Cells
γδ T cells express IL-23 receptor (IL-23R), IL-18R (50, 51). The
receptors are combined with IL-23, IL-1β, and IL-18, which are
produced from dendritic cells and infiltratedmacrophages, rather
than residential microglia, and then γδ T cells are stimulated
to produce IL-17a, IL-21, IL-22, and IFN-γ, in the absence of
TCR engagement (51–53). In addition, γδT cells express Toll-like
receptor (TLR) 7, TLR9, and the central TLR adapter molecular
MyD88 intracellularly, and express TLR2 on the cell surface.
However, upon TLR stimulation with TLR ligands, γδ T cells
do not secret IL-17a (54). McCandless et al. (55) have reported
that γδ T cells can secrete IL-1β in experimental autoimmune
encephalomyelitis (EAE), and depletion of γδ T cells can decrease
IL-1β levels. However, whether γδ T cells can secrete IL-1β in CIS
has not been demonstrated.

Most of these molecules mentioned above are involved in
the pathological process of ischemic brain injury. Besides, in
the fields of anti-bacterial immunity and tumor immunity,
γδ T cells can be activated by phosphoantigens (pAgs), which
includes (E)-1-hydroxy-2-methyl-but-2enyl pyrophosphate
(HMBPP), dimethylallyl pyrophosphate (DMAPP) and
isopentyl pyrophosphate (IPP), through γδ TCR (56, 57).
And butyrophilins (BTN)/butyrophilin-like molecules (BTNL)
are core mediators of pAg sensing by γδ T cells (58). What’s
more, little research has focused on the signaling pathways
that exist in γδ T cells intracellularly after activation through
ligands combined with their receptors. The small amount, the
difficulty to extract, and no cell line are characteristics of γδ T
cells and may be why they are short of research. Noteworthy,
these signaling pathways are worth studying to understand the
pathogenic process in CIS more sufficiently and to develop more
effective therapies.

Potential Mechanisms of the Effect of γδ T
Cell-Derived Cytokines on CIS
γδ T cells exert an important effect on brain tissue injury in CIS
not by themselves, butmainly by cytokines they release, including
IL-17a, IL-21, IL-22, and IFN-γ. Each of them plays a unique
role in the process of cerebral ischemia and reperfusion injury
(Figure 1), including promoting BBB breakdown, neutrophil
infiltration, neuronal cell apoptosis and autophagy, and so on,
resulting in unreversible brain damage.

IL-17a

It has been reported that in both experimental models and
patients, IL-17a is augmented in brain tissue and peripheral blood
after CIS. γδ T cells are the main sources of IL-17a in the context
of stroke (52). Other innate and adaptive immune cells, including
Th17 cells, natural killer T (NKT) cells, natural killer (NK) cells,
group 3 innate lymphoid cells (ILC3s), and neutrophils have
been found to secrete IL-17a as well (59, 60). As previously
reported, IL-17a-releasing γδ T cells peak on day 3 after the
onset of ischemia, and IL-17a seems to have a crucial role in the
maturation of brain infarction (59).

Firstly, IL-17a could promote neutrophil infiltration. By
binding with IL-17R, which is expressed on glial cells and brain
microvascular endothelial cells (BMECs) and is up-regulated

after stroke in experimental models, IL-17a promotes glia and
BMECs to secret and activate large amounts of CXCL1; CXCL1
is a neutrophil chemoattractant that could lead neutrophils
to infiltrate into the affected cerebral parenchyma (61–65).
Moreover, augmented infiltrating neutrophils can further destroy
the integrity of the blood-brain barrier (BBB), and promote the
lysis and apoptosis of nerve cells, as a result, to aggravate brain
injury (18, 66, 67).

Secondly, IL-17a could destroy the structural integrity of BBB.
Huppert et al. (68) have found that IL-17a could induce ROS
production so that to down-regulate the expression of tight
junction (TJ) molecule occluding. Ni et al. (69) have verified that
IL-17a could elevate matrix metalloproteinase (MMP)-2, MMP-
3, and MMP-9 in BMECs to hydrolyze TJs, leading to increased
BBB permeability. Zhu et al. (70) have uncovered that IL-17a
induced the production of von Willebrand factor by endothelial
cells, and promoted endothelial cells apoptosis by activating
caspase-3 and caspase-9 and up-regulating the ratio of Bcl-2-
associated X protein (Bax)/B cell lymphoma/leukemia-2 (Bcl-2).
However, the aforementioned damaging effect of IL-17a on BBB
has only been confirmed in other models of brain inflammatory
diseases, and the effect needs to be verified in CIS.

