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Abstract

This study proposes a new liver segmentation method based on a sparse a priori statistical

shape model (SP-SSM). First, mark points are selected in the liver a priori model and the

original image. Then, the a priori shape and its mark points are used to obtain a dictionary

for the liver boundary information. Second, the sparse coefficient is calculated based on the

correspondence between mark points in the original image and those in the a priori model,

and then the sparse statistical model is established by combining the sparse coefficients

and the dictionary. Finally, the intensity energy and boundary energy models are built based

on the intensity information and the specific boundary information of the original image.

Then, the sparse matching constraint model is established based on the sparse coding the-

ory. These models jointly drive the iterative deformation of the sparse statistical model to

approximate and accurately extract the liver boundaries. This method can solve the prob-

lems of deformation model initialization and a priori method accuracy using the sparse dic-

tionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume

difference of 1.8%, whereas the average symmetric surface distance and the root mean

square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.

Introduction

The liver is the largest digestive gland and detoxification organ in the human body, and this

vital organ also produces bile. Therefore, the integration of multiple functions makes the liver

one of the major organs most prone to tumors. In recent years, liver cancer has become the

second most common cause of cancer deaths worldwide. Therefore, the prevention and treat-

ment of liver diseases have been a focus worldwide. Computed tomography (CT) imaging can

be used to acquire high-resolution hepatic anatomical structures. If hepatic lesions occur, they

can be found on the CT image by their characteristic inhomogeneous intensity distribution

and unsmooth edges. Therefore, CT imaging has represented of the most important imaging

techniques for the diagnosis and treatment of clinical liver diseases. Live segmentation can
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help identify the liver contour and lesion structures from other tissues; thus, it is very useful in

the clinical application of liver function evaluations, tumor identification and surgical treat-

ment. However, the liver is adjacent to other organs, such as the spleen, stomach and intes-

tines, and the intensity features of these organs present very small differences. Furthermore,

the liver has strong individual differences, and its structure and spatial position are easily sub-

ject to changes under external forces. Thus far, accurate segmentation and detection of the

liver contour in a CT image remains the most challenging task worldwide.

In recent years, researchers have proposed many liver segmentation methods based on CT

images. Among them, the method based on statistical models and probabilistic graphical mod-

els can effectively leverage the real-time features of the liver. In this case, the liver image can be

effectively segmented based on imaging parameters and the pathogeny structure. However,

this method requires an extremely large sample size, which greatly decreases the segmentation

efficiency. When sparse coding is applied, the training samples for the statistical model and

probabilistic graphical model can be represented sparsely, which helps remove redundant

information, reduce the calculation amount, and improve segmentation efficiency. [1–3]

Wright et al. [4] used this method to create a dictionary in the target area of the training image

and partition the image into several image blocks of the same size to establish the test set.

Accordingly, the liver’s boundaries can be determined based on the matching degree of the

test set and the dictionary. This method effectively reduces the redundancy information in the

training image and improves the computational efficiency by specifying a sparse coefficient

corresponding to the dictionary. Ptucha et al. [5] proposed a liver segmentation method based

on the sparse dictionary. The Singular Value Decomposition (K-SVD) algorithm [6–10] is

used to train the dictionary and classifier, and the liver boundaries are determined based on

the matching degree of the image and the dictionary. Subsequently, the liver can be segmented

with less computational complexity. Cao et al. [11] uses the gold standard image that is seg-

mented manually by experts as a priori information. In this method, the sparse coding and dic-

tionary are combined to obtain a sparse representation matrix for different categories. Then,

the image reconstructing algorithm is applied to obtain the final segmentation result. How-

ever, if the intensity information contained in the a priori image is not aligned with that of the

original image, the segmentation accuracy will be compromised. Liao, Tong, et al. [12–13]

replaced voxel imaging information with local image block features, which moderately

improved the segmentation accuracy of the low-resolution area. Guo et al. [14] introduced a

sparse optimization model based on a priori information. In this method, the liver surface is

partitioned into small sub-regions, the K-SVD algorithm is applied to build the shape dictio-

nary, and the variation trend of the deformable model is constrained via sparse shape informa-

tion. Saito et al. [15] integrated sparse representation with a priori shape information and

applied a hierarchical analysis to partition the deformable model into small sub-regions. Sub-

sequently, the sparse codes and dictionary are constructed independently based on the local

shape model, thereby reconstructing the image for liver segmentation.

The major deficiency in the abovementioned methods occurs when establishing the sparse

model. To build the sparse matrix and dictionary, similar image blocks must be selected from

the original image. However, the similarity matching of image blocks presents limited accu-

racy. In addition, the Discrete Cosine Transform (DCT) [16] dictionary is typically used in

these methods to obtain the similarity measure of images, which leads to low matching accu-

racy. The segmentation result may represent different holes and overlaps, thereby compromis-

ing the accuracy of the segmentation. Furthermore, the accuracy and efficiency of liver

segmentation are directly related to the size of image blocks. In addition, the method based on

a statistical model requires the model after registration as the initial boundary and the selected

image blocks around the initial boundary as test sample sets because large deformation regions
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of the liver cannot be accurately segmented. In other areas of medical image segmentation,

researchers have proposed high-performance algorithms [17–20] that can represent a good

reference for this paper.

To solve these problems, this paper proposes a new method called the Sparse A Priori Statis-

tical Shape Model (SP-SSM), which is based on grayscale images to be segmented and the spec-

ificity of the border, and these features are used to build the energy model. The method is then

combined with the query and dictionary matching gray features to build a sparse constraint-

driven iterative sparse statistical shape model deformation that approaches the liver border to

form an accurate extraction of the liver boundary.

