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Abstract 
Aims  A standard approach in test evaluation is to 
compare results of the assay in validation to results 
from previously validated methods. For quantitative 
molecular diagnostic assays, comparison of test values 
is often performed using simple linear regression and 
the coefficient of determination (R2), using R2 as the 
primary metric of assay agreement. However, the use 
of R2 alone does not adequately quantify constant or 
proportional errors required for optimal test evaluation. 
More extensive statistical approaches, such as Bland-
Altman and expanded interpretation of linear regression 
methods, can be used to more thoroughly compare data 
from quantitative molecular assays.
Methods  We present the application of Bland-Altman 
and linear regression statistical methods to evaluate 
quantitative outputs from next-generation sequencing 
assays (NGS). NGS-derived data sets from assay 
validation experiments were used to demonstrate the 
utility of the statistical methods.
Results  Both Bland-Altman and linear regression 
were able to detect the presence and magnitude of 
constant and proportional error in quantitative values 
of NGS data. Deming linear regression was used in the 
context of assay comparison studies, while simple linear 
regression was used to analyse serial dilution data. 
Bland-Altman statistical approach was also adapted 
to quantify assay accuracy, including constant and 
proportional errors, and precision where theoretical and 
empirical values were known.
Conclusions  The complementary application of the 
statistical methods described in this manuscript enables 
more extensive evaluation of performance characteristics 
of quantitative molecular assays, prior to implementation 
in the clinical molecular laboratory.

Introduction
The use of appropriately stringent statistical 
methods in assessment and comparison of clin-
ical molecular laboratory assays during validation 
is crucial to ensure appropriate test interpretation 
and avoid erroneous conclusions.1 With the recent 
uptake of next-generation sequencing (NGS) in clin-
ical molecular diagnostic labs, and increased use of 
quantitative values from NGS in clinical tests, there 
is a need to improve statistical methodologies used 
by clinical molecular laboratories for assessment 

and comparison of quantitative assays. Historically, 
clinical molecular diagnostic laboratory tests often 
yielded binary results, such as presence or absence 
of specific gene variants.1 Implementation of NGS 
and other novel techniques in clinical laboratories 
enabled more uses of quantitative data, such as in 
determination of variant allele frequency (VAF; 
ie, values for reference and alternative nucleo-
tides at specific genomic positions) in tumour 
profiling, or gene expression levels (see, eg,2–5). 
VAF is useful in examining such characteristics 
as tumour heterogeneity, clonal architecture and 
tumour evolution.6 Furthermore, VAF is associated 
with clinical outcome for leukaemia patients with 
FMS-like tyrosine kinase-3 (FLT3) internal tandem 
duplications.7 Therefore, accurate quantitative 
measurements of VAFs would be useful for patient 
management and care. Although other laboratory 
specialties (eg, clinical chemistry) that have a more 
fundamental reliance on quantitative assays have 
used more extensive statistical methods for quan-
titative assay comparison studies,8 molecular diag-
nostic laboratories have not widely adopted these 
methods. Therefore, there is a need to improve the 
statistical approaches used to evaluate quantitative 
molecular methods, including NGS and bioinfor-
matic approaches, to more fully understand the 
limitations of NGS assays in the clinical laboratory.

