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Hypoalbuminemia as a predictor of 
acute kidney injury during colistin 
treatment
Daniele Roberto Giacobbe   1, Alessandra di Masi2, Loris Leboffe2, Valerio Del Bono3, 
Marianna Rossi4, Dario Cappiello5, Erika Coppo6, Anna Marchese6, Annarita Casulli1, 
Alessio Signori7, Andrea Novelli8, Katja Perrone5, Luigi Principe9, Alessandra Bandera4, 
Luca Enrico Vender4, Andrea Misin10, Pierpaolo Occhilupo11, Marcello Melone5, Paolo Ascenzi2, 
Andrea Gori12, Roberto Luzzati10, Claudio Viscoli1 & Stefano Di Bella10

This study aimed to assess the predictors of acute kidney injury (AKI) during colistin therapy in a cohort 
of patients with bloodstream infections (BSI) due to colistin-susceptible Gram-negative bacteria, 
focusing on the role of serum albumin levels. The study consisted of two parts: (1) a multicentre 
retrospective clinical study to assess the predictors of AKI during colistin therapy, defined according to 
the Kidney Disease: Improving Global Outcomes (KDIGO) criteria; and (2) bioinformatic and biochemical 
characterization of the possible interaction between human serum albumin and colistin. Among the 
170 patients included in the study, 71 (42%), 35 (21%), and 11 (6%) developed KDIGO stage 1 (K1-AKI), 
KDIGO stage 2 (K2-AKI), and KDIGO stage 3 (K3-AKI), respectively. In multivariable analyses, serum 
albumin <2.5 g/dL was independently associated with K1-AKI (subdistribution hazard ratio [sHR] 1.85, 
95% confidence interval [CI] 1.17–2.93, p = 0.009) and K2-AKI (sHR 2.37, 95% CI 1.15–4.87, p = 0.019). 
Bioinformatic and biochemical analyses provided additional information nurturing the discussion 
on how hypoalbuminemia favors development of AKI during colistin therapy. In conclusion, severe 
hypoalbuminemia independently predicted AKI during colistin therapy in a large cohort of patients with 
BSI due to colistin-susceptible Gram-negative bacteria. Further study is needed to clarify the underlying 
causal pathways.

Colistin is a polymyxin antibiotic with in vitro activity against most aerobic Gram-negative rods1,2. The use of 
colistin for the treatment of infections in humans was largely abandoned in the last quarter of the past century, 
owing to concerns of nephrotoxicity and neurotoxicity1,3,4. In the last two decades, the lack of dependable alterna-
tives for treating infections due to multidrug resistant (MDR) Gram-negative bacteria has led to an increasing use 
of colistin, as well as to a renewed interest in its effectiveness and tolerability in humans1,5,6.

In recent years, several clinical studies have investigated risk factors for nephrotoxicity, or more appropriately 
acute kidney injury (AKI), during colistin treatment, with heterogeneous results. Indeed, possible increases in 
the risk of AKI due to increasing age, comorbid conditions, prolonged course of treatment, high colistin dos-
age, concomitant nephrotoxic agents, pre-existing renal failure, hypertension, and obesity have been variously 
reported6–29. In addition, hypoalbuminemia has also been suggested to possibly predispose to AKI during colistin 
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therapy15,18,24,27. However, the true impact of hypoalbuminemia remains unclear because of conflicting results in 
different studies, possibly relying on the wide heterogeneity in patient population, type of infections, and study 
design.

In the present study, we assessed the predictors of AKI during colistin therapy in a cohort of patients with 
bloodstream infections (BSI) due to colistin-susceptible Gram-negative bacteria, focusing on the role of serum 
albumin levels. In addition, we performed docking simulations and biochemical characterization of colistin bind-
ing to human serum albumin (HSA), in order to verify whether an interaction between colistin and albumin exist 
that might add to the discussion on any possible causal relationship between hypoalbuminemia and AKI during 
colistin therapy.

Materials and Methods
The present study consists of two parts: (1) a multicentre retrospective clinical study; and (2) bioinformatic and 
biochemical characterization of the possible interaction between human serum albumin (HSA) and colistin.