Methods

The statistical shape model based on sparse coding proposed in this study includes eight key

steps: (1) use the generalized Procrustes analysis (GPA) to normalize the a priori shape models,

enable each group of a priori models to have the same number of vertexes, and ensure that the

vertexes of each group correspond to those of the other a priori models; (2) choose the corre-

sponding vertexes from all a priori models to be used as the mark points; (3) create the inquiry

dictionary using the a priori shape models and their corresponding mark points; (4) manually

select the mark points corresponding to the a priori models from the original image and use

the dictionary for mark points to calculate the sparse codes; (5) use the sparse codes for the

mark points and the dictionary for a priori models to build the sparse statistical shape model;

(6) obtain the corresponding intensity values of the vertexes of the sparse statistical shape

model on the original image and calculate the specific boundaries of the original images to

build the boundary energy and the intensity energy; (7) choose image blocks at the gold stan-

dard liver boundaries as the training sets to obtain the inquiry dictionary and the sparse codes

and construct the sparse matching constraint model based on the dictionary and the intensity

information of the original image; and (8) deform the statistical shape model driven by the

intensity energy, boundary energy and sparse matching constraints until the segmentation is

complete. Fig 1 shows the flowchart of the proposed algorithm.

Sparse statistical shape model

The sparse statistical shape model uses multiple known shapes to train a model that can effec-

tively describe the distribution of various points. The main concept underlying the model’s

construction is shown in Fig 2. The traditional method of building a statistical shape model is

to manually select a large number of mark points from the data and sort the mark points to

form a model that can roughly describe the target shape. Then, multiple shape models are

selected via multiple training images, and those images are registered. Finally, the Principal

Component Analysis (PCA) method is used to reduce their dimensions and build a model that

can describe the distribution of the target vertexes. Because the variation of liver shapes is com-

plex, the statistical model built using a probability distribution may have significant errors.

Additionally, the process of reducing model dimensions using the PCA method may lead to

the loss of the important local structural information on the liver’s sharp corners, grooved

regions, and other tricky regions. To address these problems, this study proposes a statistical

shape model based on sparse coding. The main concepts underlying the method are as follows:

(1) normalize the a priori shape models of the liver, i.e., align them to the same shape space;

(2) choose orderly mark points that can effectively describe the liver’s features from the aligned

a priori models; (3) create dictionaries DS and DL using the a priori models and mark points,

respectively; (4) choose the orderly mark points that present the same approximate positions

on the original image to create the test set YL; (5) use the test set YL and the mark point
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Fig 1. Flowchart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0185249.g001
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dictionary DL to calculate the corresponding sparse coefficient XL; (6) apply XL to DS to build

the a priori statistical model YS. The modeling algorithm mainly involves three parts: a priori

model normalization, mark point selection, and model building.

A priori model normalization. The a priori shapes of the livers have individual differ-

ences in location, size, and direction. Before building a sparse statistical model, we must align

the various models to reduce the differences. Traditionally, a Procrustes analysis is used to

align all the models, which allows for various a priori shapes to closely approximate each other

by translating, rotating and enlarging them without changing their original shapes. This

method requires that the vertexes of the models correspond to each other. However, the a

Fig 2. Illustration of how to build a sparse statistical shape model.

https://doi.org/10.1371/journal.pone.0185249.g002
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priori shape models of different livers have different numbers of vertexes (i.e., n is different).

Therefore, this study uses the gold standard image from MICCAI 2007 (http://www.sliver07.

org/index.php) to serve as the liver’s a priori model and applies the down-sampling method to

obtain the a priori models of the same number of vertexes and facets. Subsequently, a Procrus-

tes Analysis is implemented to normalize the models to ensure that the vertexes of each group

of a priori models correspond to each other. If the a priori shape is defined as Si and the aver-

age shape is defined as �S, then the Procrustes distance between the two groups of a priori mod-

els S1 and S2 can be described as follows:

P2

d ¼
Xn

j¼1

fðS1 � S2Þ
2
g ¼

Xn

j¼1

fðxj1 � xj2Þ
2
þ ðyj1 � yj2Þ

2
g ð1Þ

where xj1 and yj1 indicate the vertex coordinates in a priori model S1 and xj2 and yj2 represent

the vertex coordinates in a priori model S2.

The barycentric coordinates of each group of a priori shape models are calculated as fol-

lows:

ð�x; �yÞ ¼
1

n

Xn

j¼1

xj;
1

n

Xn

j¼1

yj

 !

ð2Þ

The size of each group of a priori shapes is defined by using the Euclidean/Frobenius norm

[21] as follows:

RðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

fðxj � �xÞ2 þ ðyj � �yÞ2g

v
u
u
t ð3Þ

The aligning process of the two groups of a priori shape models in the training set is shown

below:

1. Define the transformation vectors of the two groups S1 and as d1 and d2, respectively:

2. x, y, s and θ represent the translating, magnifying and rotating operations in the horizontal

and vertical directions, respectively, based on which the parametric equation can be defined

as: t = (x, y, s, θ);

3. Calculate the barycentric coordinates of the two a priori shape models;

4. Magnify each a priori shape model so that they have the same size;

5. Align the barycenters of the two models;

6. Use the SVD method to rotate and align the two models:

7. Calculate the SVD and RT of dT1 d2;

8. Generate the result.

Whereas the aligning process of all a priori shape models is shown below:

1. Translate the barycenter of each a priori shape model to the origin of the coordinates;

2. Use the first a priori shape model as the initial estimation of the average model;

3. Rotate, magnify and translate the other a priori shape models to align them with the current

average model;
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4. Recalculate the average model of all a priori shape models after they are aligned:

�S ¼ 1
k

Xk

i¼1

Si;

5. Estimate the difference between the current average model and the previous average model.

If they are not converged (the error is smaller than the threshold value ε), skip to Step 3; if

they are converged, then the process is complete.