Currently, use of simple linear regression (SLR) 
and the coefficient of determination (R2) is common-
place in manuscripts assessing quantitative aspects 
of NGS platform comparison,9 NGS assay devel-
opment and validation studies10 11 and in compar-
ison studies of quantitative non-NGS molecular 
assays such as quantitative PCR and digital droplet 
PCR.4 12 13 R2   represents the proportion of vari-
ation explained by a given model and is typically 
used as a substitute for degree of agreement, or how 
closely measurements from two quantitative assays 
agree with each other. Although R2  can be used as 
an indicator of correlation, it does not adequately 
assess constant and proportional errors. Constant 
error (‘bias’ in the context of Bland-Altman  (BA) 
analysis14) is the difference between two methods, 
or a method and a reference, that does not change 
over a given reportable range. Proportional error 
(‘systematic error’) is the difference between two 
methods, or a method and a reference, that changes 
over a given reportable range.15
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The BA method was initially developed to address the short-
comings of SLR and R2  for evaluation of laboratory tests.14 16 BA 
analysis recommends the following minimum components for 
making conclusions on agreement: bias and limits of agreement; 
definition of acceptable agreement; precision of the estimated 
limits of agreement; relationship between difference and magni-
tude; and the importance of repeatability.17 BA analysis yields a 
plot useful in qualitatively assessing differences in measurements 
between two assays (figure 1). In addition to visual examination 
of the data, BA analysis includes statistical tests to determine the 
presence and magnitudes of constant error, proportional error 
and the degree of agreement (see online supplementary materials 
and methods). The values may also be plotted as a percentage in 
situations with high variability.18 Notably, BA has been widely 
used by the diagnostic community to evaluate clinical labora-
tory tests for several decades.14 16 The method has been cited 
over 30 000 times in the literature, and certain clinical journals 
require authors to report the results of BA as part of all assay 
comparison studies.19 Despite ubiquitous use of BA in other clin-
ical diagnostics areas,19 it is seldom used in evaluating molecular 
diagnostic assays, where SLR usage is prevalent.

In this manuscript, we examined the utility of BA and the 
enhanced linear regression analysis methods, Deming regression 
(DR) and SLR, for assessment and comparison of NGS data, 
including VAF measurements and bioinformatics tool outputs, 
using data  sets from targeted NGS panels for somatic tumour 
profiling. Furthermore, we present the adaptation of BA and 
SLR to measure precision and accuracy of NGS data and supe-
riority of these methods for assessing test performance. The 
complementary application of BA, DR and SLR enables more 
comprehensive assessment of quantitative assay performance for 

NGS than relying on R2  alone. Use of BA, DR and SLR should 
be considered by molecular diagnostic laboratories validating 
NGS for quantitative measurements in order to obtain key assay 
performance metrics during quantitative assay comparison and 
validation.

Methods
Statistical analysis
Statistical analyses were performed in R using custom scripts,20 
provided in online supplementary file S1. BA plots were gener-
ated using a modified ‘baplot.R’ script (https://​gist.​github.​com/​
jmmateoshggm/​5599056; last accessed 13 October 2016), DR 
was performed using a modified ‘mcDeming.r’ script (https://​
CRAN.​R-​project.​org/​package=​mcr; last accessed 13 October 
2016). Custom R scripts were validated against results 
from EP Evaluator Software (Data Innovations, Burlington, 
Vermont,  USA). BA analysis was performed as previously 
described14; constant error was determined by comparing the 
mean of differences measurements using a one-sample t-test 
(H0 : µ = 0). The slope of the line of best fit was used to esti-
mate proportional error for BA, using the average signal as the 
explanatory variable and the difference between signals as the 
response variable. Degree of agreement in BA was determined 
by the distribution of values of the differences in measure-
ments (95% CI). In the context of BA, precision was estimated 
using degree of agreement while using theoretical values as a 
variable.

For linear regression methods, the difference in means between 
the measurements of two assays was used to quantify constant 
error, which was tested using a paired t-test (H0 : X̄ = 0). The 

Figure 1  Interpretation of Bland-Altman (A) and Deming/simple linear regression (B) plots for the purpose of assay comparison. Black dashed lines 
display the distribution of differences in measurements by the two assays in a Bland-Altman plot and are used to estimate the degree of agreement 
(A). Constant error (solid blue line), proportional error (red dashed line) and 95% limits of agreement (black dashed line) are displayed in Bland-
Altman plot (A). In a correlation plot, the slope of the red dashed line is compared with 1 (shown by the black solid line indicating perfect agreement) 
(B). Although constant error is not directly visualised in a correlation plot, the position of the red dashed line in relation to the black solid line (perfect 
agreement) may be used as a surrogate (A). In a Bland-Altman plot, the blue line indicates constant error or the average difference in measurements 
by the two assays (B). Precision of an assay may be estimated using degree of agreement (A) or prediction intervals (B) (black dashed lines) for spike 
and recovery experiments.
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slope of the line of best fit was tested to determine presence 
and magnitude of proportional error (H0 : β1 = 1). Prediction 
interval (95%) range was used to estimate precision for spike-
and-recovery data.