Part 1 – Multicentre retrospective clinical study.  Study design.  The multicentre retrospective clinical 
study was conducted in the following Italian hospitals: (i) Ospedale Policlinico San Martino – IRCCS per l’On-
cologia, 1200 beds, in Genoa; (ii) Azienda Sanitaria Universitaria Integrata di Trieste, 600 beds, in Trieste; (iii) 
ASST Monza – Ospedale San Gerardo, 1200 beds, in Monza; and (iv) Città di Lecce Hospital – gruppo GVM Care 
and Research, 150 beds, in Lecce. All patients with BSI caused by colistin-susceptible Gram-negative bacteria 
and treated with intravenous colistin from January 2011 to June 2016 were identified through the computerized 
databases of the four hospitals. Exclusion criteria were: (i) missing key data; (ii) less than 48 h of intravenous 
colistin; and (iii) hemodialysis. The primary study outcome measure was AKI during colistin treatment, defined 
as a time-to-event endpoint. Patients were followed until the 14th day of colistin therapy or death, whichever came 
first.

Definitions.  BSI was defined as the presence of at least one blood culture positive for Gram-negative bacteria in 
presence of signs and symptoms of infection30. AKI was defined on the basis of serum creatinine levels according 
to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria (Table 1)31.

Data collection.  The following demographic and clinical variables were collected from clinical charts as baseline 
data at the time of colistin initiation: age; gender; presence of diabetes mellitus, presence of solid neoplasms, pres-
ence of hematological malignancies, presence of chronic renal failure, presence of severe hepatic failure (defined 
as liver cirrhosis according to histology or in presence of a clinical diagnosis supported by laboratory, endoscopy, 
and radiologic findings32), presence of septic shock (defined as hypotension not responding to fluid therapy and 
requiring vasoactive agents), presence of polymicrobial BSI, ward of stay (intensive care unit [ICU] vs. non-ICU), 
presence of central venous catheter, neutropenia (defined as absolute neutrophil count of <500/mm3), serum 
total bilirubin, serum hemoglobin, serum creatinine, serum albumin. The following data were also collected with 
regard to the management and course of BSI: dosage and length of colistin therapy, whether colistin was given 
as monotherapy or in combination, time to adequate therapy (defined as the number of days elapsing from the 
first positive blood culture to initiation of at least one antibiotic with in vitro activity against the causative agent of 
BSI), serum creatinine during colistin therapy.

Microbiology.  The Vitek 2 automated system (bioMérieux, Marcy l’Etoile, France) was routinely used for iden-
tifying the causative agent of BSI and for susceptibility testing. Colistin susceptibility testing was performed 
using the Vitek 2 system or the Etest (bioMérieux, Marcy l’Etoile, France). Susceptibility results were interpreted 
according to the latest EUCAST criteria (EUCAST breakpoint tables for interpretation of MICs and zone diame-
ters, version 6.0, 2016; http://www.eucast.org).

Statistical analysis.  Baseline demographic and clinical data of patients were described with numbers and per-
centages for categorical variables, and with median and interquartile range (IQR) for continuous variables.

The main analysis was the identification of predictors of AKI during colistin therapy. To this aim, the possible 
association of demographic and clinical factors with AKI was assessed in univariable Fine-Gray models, with AKI 
as the outcome of interest and death as a competing event33. The Day 0 was the day of colistin initiation. Patients 
who discontinued colistin before 14 days of therapy were right-censored at the time of discontinuation. In dif-
ferent univariable models, serum albumin was either dichotomized according to an arbitrary cut-off based on its 
median concentration in the study population (<2.5 g/dl vs. ≥2.5 g/dl), or considered as a continuous variable. 
All the variables were tested for their possible association with three different dependent variables, reflecting the 

Stage Description

Stage 1 Increase in serum creatinine by ≥0.3 mg/dl within 48 hours or increase in serum creatinine 1.5 to 
1.9 times baseline which is known or presumed to have occurred within the prior 7 days

Stage 2 Increase in serum creatinine to 2.0 to 2.9 times baseline

Stage 3 Increase in serum creatinine to 3.0 times baseline or increase in serum creatinine to ≥4.0 mg/dl 
or initiation of renal replacement therapy

Table 1.  KDIGO stages of acute kidney injury according to serum creatinine levels. KDIGO, Kidney Disease: 
Improving Global Outcomes31.

http://www.eucast.org
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three different stages of AKI according to KDIGO classification: (i) KDIGO stage 1 (K1-AKI); (ii) KDIGO stage 
2 (K2-AKI); (iii) KDIGO stage 3 (K3-AKI).