Among them, the rotation matrix RT is defined as follows:

RT ¼ RxRyRz

¼

1 0 0

0 cosð�Þ � sinð�Þ

0 sinð�Þ cosð�Þ

2

6
6
6
4

3

7
7
7
5

cosðcÞ 0 � sinðcÞ

0 1 0

sinðcÞ 0 cosðcÞ

2

6
6
6
4

3

7
7
7
5

cosðφÞ � sinðφÞ 0

sinðφÞ cosðφÞ 0

0 0 1

2

6
6
6
4

3

7
7
7
5

ð4Þ

Mark point selection. After Procrustes alignment, we can obtain the distribution of the a

priori shape models and the statistical model that can correctly describe the distribution of the

vertexes. Traditionally, a PCA is used for the statistical analysis to determine the weight of the

probability distribution by calculating the principal components. For liver models, the sharp

corners and grooved regions of different groups of models cannot completely overlap, and

they can only become principal components in regions that are relatively smooth. Therefore,

the statistical shape models built using this method often may lose information of local fea-

tures. Thus, in this study, we manually choose mark points for the sharp corners and grooved

regions (with a high curvature point or angular point) or regions closely connected with other

tissues. In total, we select seven groups of mark points, including Hepatic Dome, Right Lobe

Anterior Segment, Right Lobe Tip, Right Lobe Posterior Segment, Morrison Pouch, Porta

Hepatis, and Left Lobe Lateral Segment, as shown in Fig 3.

Model building. After alignment, the model dictionary DM = [dM1, dM2, � � �, dMk] 2 Rn×k

and mark point dictionary DL = [dL1, dL2, � � �, dLk] 2 Rn×k can be built for the model and its

corresponding mark point, respectively, where k refers to the total number of a priori shape

models in the training set, di 2 Rn refers to the vector transferred by a priori models, n refers to

the number of vertexes following the down-sampling of a priori models, and y 2 Rn refers to

the vector transferred by the newly input model. Assuming the newly input models y in every

unit can be expressed by di,i = 1, 2, 3, � � �, k in the training set in a weighted linear manner,

then x = {x1, x2, � � � xk}T 2 Rk should be defined as a weighting factor or coefficient (sparse cod-

ing). Then, the value of x can be calculated by the following formula:

argmin
x;b
fkTðy; bÞ � Dxk2

2
g ð5Þ

where T(y, β) is a transfer function that can transfer newly input models y into average model

data space and β is a transfer parameter. x and β can also be calculated by the preceding

formula.

Fig 4 shows the sketch map of dictionary building and the newly input models, where Y

is expressed as Dx. When Formula (5) is used to solve x and β, if the number of models is

greater than model length (k> n), then the formula does not have a unique solution and a

bound term is required to control weighting coefficient x. In this case, Formula (5) can be

Sparse priori statistical shape model
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transformed as follows:

argmin
x;b
fkTðy; bÞ � Dxk2

2
g; s:t: kxk0 � k1 ð6Þ

where k�k0 refers to the zero norm of the vector and k1 refers to the pre-set sparseness. Then, it

Fig 4. Sketch map for dictionary building.

https://doi.org/10.1371/journal.pone.0185249.g004

Fig 3. Illustration of mark point selection. (A) Illustrates the position in relation to other tissues; and (B) represents different points of the liver.

https://doi.org/10.1371/journal.pone.0185249.g003
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can be ensured that the nonzero term in coefficient x is less than k1. The value of k1 will be dis-

cussed in the experiment.

When the input model contains non-Gaussian noise or major errors, such as image mask-

ing and pixel loss, the sparse vector e 2 Rn can be defined and used to indicate the model’s cal-

culation error. In this case, Formula (6) can be further transformed as follows:

argmin
x;e;b

fkTðy; bÞ � Dx � ek2

2
g; s:t: kxk0 � k1; kek0 � k2 ð7Þ

where k2 refers to the sparseness of e. If errors, such as image masking, are not observed in the

input image, then the value of e is zero.

Formula (7) can be transformed into the 1-norm for the solution, and the transformed for-

mula is as follows [22]:

argmin
x;e;b

fkTðy; bÞ � Dx � ek2

2
þ l1kxk1

þ l2kek1
g ð8Þ

where λ1 and λ2 indicate the weighting coefficients of x and e, respectively. If λ2 has a large

value, then e is zero. If both λ1 and λ2 have a large value, then e is zero and x has only a nonzero

term. Formula (8) can be optimized through the K-SVD algorithm.