Data sets
To evaluate the statistical methods of BA, DR and SLR, the 
following data sets were used. (1) VAFs of 486 variants iden-
tified from NGS testing of 349 DNA samples extracted from 
formalin-fixed, paraffin-embedded (FFPE) tumour tissues from 
variant solid tumours using a targeted NGS panel (TruSeq 
Amplicon Cancer Panel; Illumina, San Diego, California, USA) 
on the MiSeq (Illumina) bench top sequencer, using methods 
previously described21; (2) VAFs from Sanger sequencing of 
the same 486 variants from 349 DNA samples, described in 
(1). Sanger sequencing was performed using a custom library 
of primers covering variants of interest amplified using the 
ProFlex PCR System (Thermo Fisher Scientific) and sequenced 
on 3500XL Genetic Analyzer (Thermo Fisher Scientific) using 
the BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo 
Fisher Scientific). (3) A subset of variants (n=166, primarily 
consisting of hotspot variants in KRAS, PIK3CA and TP53) 
recurrent in tumour tissue from the 349 samples selected for 
comparison of bioinformatics tools BWA/MuTect22 23 (settings: 
-dt None --max_alt_allele_in_normal_fraction 0.03 --max_
alt_alleles_in_normal_count 1000000 --max_alt_alleles_in_
normal_qscore_sum 1000000 --gap_events_threshold 1000000 
--pir_median_threshold 1) and NextGENe using previously 
described settings21 (SoftGenetics, State College, Pennsylvania, 
USA). (4) Variant data from a previously  published cell line 
dilution experiment,10 used for precision and accuracy calcu-
lations. Within our lab, precision and accuracy are defined as 
previously described.24

Results
Validation of BA and linear regression scripts using EP 
Evaluator
To validate the scripts used to analyse method comparison data in 
R, commercially available software (EP Evaluator) was used. For 
each dataset, EP Evaluator was used on the identical measure-
ments to generate a single report for each method comparison 
data set (see online supplementary file S2). EP Evaluator reports 
include both BA and scatter plots analysed by both SLR and DR 
approaches. R and EP Evaluator were concordant with respect 
to regression line equations (slope and y-intercept), degree of 
agreement, constant and proportional errors ensuring that the 
custom R scripts were validated to work as intended for dataset 
evaluations.

VAF comparison and evaluation
We first sought to demonstrate the utility of BA and DR by 
assessing measures of constant and proportional error in VAF 
measurements from NGS and Sanger sequencing tests on a set of 
349 FFPE tumour samples, as described in the Methods. Using 
R2 derived from SLR to compare the VAF measurements from 
NGS and Sanger showed an R2 value of 0.76, indicating a less 
than perfect agreement between NGS and Sanger results for 
measurement of VAF (data not shown). Although the sources of 
disagreement could not be ascertained by use of R2 alone, both 
DR and BA agreed on the presence of constant error (figure 2). 
As shown by the constant error values in figure 2A and B, Sanger 
sequencing measurements of VAF were higher than NGS VAF 
by an average of 4.2% (p<0.001) across the reportable range. 
In addition, a proportional error of 0.0483% (p<0.05) was 
detected by BA analysis, while the value of 0.0505% identified by 
DR was not statistically significant (p>0.05). This indicates that 
the differences in VAF measurements made by NGS and Sanger 

Figure 2  Assay comparison analysis using the Bland-Altman (A) and Deming linear regression methods (B). Variant allele frequency results as 
measured by NGS were compared with Sanger sequencing. Constant error (solid blue line), proportional error (red dashed line) and degree of 
agreement (black dashed line) are displayed in Bland-Altman plot. For correlation plot, perfect correlation (ie, slope of 1) (black solid line) and the 
Deming linear regression (red dashed line) are displayed. The degree of agreement is estimated by the prediction intervals (black dashed lines). The 
presence and magnitudes of performance characteristics are displayed for both Bland-Altman and correlation plots. NGS, next-generation sequencing.
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sequencing may be greater at the high end of the reportable 
range depending on the analysis method used (figure 2; also see 
per cent bias plot in online supplementary file 2). Lastly, the use 
of BA and DR indicates that VAF measurements between NGS 
and Sanger sequencing may differ by up to 23.6% according to 
the degree of agreement determined by BA analysis (figure 2A).