Thirdly, IL-17a promotes neuron death, including apoptosis
and autophagy. IL-17a facilitates the expression of apoptosis-
related proteins including caspase-3, caspase-9, and Bax, and
increases the ratio of Bax/Bcl-2 after brain injury, thus resulting
in neuron apoptosis (71). Liu et al. (72) have also found that
IL-17a could mediate excessive autophagy to aggravate neuronal
ischemic injuries via the Src-PP2B-mTOR pathway.

All the damaging effects above lead to larger infarction and
worse outcomes. Likewise, IL-17a and γδ T cells have also been
demonstrated to be implicated in human stroke. Infiltration of
γδ T cells and secretion of IL-17a have been documented in
ischemic human brain tissue and circulating IL-17a is elevated
as well (53, 61, 73). Later, clinical research is needed to verify
the role of the γδ T cell-IL-17a axis in patients suffering from
ischemic stroke and potential mechanisms, so that to develop
more effective therapies applied to clinical practice.

Noteworthy, IL-17a plays a dual role at different time points
after ischemic stroke in mice. The article by Lin et al. makes
the point that IL-17a showed two apparent peaks of expression
in the ischemic hemisphere: one occurring within 3 days, which
is secreted from γδ T cells and has detrimental roles in the
pathogenesis of acute ischemic stroke as mentioned above, and
the other on 28 d after stroke. And astrocytes are the major
cellular source of the second peak of IL-17a that has a property
in the maintenance and augment of survival and neuronal
differentiation of subventricular zone (SVZ) neural precursor
cells (NPCs), and subsequent synaptogenesis and functional
recovery after ischemic stroke (74). Whether promoting IL-
17a releasing or exogenous administration of IL-17a during
convalescence improves stroke outcomes remains to be explored
and verified.

IL-21

In a mouse model of transient middle cerebral artery occlusion
(tMCAO), IL-21 is robust up-regulated in the injured brain, and
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FIGURE 1 | Activation and effects of γδ T cells in the pathophysiology process of CIS. Upon activated by IL-23, IL-1β and IL-18, infiltrated γδ T cells are stimulated to

produce IL-17a, IL-21, IL-22, and IFN-γ. They participate in the pathophysiological process of CIS, involving promoting BBB breakdown, neutrophil infiltration,

neuronal cell apoptosis and autophagy, and so on, leading to affected brain tissue damage and neurological deficit.

IL-21 exerts a pronounced effect on brain injury via up-regulating
autophagy-related genes of neuronal cells which express IL-21R.
In addition, in postmortem human brain tissue, IL-21 was also
found in the area surrounding acute stroke lesions, suggesting
that IL-21-mediated brain injury may be relevant to human
stroke (75). IL-21 gene owns two polymorphisms, rs907715G/A
and rs4833837A/G, and the former causes the augment of IL-21
mRNA and protein levels in peripheral blood mononuclear cells
(PBMCs) and shows a positive correlation with brain ischemic
injury; thus, IL-21 may be important in the development of the
disease (76). Therefore, there is a potential for regulation at the
protein level, even genetic level, to prevent and mitigate ischemic
stroke in the brain.

Surprisingly, Weiner et al. (77) and Lee et al. (78) found
that IL-21R exerted a neuroprotective effect via Janus tyrosine
kinase (JAK)/signal transducer and activator of transcription
(STAT) signaling pathways and upregulation of caspase-3, and
neuronal cell death and infarct volume increased in IL-21R-
deficient mice suffered from ischemia compared with the control
group. Given that the protective effect of IL-21R was more
evident in permanent middle cerebral artery occlusion (pMCAO)
than in tMCAO, and T lymphocytes infiltration, which was the
source of IL-21, was obvious in tMCAO while poor in pMCAO,

the reason for the difference above may be the source of IL-21
and IL-21R, resident or infiltration, and maybe also related to a
collateral-independent effect on cerebral injury (78). Therefore,
the exact role of IL-21 in CIS requires more evidence to elucidate.