Energy

By building sparse statistical shape models, a series of statistical shape expressions of original

images are obtained. The sparse statistical shape models are overlaid on the original image Itest,

and the corresponding intensity information is obtained for the vertex V ¼ fvi 2 R3g
n
i¼1

. With

the coordinate of every vertex in the model as the center, pixels are selected evenly along the

normal vector and the intensity level of pixels is defined as pi and the length is defined as L as

shown in Fig 5. The coordinate of every pixel can be calculated using the following formula:

xi ¼ x þ ½ði � 1Þ=ðm � 1Þ � 1=2� � L � u; s:t: i ¼ 1; 2; � � � ;m ð9Þ

where x refers to the boundary point, m refers to the number of points obtained evenly at the

boundary point along the normal vector, and u refers to the distance between pixels.

To make the statistical model converge to the real boundary of the liver, this paper proposes

the constraints on intensity energy, boundary energy, and sparse matching energy. The energy

function can be calculated by the following formula:

Fexternal ¼ oexternalðE
edgeðxÞ þ EregionðxÞÞ; s:t: x 2 X ð10Þ

where Eregion(x) refers to the intensity energy of a vertex in the statistical shape models, Eedge(x)

refers to the boundary energy of the vertex, and ωexternal is the weighting coefficient of the

energy under sparse matching constraints. The specific building method is as follows:

Intensity energy building. Intensity energy Eregion(x) is estimated based on the intensity

level histogram. Intensity energy can be used to roughly separate the liver and its surrounding

tissues. This paper adopts an intensity level histogram fitting to the Weighted Gaussian Mix-

ture Model (WGMM) with expectation maximization to obtain five Gaussian distributions

Pi(i = 1, 2, � � �, 5). We then determine the weight ωi, mean value μi, mean square error σi and

peak height hi = ωi/σi.

Sparse priori statistical shape model
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The intensity average Gm of liver tissues is calculated as follows:

Gm ¼ fmmjhm ¼ maxðhiÞg; s:t: i 2 ð1; 2; � � � ; 5Þ ð11Þ

The liver intensity range is [GL, GU], where GL = μm − 1.5σm and GU = μm + 1.5σm. For every

vertex xi(i = 1, 2, � � �, n), Eregion(x) can be calculated based on the procedures as follows:

1. Initialization: i = 1;

2. If I(xi) 2 [GL, GU] and I(xi+1) 2 [GL, GU], then Eregion(x) = xi-xi−1;

3. If I(xi) =2 [GL, GU], then Eregion(x) = 0;

4. End.

Boundary energy building. We build boundary energy Eedge(x) according to the edge

information indicated by the original data. We define a vertex in the sparse statistical shape

models as vi 2 R, i = 1, 2, � � �, m, where R refers to the sparse statistical shape models and xi is

Fig 6. Sketch map for energy function calculation.

https://doi.org/10.1371/journal.pone.0185249.g006

Fig 5. Sketch map for feature selection.

https://doi.org/10.1371/journal.pone.0185249.g005

Sparse priori statistical shape model

PLOS ONE | https://doi.org/10.1371/journal.pone.0185249 October 5, 2017 10 / 23

https://doi.org/10.1371/journal.pone.0185249.g006
https://doi.org/10.1371/journal.pone.0185249.g005
https://doi.org/10.1371/journal.pone.0185249


the physical coordinate of vi. We also define the unit normal vector of the vertex as u. We then

select the intensity value corresponding to M pixels of the normal vector as shown in Fig 6,

where k = M − m + 1, m = min + mout + 1, and min = mout = 5.

Moreover, the displacement energy function of the edge information can be calculated by

the following formula:

EedgeðxÞ ¼ max
i
faEstatisticsðxiÞ þ bEspecificðxiÞg; s:t: aþ b ¼ 1 ð12Þ

where Estatistics(xi) and Especific(xi) refer to the statistical feature energy and the specific feature

energy of the vertexes, respectively, and they are calculated randomly [23]. For every vertex v,

Estatistics(xi) and Especific(xi) are both the vectors of 1 × k.

To solve Formula (12), the statistical feature energy Estatistics(xi) is calculated. We then select

the shape model F and image Itraining corresponding to the training set. We also select the

intensity feature of every vertex of the shape model based on Formula (10), and as shown in

Fig 6, min = mout = 5. We define z as the number of shape models for the training set and calcu-

late μij and σij(i = 1, 2, � � �, m; j = 1, 2, � � �, n) for the mark points corresponding to the training

set by the following formulas:

mij ¼
1

z

Xz

k¼1

pijk s:t: i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; n ð13Þ

sij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

z � 1

Xz

k¼1

ðpijk � mijÞ

2

v
u
u
t s:t: i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; n ð14Þ

For every vertex, we calculate the boundary probability Pk of 1, 2, � � �, n. Weighted with a

Gaussian kernel function K(kj − jmiddlek), Pk can be calculated by the following formula:

Pk ¼
Xkþn� 1

j¼k

Kðkj � jmiddlekÞ
1

ffiffiffiffiffiffi
2p
p

siðj� kþ1Þ

e
� ðpj � miðj� kþ1ÞÞ

2

2s2
iðj� kþ1Þ ; s:t: i ¼ 1; 2; � � �m ð15Þ

where jmiddle = k + min. The statistical feature energy Estatistics(xi) is calculated upon the normal-

ization of P1, P2, � � � Pk.