To assess the independent role of variables, factors showing a potential association with AKI in univariable 
analyses (p < 0.10) were included in an initial multivariable Fine-Gray model, and further selected through a 
stepwise backward procedure based on the Akaike information criterion. Different multivariable analyses were 
conducted according to all the possible combinations of independent (dichotomous or continuous albumin) 
and dependent (K1-AKI, K2-AKI, K3-AKI) variables. The proportionality assumption was checked by plotting 
Schoenfeld residuals and by verifying the absence of statistically significant interactions between time and covar-
iates in Fine-Gray models.

The cumulative incidence of K1-AKI, K2-AKI, and K3-AKI, in patients with or without severe hypoalbu-
minemia (<2.5 and ≥2.5 g/dL, respectively) was calculated by means of the Aalen-Johansen method, consider-
ing death as a competing event and applying right-censoring at the time of colistin discontinuation34. Statistical 
analyses were performed using the R Statistical Software (version 3.3.0, R Foundation for Statistical Computing, 
Vienna, Austria).

Part 2 - Bioinformatic and biochemical analyses.  Bioinformatic analysis.  Docking simulations of 
colistin binding to HSA were performed using the crystal structure of ligand-free HSA (PDB ID: 1AO6)35. The 
colistin three-dimensional structure was obtained from the Drug Bank Database (https://www.drugbank.ca/
drugs/DB00803). Simulations were carried out using DockingApp36, a user friendly interface for the docking 
program AutoDock Vina37. In all the simulations, the search space (docking grid) included the whole HSA struc-
ture in order to carry out “blind” predictions of the colistin binding sites. The simulations were carried out both 
by keeping all protein residues rigid and by allowing flexibility only of the residues building up the walls of the FA 
sites (FA1 to FA9) (see38). Residues for which flexibility was allowed are reported in the supplementary material 
(Table S1). Rotatable bonds of colistin structure were kept flexible in all the simulations.

Biochemical analysis.  As spectrofluorimetric and spectrophotometric binding studies were not informative of 
colistin binding to HSA due to the lack of optical variations following the interaction, we performed an indirect 
assay. In particular, colistin binding to HSA was evaluated by measuring the MG1655 E. coli strain (ATCC® 
47046; Manassas, VA, USA) growth. Briefly, the activity of colistin (Sigma-Aldrich, St. Louis, MO, USA) and 
HSA (Sigma-Aldrich) on the MG1655 E. coli strain was tested in 96-well microtiter plates. In order to obtain high 
cell densities, bacterial cells were grown overnight in Mueller Hinton Broth 2 (MH II) (Sigma-Aldrich) and then 
diluted to an OD600 of 0.001 in MH II broth containing increasing concentrations of colistin (1, 1.25, and 1.5 μg/
mL) and HSA (25, 50, 100, and 200 μg/mL). Microtiter plates were incubated for 20 h at 37 °C. Bacteria growth 
was measured at a wavelength of 600 nm using a microplate reader (Spark, Tecan, Switzerland). Biochemical 
results are shown as the means ± standard deviation (SD) derived minimally from three independent experi-
ments. Differences between means, assessed by the Student’s t-test (GraphPad InStat 3.1 Software Inc., San Diego, 
CA, USA), were considered significant when p values were ≤0.05.

Ethical approval and informed consent.  All procedures performed were in accordance with the ethical 
standards of the institutional and/or national research committees and with the 1964 Helsinki Declaration and 
its later amendments or comparable ethical standards. The study was approved by the regional ethics committee 
of the coordinating center (Regional Ethics Committee of Liguria Region, registry number 473REG2016) and 
subsequently by the local ethics committees/institutional review boards of the other participating centers. No 
specific informed consent was required because of the retrospective nature of the analyses.

Availability of data and materials.  The datasets used and/or analyzed during the current study are avail-
able from the corresponding author on reasonable request.

Results
Part 1 – Multicentre retrospective clinical study.  During the study period, 214 patients with BSI due to 
colistin-susceptible Gram-negative bacteria were treated with intravenous colistin, and 170 of them (79%) were 
included in the study (Fig. 1). Their median age was 68 years (IQR 58–76), and 111 were males (65%). Their com-
plete demographic and clinical characteristics are reported in Table 2. Overall, 71 (42%), 35 (21%), and 11 (6%) 

Figure 1.  Flow chart of the patients inclusion process.

https://www.drugbank.ca/drugs/DB00803
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Variable
Patients not developing AKI during 
colistin treatment (%) 99 (58)