IL-22

IL-22 exerts a protective effect against CIS. Dong et al. have
found that injecting intraperitoneally with recombinant mouse
IL-22 protein (rIL-22) into mice could reduce the expression of
inflammatory cytokines, including IL-1β, monocyte chemotactic
protein (MCP)-1 and tumor necrosis factor (TNF)-α, both
in the serum and the ischemic cerebral cortex. In addition,
IL-22 treatment also decreased oxidative stress and neuronal
apoptosis in affected brain tissue. Moreover, treatment with IL-22
significantly increased JAK2 and STAT3 phosphorylation levels
in mice and PC12 cells. The effects mentioned above lead to the
reduction of infarct size, neurological deficits, and brain water
content in mice subjected to CIS (79). There is a problem that
IL-22 is administered exogenously, but not γδ T cell-derived.
The research about the role of γδ T cell-derived IL-22 in brain
ischemic stroke is rare, and the neuroprotective effect of IL-22 in
stroke needs more evidence to verify.
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IFN-γ

In mice suffering from stroke, Th1 cells are the main source
of IFN-γ, and a very few γδ T cells could produce IFN-γ
(52). Similarly, using a fate-tracking system, Hirota et al. (80)
have found that <20% of γδ T cells were shown to express
IFN-γ in the central nervous system (CNS) in the context of
EAE. The same as the IL-17a, IFN-γ-producing cells strongly
accumulate by day 3 after ischemia in affected brain tissue
and decrease thereafter (52). Certainly, IFN-γ participates in
the pathophysiological process of CNS-related diseases. In some
central nervous systems (CNS)-related diseases, for example,
spinal cord injury (SCI), γδ T cells are detected at the lesion sites
and express the inflammatory cytokine IFN-γ, which induces
macrophages to transform into M1 phenotype with increased
secretion of proinflammatory cytokines, such as TNF-α (81).
Likewise, the article by Gelderblom et al. makes the point
that IFN-γ produced by CD4+ T cells could induce TNF-α
production from macrophages. And synergistic with TNF-α,
IL-17a could enhance astrocytes to secrete CXCL1, leading to
enhanced neutrophil infiltration in a mouse model of stroke (61).
Blocking IFN-γ or inactivating Vγ4+ γδ T cells with antibodies
has a beneficial effect and improves the functional recovery
after SCI (81). Therefore, manipulation of γδ T cell and IFN-
γ functions may be a promising approach for CIS treatment in
the future.

IL-1β

On one hand, through combination with IL-18R expressed on
γδ T cells, IL-1β are involved to stimulate IL-17a production
by γδ T cells (51). On the other hand, IL-1β may be
secreted by γδ T cells (55). As reported by Mccandless
et al., in the rodent model of multiple sclerosis (MS), EAE,
the inflammatory cytokine IL-1β, γδ T cells are one of the
sources of which, participates in the pathogenic process through
mediating pathologic relocation of CXCL12 and disruption of
BBB (55). In addition, IL-1β is involved in perpetuating immune
responses and contributing to disease severity in a variety of
CNS diseases, such as neurodegenerative diseases, traumatic
brain injury, and diabetic retinopathy (82). Moreover, it is
beneficial to block IL-1β signaling in some autoimmune and
autoinflammatory diseases, making IL-1β a potential therapeutic
target in neuroinflammatory conditions, including CIS. However,
the evidence that γδ T cells secrete IL-1β is particularly rare, and
more research is needed to support this.

These five cytokines mentioned above that play a role in brain
stroke are released partly fromT lymphocytes, but not specifically
from γδ T cells, thus, there remains a lot of research to be done
to confirm the role of the specific γδ T cell-derived cytokines
in cerebral ischemia and reperfusion injury to further improve
the mechanisms.

THERAPIES FOR STROKE TARGETING AT
γδ T CELLS

γδ T cells and related cytokines have essential roles in ischemic
brain injury. Treatments targeting γδ T cells and their cytokines

could be good therapeutic targets for mitigating ischemic brain
damage, given the truth that either genetic disruption or
pharmacological blockade of γδ T cells, IL-17a or IL-21 shows
a significant neuroprotective effect on ischemic brain damage in
murine stroke (Table 1). Of note, in other neuroinflammatory
diseases, blockade of IFN-γ and IL-1β signaling also have a
neuroprotective effect, while their beneficial effect has not been
verified in CIS. In addition, through modifying the composition
of the gutmicrobiota, Benakis et al. found that intestinal dysbiosis
could reduce ischemic brain injury. The mechanism was shown
to be related to a reduction of IL-17-positive γδ T cells and an
increase of regulatory T (Treg) cells through altering dendritic
cell activity. And dysbiosis could suppress the trafficking of
effector T cells from the gut to the leptomeninges after stroke.
The findings uncovered a gut-brain axis, which was unrecognized
previously, and an impact of the intestinal flora and meningeal
IL-17+ γδ T cells on ischemic brain damage (47). Inspired by
this article, there remains a possibility that diseases with altering
immune homeostases, such as inflammatory bowel disease
(IBD), Crohn’s disease (CD), and systemic lupus erythematosus
(SLE), could affect ischemic stroke outcomes by impacting the
trafficking of γδ T cells into ischemic brain tissue.