Second, we calculate the specific feature energy Especific(xi). The outer/inner means differ-

ence and the outer/inner regularity difference of the intensity information surrounding the

liver tissues in the CT image are regarded as specific information for the algorithm in this

paper, where the absolute value of the outer/inner means difference is calculated as follows:

f 1 ¼ jpin � pout j ð16Þ

In the preceding formula,

pin ¼
1

min

Xmin

t¼1

Kðkt � tmiddlekÞpt ð17Þ

pout ¼
1

mout

Xmout

t¼1

Kðkt � tmiddlekÞpt ð18Þ

tmiddle ¼ min þ 1 ð19Þ
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The outer/inner means difference is calculated as follows:

f 2 ¼ sout � sin
inin ð20Þ

where

sin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

min � 1

Xmin

t¼1

ðpt � pinÞ

2

v
u
u
t ð21Þ

sout ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

mout � 1

Xmout

t¼1

ðpt � pout Þ

2

v
u
u
t ð22Þ

We calculate the f 1
t and f 2

t of t = 1, 2, � � �, k and then conduct normalization and linear addi-

tivity for the values to obtain the value of the specific feature energy Especific(xi).

(1) Sparse matching constraints for energy

We conduct Gabor filtering on CT images and select image blocks on the liver boundary

from the Gabor images to establish the feature dictionary Dgabor. The model updates testing

sets continuously according to the vertex post of the deformable model during the deformation

process. Fig 7 shows the selection methods for testing sets on the initial post of the deformable

model. We select image blocks of the same size as the testing set at the vertex of the deformable

model and calculate the restructuring error of each image block following every deformation

according to the established dictionary and sparse coding. If the restructuring error of an

image block is less than the acceptable threshold, then the intensity and boundary energies of

this vertex will be set to zero. If the error is greater than the threshold, then the energy values

will not be changed to allow for continuous deformation to be realized under the effect of

intensity energy and boundary energy until all image blocks errors are less than the threshold

and the deformation process stops.

Fig 7. Sketch map for the selection of testing sets in the model. (A) Two-dimensional display image of the image

block; and (B) three-dimensional display image.

https://doi.org/10.1371/journal.pone.0185249.g007
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This paper obtains the sparse coding Xgabor of the testing samples via the established dictio-

nary Dgabor. We then calculate the restructuring error of each sample based on Yi
testing , the dic-

tionary and the sparse coding.

Li
gabor
¼ kYi

gabor � DXgabork2
; i ¼ 1; 2; � � � n ð23Þ

If the restructuring error of a sample is less than the threshold, then

Li
gabor
� s; i ¼ 1; 2; � � � n ð24Þ

The energy of the corresponding vertex in this testing set will be set zero, and other vertexes

will continue to deform until the restructuring errors of all testing sets are less than the thresh-

old σ.

The weighting coefficient ωexrenal of the energy function (10) of the original deformable

model is calculated by the following formula:

oexternal ¼
0 s:t: Li

gabor
� s; i ¼ 1; 2; � � � n

Li
gabor

s:t: Li
gabor

> s; i ¼ 1; 2; � � � n

(

ð25Þ

Experimental results and discussions

This paper conducts algorithm testing based on the CT data provided in MICCAI 2007. The

data sets include 20 sets of training data, 10 sets of testing data, and the evaluation standards

for segmentation results. The pixel interval of all data is 0.55–0.8 mm. The distance between

two sections is 1–3 mm, and overlapping does not occur between two sections. The experi-

ment mainly analyzes the effectiveness of sparse statistical shape models for algorithm building

and discusses the intensity energy, boundary energy, and sparse matching constraints of sparse

statistical shape models. The results show that the algorithm established in this paper can be

used to accurately segment the liver.

Fig 8 shows the process of building the sparse statistical shape model for the proposed algo-

rithm. Panels (A)-(F) represent six groups of gold standard point cloud data for the liver; (G)

illustrates the results of the gold standard point cloud data after registration and overlap; (H)-

(J) express the sparse statistical model on the cross section, vertical plane, and coronal plane of

the original image; and (K) shows the three-dimensional image of the sparse statistical shape

model on the original images. As shown in Fig 8, before building of the sparse statistical shape

model, the proposed method can be used to accurately register the six groups of data into the

same coordinate space so that the liver shape structure and direction of each data group mutu-

ally corresponding to each other. Additionally, panels (H)-(K) indicate that the initial pose of

the sparse statistical model in the original image is more accurate; thus, it has effectively

reduced the errors in the traditional statistical model because of the inaccuracy of the initial

pose.

Fig 9 expresses the sparse statistical model on the five original CT images. Panels (A1)-(A4),

(B1)-(B4), (C1)-(C4), (D1)-(D4) and (E1)-(E4) each show the segmentation results of the five

groups of data on the cross section, vertical plane, coronal plane and three-dimensional space.

In this figure, the green line indicates the real liver boundaries of the original image, and the

blue line indicates the sparse statistical shape model built based on the proposed algorithm. As

shown in the figure, the established sparse statistical shape model locates the same coordinate

space as the liver contour in the original image and matches well with the shape structure of

the liver contour. Although errors occur in the selection of mark points during dictionary

Sparse priori statistical shape model
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training and testing and the sparse statistical shape model varies significantly in local regions

where the real liver boundaries are in the original image, the energy constraint model con-

structed in this study can drive the sparse statistical shape model to converge with the real liver

boundaries.

Fig 10 shows the deformation process of the sparse statistical shape model under energy

constraints. Panels (a)-(i) show the results of the 1st, 3rd, 5th, 7th, 9th, 11th, 13th, 15th, and 17th

iterative computations of the model. As shown in the figure, the sparse statistical shape model

is gradually deformed under the constraints of the intensity and boundary energy and simulta-

neously ensures the smoothness of the model.