Patients developing at least KDIGO Stage 1 
AKI during colistin treatment (%) 71 (42)

Demographic variables

Age in years, median (IQR) 67 (58–75) 71 (60–77)

Male gender 67 (68) 44 (62)

Medical hystory

Diabetes mellitus 25 (25) 23 (32)

Chronic renal failure 13 (13) 15 (21)

Severe hepatic failure 11 (11) 3 (4)

Solid neoplasms 25 (25) 11 (15)

Hematological malignancies 17 (17) 9 (13)

Microbiological variables

   Causative agent of BSI

     Enterobacteriaceae§ 65 (66) 37 (52)

     Pseudomonas spp. 13 (13) 11 (15)

     Acinetobacter spp. 15 (15) 18 (25)

     Enterobacteriaceae plus Pseudomonas spp.§§ 3 (3) 4 (6)

     Enterobacteriaceae plus Acinetobacter spp.§§§ 3 (3) 1 (1)

Polymicrobial BSI* 23 (23) 14 (20)

Colistin susceptibility test method

     Vitek 2 72 (73) 51 (72)

     Etest 27 (27) 20 (28)

Baseline variables**
ICU stay 27 (27) 19 (27)

Presence of central venous catheter 83 (84) 54 (76)

Presence of septic shock 34 (34) 24 (34)

Neutropenia 14 (14) 3 (4)

Serum hemoglobin in g/dl, median (IQR) 9.3 (8.7–10.1) 9.3 (8.6–10.3)

Serum total bilirubin in mg/dl, median (IQR) 0.8 (0.5–1.3) 0.9 (0.5–1.6)

Serum creatinine in mg/dl, median (IQR) 0.9 (0.6–1.4) 1.0 (0.7–1.4)

Serum albumin in g/dl, median (IQR) 2.6 (2.3–3.0) 2.4 (2.1–2.8)

Serum albumin <2.5 g/dl 38 (38) 42 (59)

Therapy variables

Type of adequate therapy

     Colistin monotherapy 51 (52) 36 (51)

     2 active agents including colistin 42 (42) 31 (44)

     3 active agents including colistin 6 (6) 4 (6)

Time to adequate therapy in days, median (IQR) 2 (0–4) 3 (1–4)

9 MU colistimethate loading-dose*** 54 (55) 35 (49)

Length of colistin therapy in days, median (IQR) 13 (10–20) 13 (8–15)

Use of other nephrotoxic agents**** 7 (7) 6 (8)

Table 2.  Baseline characteristics of the study population. Results are presented as n (%) unless otherwise 
indicated. KDIGO, Kidney Disease: Improving Global Outcomes31; AKI, acute kidney injury; IQR, 
Interquartile range; ICU, intensive care unit; MU, million units. §Klebsiella spp. (n = 95), Citrobacter spp. 
(n = 1), Enterobacter (n = 1), Enterobacter spp. plus Klebsiella spp. (n = 1), Escherichia spp. (n = 1), Klebsiella 
spp. plus Proteus spp. (n = 3). §§Klebsiella spp. plus Pseudomonas spp. (n = 6), Proteus spp. plus Pseudomonas 
spp. (n = 1). §§§ Acinetobacter spp. plus Citrobacter spp. (n = 1), Acinetobacter spp. plus Escherichia spp. (n = 1), 
Acinetobacter spp. plus Escherichia spp. plus Klebsiella spp. (n = 1), Acinetobacter spp. plus Proteus spp. (n = 1). 
*Acinetobacter spp. plus Enterococcus spp. (n = 7), Klebsiella spp. plus Enterococcus spp. (n = 5), Klebsiella spp. 
plus Pseudomonas spp. (n = 5), Klebsiella spp. plus Proteus spp. (n = 3), Pseudomonas spp. plus Enterococcus 
spp. (n = 2), Acinetobacter spp. plus Candida spp. (n = 1), Acinetobacter spp. plus Citrobacter spp. (n = 1), 
Acinetobacter spp. plus coagulase-negative staphylococci (n = 2), Acinetobacter spp. plus Escherichia spp. (n = 1), 
Acinetobacter spp. plus Escherichia spp. plus Klebsiella spp. plus Enterococcus spp. (n = 1), Acinetobacter spp. 
plus Proteus spp. (n = 1), Acinetobacter spp. plus Staphylococcus aureus (n = 1), Citrobacter spp. plus coagulase-
negative staphylococci (n = 1), Enterobacter spp. plus Klebsiella spp. (n = 1), Klebsiella spp. plus Candida spp. 
(n = 1), Klebsiella spp. plus coagulase-negative staphylococci (n = 1), Proteus spp. plus Pseudomonas spp. 
(n = 1), Pseudomonas spp. plus coagulase-negative staphylococci (n = 1), Pseudomonas spp. plus Klebsiella spp. 
plus Enterococcus spp. (n = 1). **At the time of colistin initiation. ***Colistimethate maintenance dose was 
mostly administered at 4.5 MU twice daily (99/170, 58%) and 3 MU thrice daily (9/170, 5%); various dosages 
with reduced amount/frequency of administration of colistimethate were used for patients with increased 
serum creatinine levels. ****Gentamicin (n = 11), amikacin (n = 1), vancomycin (n = 1).
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patients developed K1-AKI, K2-AKI, and K3-AKI during colistin therapy, respectively. Crude mortality within 
14 days from the first positive blood culture was 17% (29/170).