Bioinformatics tool comparison and evaluation
Quantitative outputs of bioinformatics tools used to analyse 
NGS data can also be evaluated by BA and DR. For the purpose 
of this study, NGS coverage of a subset of 166 variants (primarily 
recurrent hot spot codons: eg, KRAS G12/13, TP53 R175 and 
PIK3CA H1047) detected by the NGS tumour panel (measured 
as the number of reads that cover a given genomic position) and 
VAF were compared between BWA-MuTect and NextGENe. Of 
note, NextGENe counts all overlapping reads from paired end 
sequenced amplicons, unlike BWA-MuTect that does not, thus 
introducing a known source of constant and proportional error 
between these two tools.

For VAF, there was no constant error detected between MuTect 
and NextGENe by both approaches; however, the discrepancies 
in proportional error were once again evident between BA and 
DR (figure 3A and B). By itself, the R2 value of 0.98 for the VAF 
measurements determined by SLR (data not shown) indicated 
a high degree of agreement between MuTect and NextGENe, 
correlating with the results found by BA and DR. However, the 
R2 value of 0.93 determined using SLR (data not shown) for 
read depth coverage between MuTect and NextGENe outputs 
would be interpreted as a measure of high degree of agreement. 
However, as evident in our BA and DR evaluations, read depth 
coverage as calculated by MuTect was on average 1950× lower 
than NextGENe, as shown by the presence of a constant error 
of 1950 units (figure 3C and D). In addition, MuTect read depth 
coverage values were also 0.59 and 0.54 that of NextGENe as 
determined by BA and DR, respectively, indicating the presence 
of proportional error with higher read depth from NextGENe 
analysis (figure 3C and D; also see percent bias plot in online 
supplementary file S2). Lastly, the degree of agreement was 
estimated to be 2920× by BA (figure 3C). In this data set, R2 
alone was not a sufficiently adequate method to compare these 
tools with respect to read depth coverage due to the presence of 
significant constant and proportional error undetectable by use 
of R2 alone.

Precision and accuracy assessment
Precision and accuracy are required metrics for evaluating quan-
titative assays as specified in clinical laboratory standards.25 
The assessment of these characteristics can be accomplished 
using spike-and-recovery (eg, cell line dilution) experiments 
that challenge the assay with a known amount of the analyte 
of interest over a range of values for quantitative assays. Accu-
racy (determinate error) represents the closeness of agreement 
between measurements and the true value and is composed of 
both proportional and constant error.26 Precision (indetermi-
nate error) is the variability between individual measurements.26 
Although BA and SLR have been mostly used for assay compar-
ison, they can also be applied to quantify precision as well as 
constant and proportional errors of an assay with minimal 
modifications.

We used a data set from a published validation manuscript,10 
which consisted of NGS VAF measurements from a cell line dilu-
tion experiment (spike-and-recovery), in order to demonstrate 
the utility of BA and SLR. A cell line dilution experiment provides 

both expected (theoretical) and observed (empirical) VAF values, 
thus enabling quantification of precision and accuracy of an 
NGS assay. For the published data set, although high correlation 
between the expected and observed values was noted,10 accuracy 
and precision were not explicitly quantified. Using BA and SLR, 
we determined that the precision of the assay was 3.24%, or 
3.19%–3.2%, for the single nucleotide variants, and 11.8%, or 
11.6%–12.3%, for insertion and deletion variants, for BA and 
SLR, respectively (figure 4). Both methods were in agreement 
regarding the presence of constant error of 0.24% and 1.15% for 
the single nucleotide and insertion/deletion variants, respectively 
(figure 4). The proportional error as determined by BA analysis 
was 0.0056% for single nucleotide variants and 0.0073% for 
insertions/deletions (figure 4). However, the proportional error 
determined by SLR was 0.99% for single nucleotide variants and 
0.93% for insertions/deletions (figure  4). Therefore, both BA 
and SLR can be used to determine accuracy (ie, constant and 
proportional errors) and precision for an NGS assay with minor 
adaptations, although the results may differ depending on the 
chosen analysis method.

