

A 16S rRNA Gene and Draft Genome Database for the Murine Oral Bacterial Community

^(D) Susan Joseph,^a Joseph Aduse-Opoku,^a Ahmed Hashim,^b Eveliina Hanski,^c Ricarda Streich,^a Sarah C. L. Knowles,^c Amy B. Pedersen,^d ^(D) William G. Wade,^{a,e} Michael A. Curtis^a

^aCentre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK

^bDepartment of Biomedical Sciences, College of Dentistry, King Faisal University, Saudi Arabia

^cDepartment of Zoology, University of Oxford, Oxford, UK

^dInstitute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK ^eDepartment of Microbiology, Forsyth Institute, Cambridge, Massachusetts, USA

ABSTRACT A curated murine oral microbiome database to be used as a reference for mouse-based studies has been constructed using a combination of bacterial culture, 16S rRNA gene amplicon, and whole-genome sequencing. The database comprises a collection of nearly full-length 16S rRNA gene sequences from cultured isolates and draft genomes from representative taxa collected from a range of sources, including specific-pathogen-free laboratory mice, wild Mus musculus domesticus mice, and formerly wild wood mouse Apodemus sylvaticus. At present, it comprises 103 mouse oral taxa (MOT) spanning four phyla-Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes-including 12 novel undescribed species-level taxa. The key observations from this study are (i) the low diversity and predominantly culturable nature of the laboratory mouse oral microbiome and (ii) the identification of three major murine-specific oral bacterial lineages, namely, Streptococcus danieliae (MOT10), Lactobacillus murinus (MOT93), and Gemella species 2 (MOT43), which is one of the novel, still-unnamed taxa. Of these, S. danieliae is of particular interest, since it is a major component of the oral microbiome from all strains of healthy and periodontally diseased laboratory mice, as well as being present in wild mice. It is expected that this well-characterized database should be a useful resource for in vitro experimentation and mouse model studies in the field of oral microbiology.

IMPORTANCE Mouse model studies are frequently used in oral microbiome research, particularly to investigate diseases such as periodontitis and caries, as well as other related systemic diseases. We have reported here the details of the development of a curated reference database to characterize the oral microbial community in laboratory and some wild mice. The genomic information and findings reported here can help improve the outcomes and accuracy of host-microbe experimental studies that use murine models to understand health and disease. Work is also under way to make the reference data sets publicly available on a web server to enable easy access and downloading for researchers across the world.

KEYWORDS 16S rRNA, *Streptococcus danieliae*, *Apodemus sylvaticus*, database, mouse models, *Mus musculus*, oral microbiology, oral microbiome

Mouse models play a crucial role in microbiome research, particularly in the investigation of the interactions between the host and the resident microbiota in health and disease (1, 2). Oral microbial population characterization in wild-type and mutant laboratory mouse strains have ranged from historical studies that involved identification of cultured isolates based on phenotypic characterization (3–6) to more recent molecular based studies focused on 16S rRNA gene sequencing (2, 7, 8). These studies **Citation** Joseph S, Aduse-Opoku J, Hashim A, Hanski E, Streich R, Knowles SCL, Pedersen AB, Wade WG, Curtis MA. 2021. A 16S rRNA gene and draft genome database for the murine oral bacterial community. mSystems 6:e01222-20. https://doi.org/10.1128/mSystems.01222-20.

Editor Nicola Segata, University of Trento Copyright © 2021 Joseph et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Susan Joseph, susan.m.joseph@kcl.ac.uk.

Received 25 November 2020 Accepted 26 January 2021 Published 9 February 2021

have all demonstrated the mouse bacterial community to have a simple and relatively stable composition, with a major proportion of cultivable components, particularly in the specific-pathogen-free (SPF) laboratory mouse strains.

Despite this inherent simplicity of the mouse oral microbiome, it has significant relevance as a model to investigate and understand the mechanisms of human oral diseases such as periodontitis (7, 9, 10). A primary reason for this has been the parallels observed in the nature of the initiation and development of disease in experimental studies, specifically the development of a dysbiotic microbiome (characterized by increased total microbial loads) and soft tissue destruction with gingival inflammation (2, 11, 12), which are often comparable to that seen among humans (13, 14). Also, since the microbial genera observed are often similar to the predominant ones seen in humans (15), these animal models are also useful for understanding host-microbiota interactions and homeostasis mechanisms in health and disease.