Table 3 shows univariable and multivariable analysis of predictors of K1-AKI during colistin therapy, consid-
ering baseline serum albumin as a dichotomous variable (<2.5 g/dL vs. ≥2.5 g/dL). In univariable comparisons, 
increasing age and serum albumin <2.5 g/dL were associated with K1-AKI. In multivariable analysis, only serum 
albumin <2.5 g/dL remained independently associated with K1-AKI (subdistribution hazard ratio [sHR] 1.85, 
95% confidence interval [CI] 1.17–2.93, p = 0.009). As a continuous variable, serum albumin showed an associa-
tion with K1-AKI in univariable analysis (sHR 0.63 for each increase of 1 g/dL in baseline serum albumin, 95% IC 
0.42–0.93, p = 0.021), whereas statistical significance was not retained in the final multivariable model (sHR 0.68 
for each increase of 1 g/dL in baseline serum albumin, 95% IC 0.45–1.03, p = 0.066; for details see Supplementary 
Table S2).

As shown in Table 4, serum albumin <2.5 g/dL resulted also the only independent predictor of K2-AKI (sHR 
2.37, 95% CI 1.15–4.87, p = 0.019). As a continuous variable, serum albumin was associated with K2-AKI both 
in univariable (sHR 0.52 for each increase of 1 g/dL in baseline serum albumin, 95% IC 0.31–0.88, p = 0.014) and 
in multivariable (sHR 0.57 for each increase of 1 g/dL in baseline serum albumin, 95% IC 0.34–0.95, p = 0.03) 
models, as detailed in Supplementary Table S3.

With regard to the potential association of serum albumin with K3-AKI, despite a trend towards increased 
risk of K3-AKI in patients with serum albumin <2.5 g/dL, no statistically significant association was detected in 
univariable analysis (sHR 3.16, 95% CI 0.85–11.8, p = 0.086). A similar result was observed when serum albumin 
was considered as a continuous variable (sHR 0.46 for each increase of 1 g/dL in baseline serum albumin, 95% CI 
0.20–1.05, p = 0.064). The details of univariable analyses for K3-AKI are available in Supplementary Table S4. No 
multivariable analysis was conducted because of the low number of K3-AKI events.

Variable

Univariable analysis Multivariable analysis*
sHR (95% CI) p sHR (95% CI) p

Age in years 1.02 (0.98–1.04) 0.046

Male gender 0.86 (0.54–1.36) 0.51

Diabetes mellitus 1.35 (0.84–2.17) 0.22

Chronic renal failure 1.64 (0.93–2.9) 0.09

Severe hepatic failure 0.40 (0.13–1.25) 0.11

Solid neoplasms 0.64 (0.34–1.21) 0.17

Hematological malignancies 0.75 (0.38–1.49) 0.42

Causative agent of BSI 0.26

   Enterobacteriaceae 1 (Reference)

   Pseudomonas spp. 1.31 (0.69–2.50)

   Acinetobacter spp. 1.78 (1.03–3.07)

   Enterobacteriaceae plus Pseudomonas spp. 1.79 (0.66–4.83)

   Enterobacteriaceae plus Acinetobacter spp. 0.74 (0.12–4.53)

Polymicrobial BSI 0.84 (0.48–1.46) 0.53

Colistin susceptibility test method 0.85

   Vitek 2 1 (Reference)

   Etest 1.05 (0.63–1.73)