Discussion
We used a number of examples to demonstrate the utility of 
BA, DR and SLR for the purpose of molecular diagnostic assay 
comparison and evaluation, with a special focus on application 
to NGS tests. Since NGS has the potential to supplant many 
well-established molecular assays, many molecular diagnostic 
laboratories are evaluating the performance of NGS assays 
compared with other methods. However, the common use of 
SLR and R2 in assay comparison studies does not adequately 
address the determination of constant error, proportional error 
and degree of agreement, particularly for assays with quantita-
tive measurements such as NGS. Statistical approaches used for 
assessing assay performance in other diagnostic fields, such as 
clinical chemistry, are well  suited for assay comparison, evalu-
ation and validation in molecular diagnostics, including NGS 
assays.

Appropriate sample sizes in validation studies are essential 
to ensuring that the 95% limits of agreement are properly esti-
mated. When considering NGS validation, ‘sample size’ can be 
considered as the total number of variants detected by the assay. 
While larger numbers of variants yield more statistical power, 
this needs to be balanced against practical considerations such 
as cost of sequencing a larger footprint and sufficient starting 
template material. Recent analysis in this area has suggested that 
the minimum number of variants in a validation ought to be 
100, with a recommended number estimated at 200, in order to 
obtain a CI of a maximum of ±0.34 s (where s is SD).27

Also of relevance to the comparison of a new assay such as 
NGS with an existing lab-standard assay is the contextual differ-
ence between ‘intratest’ precision (or intratest repeatability) 
and ‘intertest’ precision. The former may be determined using 
samples with known measurement values and including them in 
multiple repeats of the assay over time. If the intratest precision 
has not been evaluated, it becomes difficult to perform intertest 
evaluations to determine which methods being compared are 
more precise as the agreement between the two methods will 
likely be poor. One approach to measure intratest precision in 
NGS assays has been to use well-characterised reference samples 
with publicly available variant information, for example, the 
well-characterised HapMap cell line NA12878.

Comprehensive assessment of new methods allows clinical 
laboratories to stay up-to-date with novel technologies and to 
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continually improve on the diagnostic value of clinical tests. 
Appropriate statistical analysis of the data from assay compar-
ison studies is essential to demonstrate that a given new test can 
deliver results that are, at minimum, as reliable as its predecessor. 
Unfortunately, there have been concerns raised about the quality 
of assay comparison studies,1 and in particular the statistical 
analysis of the data. One of the ways to address these concerns 
is to provide the necessary performance metrics in every assay 

comparison manuscript and to clearly outline the methodology 
that was used to obtain these metrics. For example, precision and 
accuracy, including constant and proportional errors, should be 
reported for spike-and-recovery experiments, and constant and 
proportional errors with respect to a reference method should 
be included in assay comparison studies.

Degree of agreement between two assays in BA analysis 
serves as a numerical yet qualitative metric to assess whether 

Figure 3  Bioinformatics tools comparison analysis using the Bland-Altman (A and C) and Deming linear regression methods (B and D). The variant 
allele frequency measurements (A and B) and read depth coverage (C and D) as determined by BWA-MuTect and NextGENe are displayed. Constant 
error (solid blue line), proportional error (red dashed line) and degree of agreement (black dashed line) are displayed in Bland-Altman plot. For 
correlation plot, perfect correlation (ie, slope of 1) (black solid line) and the Deming linear regression (red dashed line) are displayed. The degree of 
agreement is estimated by the prediction intervals (black dashed lines). The presence and magnitudes of performance characteristics are displayed for 
both Bland-Altman and correlation plots.
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the two assays are interchangeable28 and should not be used 
without consideration of clinical judgement to determine 
whether any two given assays are equivalent for use. Addi-
tionally, what constitutes ‘acceptable’ agreement—that is, 
what minimum level of agreement (or, maximum difference 
in measurements) in measurement values is required—for 
two assays to be considered equivalent is a clinical decision, 
not a statistical one. Significant bias as measured by statistical 
methods does not yield sufficient information for agreement 