Fig 11 shows the deformation process of the sparse statistical shape model on the two-

dimensional section. (A1)-(A3), (B1)-(B3), (C1)-(C3), (D1)-(D3) and (E1)-(E3) show the results

of the five deformable models on the cross section, vertical plane, and coronal plane. In this

figure, the red line indicates the initial sparse statistical shape model, the green line indicates

the gold standard liver boundaries, and the white line indicates the intersections of the model

with different sections during the deformation process. As shown in the figure, the initial

sparse statistical shape model, which is driven jointly by the intensity energy, boundary energy,

and sparse matching constraints, can gradually deform to obtain a shape that is close to the

actual liver boundaries. At the early stage, the deformation extent of the model is small. Then,

as the model boundaries approach the liver boundaries and the sparse matching constraints

decline, the deformation extent of the model decreases significantly. On the smooth liver sur-

face, because of the high matching degree between image blocks and dictionaries in the build-

ing process of the sparse statistical shape model, the sparse matching constraints are relatively

Fig 8. Process of building the sparse statistical shape model. (A)-(F) Six groups of a priori models; (G) overlapping result after registering the six

groups of data into the same coordinate space; (H)-(J) sparse statistical shape model expressed on the cross section, vertical plane, and coronal plane

of the original image; and (K) three-dimensional image of the sparse statistical shape model on the original image.

https://doi.org/10.1371/journal.pone.0185249.g008
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small, thereby decreasing the deformation extent of the model. However, in the grooved

regions and sharp corners representing detailed information, the low matching degree

between image blocks and dictionaries leads to relatively large sparse matching constraints,

which increases the deformation extent of the model. As a result, the intensity energy, bound-

ary energy, and sparse matching constraint model can effectively drive the statistical shape

model to represent the sharp corners of the liver in the original image.

In Fig 12, panels (A1)-(A4), (B1)-(B4), (C1)-(C4), (D1)-(D4) and (E1-E4) express the deforma-

tion results of the five sparse statistical shape models that are driven by the intensity energy,

boundary energy and sparse matching constraints on cross section, vertical plane, coronal

plane and three-dimensional space. In this figure, the green line indicates the real liver bound-

aries in the original image, the blue line indicates the deformation results, and the blue shape

area shows the three-dimensional distribution of the deformation results and the pose of the

deformation results in the original CT image. Panel (A5), (B5), (C5), (D5) and (E5) represent

the overlapping images of the deformation results of the five groups of data and the real liver

boundaries. As shown in the figure, the proposed algorithm can be used to segment the liver

with high accuracy.

Fig 9. Sparse statistical shape model on the original image. The first to five rows show the five groups of

original CT data; the first to fourth columns show the display results of the same group of data on the cross

section, vertical plane, coronal plane, and three-dimensional space; the green line indicates the real liver

boundaries of the original image; and the blue line indicates the sparse statistical shape model built based on

the proposed algorithm.

https://doi.org/10.1371/journal.pone.0185249.g009
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Fig 13 shows the liver segmentation results of two groups of CT data based on the proposed

algorithm. Panels (A1)-(A3) and (B1)-(B3) show the segmentation results of the two groups of

data on cross section, vertical plane, and coronal plane. The red area indicates the real liver

boundaries, and the green line indicates the liver segmentation results based on the proposed

algorithm. Panels (a1)-(a3) and (b1)-(b3) show the partially enlarged images corresponding to

the green areas in (A1)-(A3) and (B1)-(B3), respectively. As shown in the figure, when the

boundary intensity information is not obvious or burrs occur around the liver boundaries,

minor errors may occur in the liver segmentation results based on the proposed algorithm. In

general, the difference between the segmentation results and the gold standard data is small.

Analysis of segmentation results

Table 1 provides the testing results regarding the segmentation accuracy of the algorithm in

this paper based on five sets of randomly selected data. The table shows that the mean values of

Fig 10. Deformation process of the sparse statistical shape model under energy constraints. (a)-(i) Results of the 1st, 3rd, 5th, 7th, 9th, 11th,

13th, 15th, and 17th iterative computations of the model.

https://doi.org/10.1371/journal.pone.0185249.g010
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Fig 11. Deformation process of the sparse statistical shape model on the two-dimensional section.

The first to fifth rows show the five groups of data, and the first to third columns show the cross section,

vertical plane, and coronal plane during the deformation process.

https://doi.org/10.1371/journal.pone.0185249.g011
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the volumetric overlap error (VOE), relative volume difference (RVD), average symmetric sur-

face distance (ASSD), root mean square symmetric surface distance (RMSSSD), and maximum

symmetric surface distance (MSSD) reached 4.8±0.7%, 1.8±0.4%, 0.8±0.1 mm, 1.4±0.4 mm

and 15.9±4.3 mm, respectively, and the average scores are 82±3.5, 88±2.6, 81±1.3, 78±9.0 and

82±4.5, respectively. These results show that the algorithm in this paper can make the sparse

statistical shape model effectively converge to the liver boundaries under the joint effect of

intensity energy, boundary energy, and sparse matching constraints, thereby obtaining more

accurate segmentation results.