ICU stay 1.00 (0.60–1.68) 0.99

Presence of central venous catheter 0.70 (0.41–1.19) 0.18

Presence of septic shock 1.07 (0.66–1.73) 0.79

Neutropenia 0.33 (0.11–1.02) 0.054 0.40 (0.13–1.26) 0.12

Serum hemoglobin in g/dl 1.05 (0.86–1.29) 0.62

Serum total bilirubin in mg/dl 1.00 (0.95–1.05) 0.88

Serum creatinine in mg/dl 1.17 (0.96–1.42) 0.13

Serum albumin<2.5 g/dl 1.99 (1.26–3.14) 0.003 1.85 (1.17–2.93) 0.009

Type of adequate therapy 0.93

Colistin monotherapy 1 (Reference)

   2 active agents including colistin 1.04 (0.65–1.66)

   3 active agents including colistin 0.87 (0.36–2.14)

Time to adequate therapy in days 1.03 (0.95–1.12) 0.44

9 MU colistimethate loading-dose 0.88 (0.56–1.38) 0.58

Use of other nephrotoxic agents 1.08 (0.51–2.31) 0.84

Table 3.  Univariable and multivariable analyses of factors associated with development of acute kidney injury 
(KDIGO stage 1). KDIGO, Kidney Disease: Improving Global Outcomes31; sHR, subdistribution hazard ratio; 
CI, confidence intervals; BSI, bloodstream infection; ICU, intensive care unit; MU, million units. *Only results 
for variables retained in the final multivariable model are presented.
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The cumulative incidence of K1-AKI, K2-AKI, and K3-AKI in patients with serum albumin <2.5 g/dL and 
≥2.5 g/dL is shown in Fig. 2.

Part 2 - Bioinformatic and biochemical analyses.  Docking simulations of colistin binding to 
ligand-free HSA, with the search space extended to the whole protein, indicated the preferential binding of 
this drug to the FA8 site, with a number of five complexes observed in a maximum of nine poses (Fig. 3A and 
Table 5)39. In particular, colistin recognition to the FA8 site of ligand-free HSA is based on hydrogen bonds with 
Asp187, Arg218, Arg222, Glu292, and Lys436 (Fig. 3B). Of note, this binding mechanism is reminiscent of that 
observed for thyroxine recognition40. In other poses of docking simulation, colistin has been found to be placed 
in the FA9 site, which is located in the upper region of the FA8 site (Fig. 3A and Table 5)41,42.

As shown in Fig. S1, E. coli growth was completely inhibited in the presence of colistin, at all the concentra-
tions tested. The addition of HSA to the broth significantly reduced the anti-microbial effect of colistin as a con-
sequence of the reduced bioavailability due to its binding to albumin. Of note, the addition of HSA to the bacteria 
broth did not affect E. coli growth (Fig. S1).

Discussion
In a retrospective cohort of 170 patients with BSI due colistin-susceptible Gram-negative bacteria treated with 
colistin, as many as 42% developed at least mild AKI during colistin therapy, and 6% developed severe AKI. 
Severe hypoalbuminemia at colistin initiation (<2.5 g/dL) was associated with the development of AKI during 
colistin treatment.

Variable

Univariable analysis Multivariable analysis*
sHR (95% CI) p sHR (95% CI) p

Age in years 1.03 (1.00–1.06) 0.092 1.02 (0.99–1.06) 0.17

Male gender 0.95 (0.49–1.87) 0.89

Diabetes mellitus 1.18 (0.59–2.36) 0.64

Chronic renal failure 0.79 (0.32–1.99) 0.62

Severe hepatic failure 0.70 (0.17–2.97) 0.63

Solid neoplasms 1.28 (0.58–2.82) 0.54

Hematological malignancies 0.71 (0.26–1.91) 0.49

Causative agent of BSI 0.67

   Enterobacteriaceae 1 (Reference)

   Pseudomonas spp. 1.15 (0.43–3.05)

   Acinetobacter spp. 1.72 (0.82–3.62)

   Enterobacteriaceae plus Pseudomonas spp. 1.80 (0.37–8.91)

   Enterobacteriaceae plus Acinetobacter spp. 1.66 (0.27–10.36)

Colistin susceptibility test method 0.13

   Vitek 2 1 (Reference)

   Etest 1.69 (0.85–3.35)