between two methods to be determined. For example, two 
methods may have significant difference in bias and yet may 
agree from clinical point of view and vice versa. Factors that 
influence this choice may include detection ranges, limits of 
detection and ranges of clinically significant values, as well as 
the identities of the variants being measured—for example, 
a lab will need to consider whether a 10% difference in VAF 
is acceptable when measuring heterozygous or homozygous 
germline variants by NGS versus Sanger sequencing and may 

Figure 4  Determination of assay accuracy and precision using Bland-Altman (A and C) and simple linear regression (B and D) methods. The variant 
allele frequency measurements from a cell line dilution experiment for single nucleotide variants (A and B) and insertions/deletions (C and D) were 
used to estimate assay accuracy and precision. Degree of agreement (A and C) and prediction intervals (B and D) were used to estimate precision 
based on expected (theoretical) and observed (empirical) values. Accuracy, including constant (blue line) and proportional (red dashed line) errors, are 
displayed in both Bland-Altman and correlation plots.
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make a different choice when considering somatic variants at 
VAF of 10%.

DR is often preferred over SLR in assay comparison studies.29 
In general, SLR and DR can include additional steps to calcu-
late constant and proportional errors similar to BA, although 
‘enhanced’ linear regression analyses are usually omitted in 
molecular test data evaluation (figure  1B). Comparison of a 
reference line, indicating perfect correlation between two assays 
(ie, y = 1 × x + 0), with a regression line enables determination 
of presence and magnitudes of constant and proportional error 
(see supplementary materials and methods) and their visualisa-
tion (figure  1B). Furthermore, the prediction intervals can be 
used to estimate precision of an assay in spike-and-recovery 
experiments (figure 1B). For SLR, one of the assays had to be 
chosen as the ‘gold standard’ and used as the explanatory vari-
able, while the measurements by the second assay were treated 
as a response variable. Therefore, one set of measurements was 
assumed to have no error. This particular flaw of SLR has been 
previously noted, and DR was proposed as a possible solution 
to eliminate the issue,29 as well as other regression methods that 
account for presence of error in both variables.30 31

Special attention should be given to the results of any combi-
nation of statistical methods used to analyse assay compar-
ison data. BA and linear regression approaches are capable of 
providing similar types of information with respect to constant 
error, proportional error and degree of agreement estimates.32 33 
However, both approaches have a number of drawbacks that 
should be carefully examined before using either method in isola-
tion to make conclusions about assay performance.28 30–33 For 
example, the response variable directly influences the explana-
tory variable in BA,33 and one of the assays must be chosen as 
the ‘gold standard’ and used as the explanatory variable in SLR. 
While there is no easy solution to this problem in BA, DR can 
be used to eliminate the issue. This particular flaw in BA may 
account for the discrepancies in proportional error assessments 
(figures  2 and 3). Unlike SLR, DR accounts for the presence 
of error in both variables and is a more appropriate regression 
method for assay comparison studies.29 SLR, however, is a more 
appropriate method for spike-and-recover experiments, where a 
known amount of analyte can be assumed to have no error.

Conclusion
In this manuscript, BA, DR and SLR assay comparison and eval-
uation approaches were examined in application to quantitative 

aspects of NGS for molecular diagnostic assays. The utility of 
both BA and SLR was demonstrated by evaluating components 
of an NGS assay, including VAF measurements and read depth 
of coverage. As BA and SLR have been widely used and tested in 
other clinical laboratory fields, adoption of these tools by molec-
ular laboratories can aid in evaluating, comparing and imple-
menting emerging clinical laboratory tests such as NGS, which 
provide quantitative measurements for clinical tests. The use of 
more extensive statistical analyses would allow molecular labora-
tories to more fully evaluate additional performance characteristics 
including precision, constant error, proportional error and degree 
of agreement for validation and implementation of quantitative 
molecular assays.
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Take home messages
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