Nevertheless, in human stroke, the evidence that treatments
targeting γδ T cells and cytokines they release are beneficial
to the outcomes is rare. Caccamo et al. (91) have found that
in the peripheral blood and at the site of disease in children
with bacterial meningitis, the percentage of IL-17+Vγ9Vδ2 T
lymphocytes was increased, while this pattern was reversed
after successful antibacterial therapy. This article indicated
that IL-17+γδ T cells participated in the neurological disease,
and γδ T cells might be the target of the antibiotic therapy.
Moreover, blockade of the proinflammatory cytokine IL-17a with
secukinumab, a fully human selective anti-IL-17a monoclonal
antibody, is a valid therapeutic approach and may be useful
in the treatment of psoriasis, Rheumatoid Arthritis (RA), and
noninfectious uveitis (92). Whereupon, γδ T cells and cytokines
they release are therapeutic targets with great potential and are
worth studying.

However, there is controversy over the efficacy of therapies
targeting γδ T cells and related cytokines. Adamski et al. (93)
did not find associations of γδ T cell counts with lesion volume,
stroke severity, and outcome in the clinical study. However, it
does not mean that γδ T cells do not exert effects on human
stroke. And a large patient sample is needed to verify their
associations. Meanwhile, several anti-IL-17a drugs are in clinical
trials for some inflammatory disorders, such as IBD and CD.
Targeted inhibition of IL-17a by secukinumab is ineffective
in patients with moderate to severe CD and adverse events
are noted compared with placebo (94). A separate line of
evidence also reports that IL-17a acts on intestinal epithelium
to promote barrier function, whereas IL-17a or IL-17 receptor A
(IL-17RA) inhibition promotes severe weakening of the barrier,
culminating in increased colonic inflammation and accelerated
mortality (95). Similar results obtained report that IL-17 regulates
occludin protein that limits gut excessive permeability and
maintains barrier integrity during an epithelial injury in a dextran
sodium sulfate (DSS) model of IBD, while neutralizing IL-17
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TABLE 1 | Therapies targeting at γδ T cells and related cytokines in CIS.

Type Gender Age Weight Model Intervention Potential Mechanisms Effect on

stroke

References

C57BL/6

mice

- 12

weeks

20–25 g tMCAO Mouse monoclonal

anti–murine IL-17A antibody

(Clone MM17F3) (i.p.)

Reduce neutrophil infiltration Protective (61)

C57BL/6

mice

Male 9–17

weeks

20–30 g tMCAO FTY720 (i.v.) Inhibit T lymphocytes,

including γδ T cells,

migration into inflammatory

tissues

Protective (52)

IL-17KO mice Reduce mRNA expression

levels of inflammatory

factors, including IL-1β,

TNF-α and MMPs; reduce

apoptotic neurons

Protective

TCRγδ-deficient (TCRγδ KO)

mice

Reduce mRNA expression

levels of inflammatory

factors, including IL-1β,

TNF-α

Protective

TCRγδ-specific antibody

(i.p.)

SD rats Male - 250–300 g tMCAO Cholera toxin B subunit

(CTB) (i.p.)

Reduce the levels of γδ T

cells, IL-17-producing γδ T

cells, and IL-17

Protective (83)

C57BL/6

mice

Male 7 weeks ≥20g tMCAO Alter the intestinal flora by

antibiotic

Suppress function of

effector IL-17+ γδ T cells

and trafficking of γδ T cells

from the gut to the

leptomeninges

Protective (47)

C57BL/6

mice

Male 8–10

weeks

23–25 g tMCAO Anti-IL-17A monoclonal

antibody treatment (i.v.)