Polymicrobial 0.55 (0.21–1.43) 0.22

ICU stay 1.63 (0.83–3.2) 0.16

Presence of central venous catheter 0.47 (0.23–0.95) 0.035 0.56 (0.26–1.23) 0.15

Presence of septic shock 1.17 (0.59–2.29) 0.66

Neutropenia 0.28 (0.04–1.93) 0.2

Serum hemoglobin in g/dl 1.05 (0.83–1.35) 0.67

Serum total bilirubin in mg/dl 0.97 (0.90–1.05) 0.48

Serum creatinine in mg/dl 0.73 (0.38–1.42) 0.35

Serum albumin < 2.5 g/dl 2.55 (1.27–5.15) 0.009 2.37 (1.15–4.87) 0.019

Type of adequate therapy 0.69

Colistin monotherapy 1 (Reference)

   2 active agents including colistin 0.75 (0.38–1.51)

   3 active agents including colistin 0.90 (0.26–4.72)

Time to adequate therapy in days 1.02 (0.91–1.15) 0.7

9 MU colistimethate loading-dose 1.82 (0.92–3.6) 0.086 1.83 (0.88–3.82) 0.11

Use of other nephrotoxic agents 0.87 (0.20–3.77) 0.85

Table 4.  Univariable and multivariable analyses of factors associated with development of acute kidney injury 
(KDIGO stage 2). KDIGO, Kidney Disease: Improving Global Outcomes31; sHR, subdistribution hazard ratio; 
CI, confidence intervals; BSI, bloodstream infection; ICU, intensive care unit; MU, million units. *Only results 
for variables retained in the final multivariable model are presented.
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Although with the necessary premise that direct comparisons are somewhat hampered by the use of different 
definitions of AKI in different studies, it is of note that the rates of AKI during colistin therapy detected in our 
cohort seem coherent with current literature43,44. For example, in a very recent study in 149 critically-ill patients 
receiving intravenous colistin, decreases of ≥25%, ≥50% and ≥75% in creatinine clearance during colistin treat-
ment were observed in 49%, 39%, and 8% of cases, respectively44. These results likely reflect the low therapeutic 
index of colistin45, and in turn the need for proper use and prompt identification of factors favoring the develop-
ment of AKI during the course of treatment.

Other authors have already investigated hypoalbuminemia as a possible predictor of AKI during colistin 
therapy. In two previous studies, serum albumin concentrations <3.2 g/dL and <2 g/dL were associated with 
development of AKI during treatment in 47 and 71 patients with various types of infections, respectively18,27. 
Low serum albumin concentrations also predicted AKI during colistin therapy in other 42 patients with het-
erogeneous infections15. In the study of Lee and colleagues, lower serum albumin concentrations were asso-
ciated with the development in AKI in 285 colistin-treated patients with estimated glomerular filtration rate 
(GFR) ≥ 60 mL/min/1.73 m2, but not in 44 patients with estimated GFR < 60 mL/min/1.73 m2 (although possi-
bly because of the low sample size of this latter subgroup)24. Finally, Sorlì and colleagues observed that in 102 
colistin-treated patients with various types of infections, hypoalbuminemia was associated with the develop-
ment of AKI in univariable but not in multivariable analyses17. These heterogeneous results might rely, at least 
in part, on the different patient populations analyzed in the different studies, including various combinations 
of critically- and non-critically-ill patients, as well as various types of infections and causative agents. In the 
present study, we observed an independent association between severe hypoalbuminemia (<2.5 g/dL) and 
development of AKI during colistin therapy in an cohort of 170 patients with BSI due to colistin-susceptible 
Gram-negative bacteria. Notably, these results suggest that severe hypoalbuminemia is a true risk factor for 
AKI in those patients in whom colistin is probably used the most nowadays, and in whom it may remain the 
only active therapeutic option46–48.