Table 2 presents comparisons of the segmentation results errors of the algorithm in this

paper as well as six other algorithms [24–30], which included algorithms that presented better

segmentation results from the MICCAI competition and those used for experimental analyses

based on MICCAI data and evaluation methods in recent years. The table shows that the seg-

mentation accuracy of the algorithm in this paper is higher than that of other algorithms, and

the total score based on five segmentation result evaluation standards reached 82, which is far

higher than the total scores of 69, 67, 64, 62, 60 and 53 achieved by the other algorithms. The

ASSD of the segmentation accuracy of the algorithm in this paper was reduced by 0.6 mm, 0.6

mm, 0.7 mm, 0.9 mm, 1.0 mm and 1.4 mm compared with those of the other algorithms; the

average VOE was reduced by 2.5%, 2.9%, 4.1%, 4.3%, 5.6% and 7.7%; the RMSSSD error was

reduced by 1.7 mm, 1.8 mm, 2.0 mm, 1.9 mm, 1.8 mm and 3.0 mm; and the MSSD was

reduced by 10.9 mm, 14.2 mm, 13.4 mm, 14.9 mm, 9.3 mm and 16.5 mm. These result show

Fig 12. Deformation results. The first to fifth rows show the five groups of CT data. (A1)-(A4), (B1)-(B4), (C1)-

(C4), (D1)-(D4) and (E1-E4) show the deformation results of the five groups of data on the cross section,

vertical plane, coronal plane and three-dimensional space. (A5), (B5), (C5) and (D5) show the overlapping

images of the deformation results of the five groups of data with the real liver boundaries. The green line

indicates the real liver boundaries of the original image, and the blue line indicates the segmentation result

based on the proposed algorithm.

https://doi.org/10.1371/journal.pone.0185249.g012
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Fig 13. Segmentation results. (A) and (B) show the two groups of CT data; (A1), (A2) and (A3) express the same groups of data on the cross

section, vertical plane, and coronal plane, respectively; and (a1), (a2) and (a3) show the partially enlarged images corresponding to the green areas

in (A1), (A2) and (A3), respectively. The red area in every image indicates the real liver boundaries, and the green line indicates the liver

segmentation results based on the proposed algorithm.

https://doi.org/10.1371/journal.pone.0185249.g013
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that the three algorithms in this paper can enhance the effectiveness and accuracy of liver

segmentation.

Table 3 shows the average time statistics for the MICCAI data segmentation experiment

using the methods proposed in this paper on a computer with a CPU frequency of 3.4 GHz.

The Oliveira [24] method in Table 1 does not provide the segmentation time from the related

literature; thus, only the other five methods are compared in this chapter. The table shows that

although the computational efficiency of the SP-SSM algorithm proposed in this paper is

improved compared with the other types of algorithms, it was reduced by 8.8 min relative to

the same type of Chi [27] and Seghers [28] algorithms. The results show that the construction

of a liver sparse statistical shape model based on the sparse coding theory in the SP-SSM algo-

rithm is highly efficient, and they also indicate the effectiveness of the gray energy, the bound-

ary energy and the sparse matching energy constraint method.

Conclusions

Considering the complexity of CT images for the liver, this study creates dictionaries for a nor-

malized a priori shape model and the mark points. Then, the sparse coefficient is calculated

Table 1. Analysis of the segmentation results errors of the proposed algorithm.

Data VOE RVD ASSD RMSSSD MSSD Total

[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

1 3.7 88 1.8 89 0.9 80 1.9 70 14.8 83 82

2 5.3 80 1.5 91 0.8 81 1.2 83 11.2 88 85

3 4.9 83 2.1 86 0.6 83 0.8 89 18.4 80 84

4 5.4 79 2.3 84 0.9 80 1.3 82 13.1 84 82

5 5.0 81 1.4 92 0.7 82 1.7 68 21.9 76 80

AVG 4.8±0.7 82±3.5 1.8±0.4 88±2.6 0.8±0.1 81±1.3 1.4±0.4 78±9.0 15.9±4.3 82±4.5 82±1.9

https://doi.org/10.1371/journal.pone.0185249.t001

Table 2. Error comparisons among other segmentation methods.

Methods VOE RVD ASSD RMSSSD MSSD Total

[%] Score [%] Score [mm] Score [mm] Score [mm] Score Score

SP-SSM 4.8±0.7 82 1.8±0.4 88 0.8±0.1 81 1.4±0.4 78 15.9±4.3 82 82

AMEM[30] 6.5±0.6 75 2.8±0.9 85 1.1±0.3 74 2.2±0.8 69 22.8±7.6 70 74

Oliveira[24] 7.3 71 2.2 82 1.4 66 3.1 58 26.8 65 69

Heimann[25] 7.7±1.9 70 1.7±3.2 88 1.4±0.4 65 3.2±1.3 55 30.1±10.2 60 67

Saddi[26] 8.9±1.8 65 1.2±4.4 80 1.5±0.4 62 3.4±0.8 52 29.3±8.4 62 64

Chi[27] 9.1±2.8 65 2.6±6.3 73 1.7±0.6 58 3.3±1.2 54 30.8±9.2 60 62

Seghers[28] 10.4±2.5 58 6.8±2.3 64 1.8±0.4 55 3.2±1.1 56 25.2±10.1 67 60

Rikxoort[29] 12.5±1.8 51 1.8±4.2 80 2.4±0.3 40 4.4±1.5 40 32.4±13.7 57 53

https://doi.org/10.1371/journal.pone.0185249.t002

Table 3. Comparison of segmentation performance.