Decrease calpain-mediated

alpain-transient receptor

potential canonical (TRPC)6

channel degradation

Protective (84)

IL-17A knockout

C57BL/6

mice

Male 8–10

weeks

25 g tMCAO CP-690550 (i.p.) Suppress IL-17 production

from T cells

Protective (85)

Anti-p40 antibody (i.p.) Suppress the infiltration of

IL-17-positive γδT cells

Protective

SD rats Male - 270–320 g pMCAO Bone marrow mesenchymal

stem cells (BMSCs) (i.v.)

Reduce the infiltration of γδ

T cells and increase Tregs.

Protective (86)

C57BL/6

mice

- - - tMCAO miR-215 mimic (i.c.v.). Suppresses autophagy by

inhibiting the Act1/IL-17RA

and JNK/pBcl-2/Beclin

pathways

Protective (62)

C57BL/6

mice

Male 7–10

weeks

21–30 g tMCAO 1α, 25-dihydroxyvitamin D3

(1,25-VitD3) (i.p.)

Reduce the expression of

pro-inflammatory mediators

IL-6, IL-1β, IL-23a, TGF-β,

NADPH oxidase-2 and

ROR-γt, and reduce

Th17/γδ T cell response

Protective (87)

C57BL/6

mice

Male - - tMCAO Mouse monoclonal

anti–murine IL-17A antibody

(Clone MM17F3) (i.v.)

Decrease neutrophil levels Protective (48)

CCR6−/− mice Reduce the infiltration of

IL-17+ γδ T cells and

neutrophil

Protective

C57BL/6

mice

Male 12

weeks

20–25 g tMCAO Depletion of CD11c+ cells

or the genetic disruption of

the IL-23

Abrogate both IL-17

production in γδ T cells and

neutrophil infiltration

Protective (88)

C57BL/6

mice

Male 8–12

weeks

- pMCAO Perforin 1−/− mice Reduce the number of γδ T

cells and IL-17 levels

Protective (89)

(Continued)
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TABLE 1 | Continued

Type Gender Age Weight Model Intervention Potential Mechanisms Effect on

stroke

References

C57BL/6

mice

Male 8–12

weeks

20–30 g tMCAO Recombinant murine IFNβ

(i.v.)

Reduce the infiltration of

monocytes/macrophages,

neutrophils, CD4+ T cells,

and γδ T cells; inhibits the

production of inflammatory

mediators; suppress the

expression of adhesion

molecules on brain

endothelial cells; repress

microglia activation in the

ischemic brain

Protective (90)

C57BL/6

mice

- - 25 g tMCAO IL-21 receptor Fc protein

(IL-21R.Fc) (i.p.)

Decrease mRNA levels of

the autophagy associated

gene ATG6

Protective (75)

IL-21–deficient mice

(IL-21tm1Lex)

C57BL/6

mice

Male - - tMCAO Recombinant mouse IL-22

protein (rIL-22) (i.p.)

Decrease oxidative stress

and neuronal apoptosis and

increase JAK2 and STAT3

phosphorylation levels

Protective (79)

causes increased gut permeability (96), further confirming the
deleterious effects of neutralizing IL-17a and IL-17RA.

The dichotomy in the efficacy of therapies targeting γδ T cells
and related cytokines does exist. Since then, there is a long way
to go to verify that γδ T cells and related cytokines are promising
therapeutic targets in patients attacked by CIS.

CONCLUDING REMARKS

CIS is an increasing threat to endanger health and safety all
over the world. A better understanding of relations between
brain tissue damage after ischemic stroke and inflammatory and
immune responses remains to be improved to shed light on
the development of more effective therapies in the future. γδ T
cells, a small subset of T cells, regulate the inflammation process
in many diseases, including CIS. After the onset of ischemic
stroke, upon activation, γδ T cells can release IL-17a, IL-21, IL-
22, and IFN-γ, and then participated in the pathogenic process,
including secretion of pro-inflammatory factors, breakdown of
the integrity of BBB, and recruitment of inflammatory cells into
the affected tissues, and eventually cause irreversible brain injury.
A variety of researches have demonstrated that suppressing the
infiltration of γδ T cells and reduction of IL-17a and IL-21 levels
via either pharmacological or genetic tools could improve the
outcome of stroke. Noteworthy, our experiments aim to benefit
patients attacked by stroke, hence more evidence is required to
confirm whether Pre-clinical pathogenic mechanisms mentioned

above are also appropriate to patients suffering from CIS. This
is to provide a more sufficient basis for clinical application. In
conclusion, γδ T cells and related cytokines play a vital role in
the stroke and may be therapeutic targets with great potential
for treatment.
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