The binding of colistin to albumin has also been evaluated in the present work, thereby providing some 
insights into their interaction in the serum of colistin-treated patients. Our bioinformatics and biochemical 
analyses demonstrated that colistin binds to albumin with a very high affinity, as also supported by the in vitro  
E. coli growth assay. However, as far as a causal relationship is concerned, it is important to note that this does 
not automatically imply an increased colistin nephrotoxicity because of reduced albumin binding in the serum of 
hypoalbuminemic patients. Indeed, as already observed by Nation and colleagues, hypoalbuminemia might pro-
mote reductions in the total concentration of colistin in serum (bound plus unbound) but perhaps not in that of 
the unbound drug, which is ultimately the toxic entity49. In this light, other possible explanations for the increased 
risk of AKI in hypoalbuminemic patients receiving colistin therapy should be necessarily considered. For exam-
ple, severe hypoalbuminemia is responsible for altered regulation of fluids (and drugs) distribution, which might 
jeopardize renal perfusion and colistin ability to clear the infection and prevent/reduce any infection-related kid-
ney injury50. In addition, hypoalbuminemia might also contribute to AKI through reduced anti-oxidant activities, 
less efficacious scavenging of reactive oxygen species, and impaired preservation of renal tubular cells51,52. Finally, 
hypoalbuminemia might simply be a proxy for poor clinical conditions, thus potentially influencing the devel-
opment of AKI independent of any binding with colistin. With so many different but reasonable explanations at 
stake, it is therefore plausible that the development of AKI in hypoalbuminemic patients during colistin therapy 
is a complex and multifactorial process, in which not only the magnitude but also the existence of any possible 
contribution of reduced albumin binding still remains unclear. However, we think our findings nonetheless add to 
the literature, nurturing the discussion on the possible mechanisms trough which hypoalbuminemia leads to AKI 
in colistin-treated patients, and providing baseline biochemical information that might help in designing further 
dedicated studies to enrich our knowledge.

Figure 2.  Cumulative incidence of acute kidney injury in the study population. KDIGO, Kidney Disease: 
Improving Global Outcomes31; AKI, acute kidney injury.
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Figure 3.  Colistin recognition by ligand-free HSA. (A) Overall view of the best apparent free energy poses of 
ligand-free HSA-colistin complexes. (B) Overall view of the atomic details of colistin recognition at the FA8 site 
of HSA. Colistin is rendered in stick (orange). The picture was drawn with the UCSF-Chimera package39. For 
details, see text.

Pose

Ligand-free HSA (PDB ID: 1AO6) Ligand-free HSA flex (PDB ID: 1AO6)

Affinity (kcal/mol) Site Affinity (kcal/mol) Site

1 −6.7 FA8 −7.9 FA8

2 −6.6 FA8 −7.8 FA8

3 −6.6 FA9 −7.4 FA8

4 −6.6 FA9 −7.4 FA8

5 −6.6 FA8 −7.4 FA9

6 −6.5 FA9 −7.3 FA8

7 −6.5 FA8 −7.3 FA9

8 −6.5 FA8 −7.3 FA9

9 −6.5 FA9 −7.3 FA8

Table 5.  Docking simulation of colistin binding to ligand-free HSA.
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This study has some important limitations. The major one is that we did not have retrospective data on serum 
colistin levels, a well-known factor that may independently influence the development of AKI45. This also pre-
vented us from assessing whether or not severe hypoalbuminemia influenced colistin concentrations in a clini-
cally significant way49,53. Another potential confounding factor we could not adequately explore retrospectively 
is intravenous albumin therapy, which might have altered serum albumin levels (and their impact on AKI) in a 
time-dependent manner during colistin treatment. However, it is worth noting that intravenous albumin was 
likely administered the most in the case of severe hypoalbuminemia, which remained associated with AKI despite 
any possible interfering effect of subsequent corrections of serum albumin levels. This indirectly testifies to the 
absence of important biases related to albumin administration. It should also be noted that broth microdilution 
is the EUCAST reference method for colistin susceptibility testing, and not the Etest or the Vitek 2 automated 
system. However, although some patients with resistant strains might have been included because of the use of the 
Etest54, it should be noted that the majority of patients were selected according to Vitek 2 results. Reasonably, this 
did not hinder their correct selection, since colistin MICs are usually overestimated rather than underestimated 
by the Vitek 2 system55. Finally, we decided to use Fine-Gray regression with death as a competing event since our 
study was focused on the impact of hypoalbuminemia on the development of AKI. Indeed, hypoalbuminemia 
had been previously associated with increased mortality28,56,57, and we were thus interested not only in whether 
hypoalbuminemia predisposes to AKI, but also in whether it predisposes first to AKI than to mortality. However, 
the interpretation of the possible impact on AKI of other variables, which were not the primary focus of our study, 
might be less immediate than usual when using competing risk methods58. Therefore, any related conclusion 
should be drawn cautiously from this study.

Conclusions
Severe hypoalbuminemia was an independent predictor of AKI during colistin therapy in a large cohort of 
patients with BSI due to colistin-susceptible Gram-negative bacteria. Further study is needed to clarify the under-
lying causal pathways.
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