However, the lack of adequate information in the public domain about mouse oral bacterial isolates from various sources, as well as poorly curated 16S rRNA gene sequences in the public databases, may lead to non- or misidentification of the organisms, which could thereby affect the outcome of such studies. A host-specific curated reference database for murine oral microbial populations in the public domain would enable researchers to accurately, reliably, and consistently identify the bacterial communities in experimental samples. Databases provide an improved and more accurate characterization of bacterial communities and allow easy comparison of work from different laboratories.

Similar databases have already been developed to characterize the oral microbiome in humans (15, 16) and other mammalian host species such as cats and dogs (17, 18). More recently, researchers have characterized and generated a database for the mouse intestinal bacterial community (19, 20), as well as chronicled the collection of genes in the mouse gut metagenome (21).

Here, we report a curated and well-characterized database of the oral bacterial population in mice, with representative genome sequences, which should greatly benefit researchers as a reference for oral microbiome studies in health and disease using laboratory mouse models.

RESULTS

Assignment of mouse oral taxa. To date, 325 16S rRNA gene sequences from murine oral bacterial isolates have been analyzed and found to constitute 103 mouse oral taxa (MOT) (Table 1 and Fig. 1). Twelve of the assigned MOTs (12.36%) represent novel, previously unidentified species that need further characterization in order to be assigned a formal species name. Representative 16S rRNA gene sequences for these novel taxa have been submitted to the National Center for Biotechnology Information (NCBI) database and are available under accession numbers MN095260 to MN095271. The 16S rRNA gene sequences for all the isolates analyzed in this study are available to download under accession numbers MW175535 to MW175859.

Diversity of the murine oral bacterial community. The mouse oral taxa are distributed across four bacterial phyla (Fig. 1): *Firmicutes* (54 taxa), *Proteobacteria* (27 taxa), *Actinobacteria* (14 taxa), and *Bacteroidetes* (8 taxa). The *Firmicutes* phylum, having the greatest number of taxa, is represented by species of the *Streptococcus, Staphylococcus, Lactobacillus, Gemella, Enterococcus, Aerococcus, Jeotgalicoccus, Granulicatella, Facklamia, Dubosiella,* and *Ileibacterium* genera. *Proteobacteria* are comprised of members of the *Enterobacter, Klebsiella, Shigella, Escherichia, Pasteurella, Providencia, Proteus, Actinobacillus, Acinetobacter, Neisseria, Rodentibacter, Rhodanobacter,* and *Devosia* genera. The *Bacteroidetes* phylum comprises the *Bacteroides, Parabacteroides, Porphyromonas, Helicobacter, Muribaculum,* and *Dysgonomonas* genera, while *Actinobacteria* are represented by the *Micrococcus, Sanguibacter, Microbacterium, Rothia, Corynebacterium, Actinomyces, Cutibacterium,* and *Turicella* genera. At the species level, the species *Streptococcus danieliae* MOT10 was most frequently observed among the samples tested. The periodontal pathogen *Porphyromonas gingivalis,* albeit never isolated in the laboratory

TABLE 1 Details of bacterial species and MOTs included in the murine oral microbiome database^a