Parameters SP-SSM AMEM [30] Heimann [25] Saddi [26] Chi [27] Seghers [28] Rikxoort [29]

Type Statistical Deformation Deformation Deformation Statistical Statistical Learning

Segmentation time 21.2 min 4.9 min 7 min 5.5 min 30 min 30 min 45 min

Computer performance 3.4 GHz 3.4 GHz 3 GHz 2 GHz 3 GHz 3.4 GHz 3.2 GHz

https://doi.org/10.1371/journal.pone.0185249.t003
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based on the mark point dictionary and the sparse statistical shape model is built based on the

a priori shape model dictionary. Subsequently, the specific boundaries of the original image

are obtained by using the pose of the sparse statistical model in the original image so that the

intensity energy and boundary energy are built. Finally, a sparse matching constraint model is

established based on the liver boundary information dictionary and the Gabor information of

the original image. Accordingly, the deformation scope and extent of the sparse statistical

shape model can be controlled effectively and the model can closely approximate the liver

boundaries, thereby realizing accurate liver segmentation.

In experimental section, this study utilized public liver data sets provided by MICCAI 2007

for the experimental analysis. According to the experimental results, the sparse statistical

shape model built based on the proposed algorithm can represent the initial liver boundaries

in the original image and approach the real liver boundaries under the driving force of the

intensity energy, boundary energy, and sparse matching constraints, thereby obtaining accu-

rate segmentation results.

Finally, this study compares the segmentation results of the proposed model with those

obtained based on the six prevailing algorithms. According to the comparison results, the pro-

posed algorithm can more accurately extract the liver contour from the CT image. Moreover,

the mean values of VOE, RVD, ASSD, RMSSSD, and MSSD are 4.8±0.7%, 1.8±0.4%, 0.8±0.1

mm, 1.4±0.4 mm and 15.9±4.3 mm, respectively.

Nevertheless, when using the proposed algorithm, researchers must manually select mark

points on the liver boundaries. Although sparse coding can be applied to effectively remove

the inaccurate mark points or liver models, subjective factors may still be present. In addition,

in the proposed method, sparse matching constraints are implemented in the deformation

process. Therefore, matching must be conducted between the image blocks corresponding to

each vertex in the model and the dictionary each time an iteration begins, although this pro-

cess decreases the segmentation efficiency of the proposed algorithm to some extent. Cur-

rently, the average time required for liver segmentation is approximately 21.2 minutes, which

can still be significantly improved. Hence, future studies should focus on graphics processing

unit-based acceleration and fully automated solutions for the proposed method.
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22. Hatipoğlu F, Karapolat İ, Ö Ö, Akgün A, Yanarateş A, Kumanlıoğlu K. Recurrence Incidence in Differen-

tiated Thyroid Cancers and the Importance of Diagnostic Iodine-131 Scintigraphy in Clinical Follow-up.

Molecular Imaging & Radionuclide Therapy. 2016; 25(2):85–90.

23. Palomba D, Martı́nez MJ, Ponzoni I, Dı́az MF, Vazquez GE, Soto AJ. QSPR models for predicting log P

(liver) values for volatile organic compounds combining statistical methods and domain knowledge. Mol-

ecules. 2012; 17(12):14937–53. https://doi.org/10.3390/molecules171214937 PMID: 23247367

24. Oliveira DA, Feitosa RQ, Correia MM. Segmentation of liver, its vessels and lesions from CT images for

surgical planning. BioMedical Engineering OnLine,10,1(2011-04-20). 2011; 10(1):30.

25. Heimann T, Ginneken BV, Styner MA, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and Evalua-

tion of Methods for Liver Segmentation From CT Datasets. IEEE Transactions on Medical Imaging.

2009; 28(8):1251–65. https://doi.org/10.1109/TMI.2009.2013851 PMID: 19211338

26. Saddi Kinda A, Rousson M, Hotel CC, Cheriet F. Global-to-Local Shape Matching for Liver Segmenta-

tion in CT Imaging. 2007.

27. Ying C, Cashman PMM, Bello F, Kitney RI. A Discussion on the Evaluation of A New Automatic Liver

Volume Segmentation Method for Specified CT Image Datasets. 2008.

28. Seghers D, Slagmolen P, Lambelin Y, Hermans J, Loeckx D, Maes F, et al., editors. Landmark based

liver segmentation using local shape and local intensity models. 2007.

29. Rikxoort EMV, Arzhaeva Y, Ginneken BV. Automatic segmentation of the liver in computed tomograpy

scans with voxel classification and atlas matching. 3d Segmentation in the Clinic A Grand Challenge.

2007.

30. Wang X, Yang J, Ai D, Zheng Y, Tang S, Wang Y. Adaptive Mesh Expansion Model (AMEM) for liver

segmentation from CT image. Plos One. 2015; 10(3):e0118064. https://doi.org/10.1371/journal.pone.

0118064 PMID: 25769030

Sparse priori statistical shape model

PLOS ONE | https://doi.org/10.1371/journal.pone.0185249 October 5, 2017 23 / 23

http://www.ncbi.nlm.nih.gov/pubmed/16579381
https://doi.org/10.1016/j.cub.2009.06.045
https://doi.org/10.1016/j.cub.2009.06.045
http://www.ncbi.nlm.nih.gov/pubmed/19646877
https://doi.org/10.3390/molecules171214937
http://www.ncbi.nlm.nih.gov/pubmed/23247367
https://doi.org/10.1109/TMI.2009.2013851
http://www.ncbi.nlm.nih.gov/pubmed/19211338
https://doi.org/10.1371/journal.pone.0118064
https://doi.org/10.1371/journal.pone.0118064
http://www.ncbi.nlm.nih.gov/pubmed/25769030
https://doi.org/10.1371/journal.pone.0185249