Taxonomy ID	Species ID	Type strain	16S rRNA gene accession no.	Source host
MOT01	Staphylococcus xylosus	ATCC 29971	D83374	Mus musculus/Apodemus sylvaticus
MOT02	Staphylococcus saprophyticus	ATCC 15305	NR 115607	Mus musculus/Apodemus sylvaticus
MOT03	Staphylococcus lentus	ATCC 29070	D83370	Mus musculus/Apodemus sylvaticus
MOT04	Staphylococcus araenteus	MSHR1132	FR821777	Mus musculus
MOT05	Staphylococcus sciuri	DSM 20345T	A 1421446	Mus musculus/Apodemus sylvaticus
MOT06	Staphylococcus epidermidis	ATCC 14990	D83363	Mus musculus
MOT07	Staphylococcus warperi	ATCC 27836	137603	Mus musculus
MOTOR	Staphylococcus nepalensis	DSM 15150	A 1517414	Mus musculus/Apodemus sylvaticus
MOTO9	Staphylococcus arlettae	ΔΤ((43957	4B009933	Mus musculus/Apodemus sylvaticus
MOT10	Strantococcus danialiaa	DSW 22222	60456229	Mus musculus
MOT11	Streptococcus acidominimus	LMC 17755	17086060	Mus musculus
MOT12	Streptococcus species 1		MN1095260	Mus musculus
MOT12	Streptococcus species 1		MN095260	Mus musculus
MOT14	Streptococcus species 2		MN095267	Anodomus sylvaticus
MOT14 MOT15	Streptococcus species 3		MN005262	Apodemus sylvaticus
MOT16	Lactobacillus taiwapansis	PCPC 17755	EL1497510	Mus musculus
MOT10 MOT17	Lactobacillus animalis	NRPC 15882	AB326350	Mus musculus/Apodomus sylvaticus
MOT19	Comolla palaticanis	CCUC 20490	X17290	Mus musculus
MOT10	Chicolla flovnori	ATCC 20002	V06062	Mus musculus
MOTIO	Snigena nexnen	ATCC 29905	A90905	Mus musculus
MOT20			AB012212	Mus musculus
MOTZI	Enterococcus gainnarum	ATCC 49573	AF039900	Mus musculus
MOT22	Muribacter muris	NCTC 12432	AY362894	Mus musculus
MOT23	Aerococcus viridans	NCIC 8251	AB680262	Mus musculus
MOT24	Micrococcus aloeverae	DSM 27472	KF524364	Mus musculus
MOT25	Pasteurella species 1	1700 17000	MIN095264	Apodemus sylvaticus
MOT26	Acinetobacter johnsonii	ATCC 1/909	293440	Mus musculus
MOT2/	Parabacteroides goldsteinii	WAL 12034	AY9/40/0	Mus musculus
MOT28	Dysgonomonas mossii	CCUG 4345/	AJ319867	Mus musculus
MOT29	Bacteroides acidifaciens	JCM 10556	AB021164	Mus musculus
MOT30	Microbacterium paludicola	DSM 16915	AJ853909	Mus musculus
MOT31	Neisseria species 1		MN095265	Apodemus sylvaticus
MOT32	Granulicatella species 1		MN095266	Apodemus sylvaticus
MOT33	Gemella species 1		MN095267	Apodemus sylvaticus
MOT34	Escherichia fergusonii	ATCC 35469	AF530475	Mus musculus
MOT35	Enterococcus casseliflavus	ATCC 700327	AF039903	Mus musculus
MOT36	Aerococcus urinaeequi	ATCC 29723	D87677	Mus musculus
MOT37	Micrococcus yunnanensis	YIM 65004	FJ214355	Mus musculus
MOT38	Jeotgalicoccus nanhaiensis	JSM 077023	FJ237390	Mus musculus
MOT39	Citrobacter koseri	ATCC 27028	HQ992945	Mus musculus
MOT40	Rothia nasimurium	CCUG 35957	AJ131121	Mus musculus
MOT41	Proteus mirabilis	ATCC 29906	DQ885256	Mus musculus
MOT42	Sanguibacter inulinus	NCFB 3024	X79451	Mus musculus
MOT43	Gemella species 2		MN095268	Mus musculus
MOT44	Pasteurella species 2		MN095269	Apodemus sylvaticus
MOT45	Streptococcus species 5		MN095270	Apodemus sylvaticus
MOT46	Streptococcus cuniculi	CCUG 65085	HG793791	Apodemus sylvaticus
MOT47	Dysgonomonas oryzarvi	JCM 16859	AB547446	Mus musculus
MOT48	Escherichia coli	ATCC 11775	X80725	Mus musculus
MOT49	Enterobacter cloacae	ATCC 13047	AJ251469	Mus musculus
MOT50	Enterobacter species 1		MN095271	Mus musculus
MOT51	Lactobacillus johnsonii	ATCC 33200	AJ002515	Mus musculus
MOT52	Lactobacillus gasseri	ATCC 33323	AF519171	Mus musculus
MOT53	Micrococcus luteus	DSM 20030	AJ536198	Mus musculus
MOT54	Micrococcus endophyticus	DSM 17945	EU005372	Mus musculus
MOT55	Escherichia albertii	CCUG 46494	AJ508775	Mus musculus
MOT56	Sanguibacter suarezii	ATCC 51766	X79452	Mus musculus
MOT57	Sanguibacter keddieii	ATCC 51767	X79450	Mus musculus
MOT58	Staphylococcus aureus	ATCC 12600	L36472	Mus musculus
MOT59	Staphylococcus caprae	ATCC 35538	AB009935	Mus musculus
MOT60	Staphylococcus haemolyticus	ATCC 29970	X66100	Mus musculus
MOT61	Staphylococcus gallinarum	ATCC 35539	D83366	Mus musculus/Apodemus sylvaticus
MOT62	Staphylococcus vitulinus	ATCC 51145	AB009946	Mus musculus/Apodemus sylvaticus

(Continued on next page)

TABLE 1 (Continued)

Taxonomy ID	Species ID	Type strain	16S rRNA gene accession no.	Source host
MOT63	Streptococcus salivarius	ATCC 7073	AY188352	Mus musculus
MOT64	Streptococcus vestibularis	NCTC 12167	AY188353 Mus musculus	
MOT65	Enterobacter hormaechei	ATCC 49162	AJ508302	Mus musculus
MOT66	Enterobacter cancerogenus	ATCC 33241	Z96078	Mus musculus
MOT67	Enterobacter asburiae	ATCC 35953	AB004744	Mus musculus
MOT68	Enterobacter ludwigii	CCUG 51323	AJ853891	Mus musculus
MOT69	Enterobacter mori	LMG 25706	EU721605	Mus musculus
MOT70	Staphylococcus simiae	LMG 22723	AY727530	Mus musculus
MOT71	Staphylococcus capitis	ATCC 27840	L37599	Mus musculus
MOT72	Staphylococcus saccharolyticus	ATCC 14953	L37602	Mus musculus
MOT73	Staphylococcus pasteuri	ATCC 51129	AB009944	Mus musculus
MOT74	Staphylococcus hominis	ATCC 27844	X66101	Mus musculus
MOT75	Staphylococcus petrasii	CCUG 62727	JX139845	Mus musculus
MOT76	Staphylococcus devriesei	CCUG 58238	FJ389206	Mus musculus
MOT77	Staphylococcus succinus	ATCC 700337	AF004220	Mus musculus/Apodemus sylvaticus
MOT78	Staphylococcus cohnii	ATCC 29974	D83361	Mus musculus/Apodemus sylvaticus
MOT79	Staphylococcus equorum	ATCC 43958	AB009939	Mus musculus/Apodemus sylvaticus
MOT80	Staphylococcus fleuretti	ATCC BAA-274	AB233330	Mus musculus/Apodemus sylvaticus
MOT81	Staphylococcus stepanovicii	CCM 7717	GQ222244	Mus musculus/Apodemus sylvaticus
MOT82	Shigella dysenteriae	ATCC 13313	X96966	Mus musculus
MOT83	Actinomyces bowdenii	DSM 15435	AJ234039	Wild Mus musculus
MOT84	Providencia alcalifaciens	ATCC 9886T	AJ301684	Wild Mus musculus
MOT85	Providencia rustigianii	DSM 4541	AM040489	Wild Mus musculus
MOT86	Turicella otitidis	DSM 8821	X73976	Mus musculus
MOT87	Bacteroides thetaiotaomicron	NCTC 10582	NR_074277	Mus musculus
MOT88	Klebsiella oxytoca	ATCC 13182	AF129440	Mus musculus
MOT89	Klebsiella pneumoniae	ATCC 13883	X87276	Mus musculus
MOT90	Klebsiella variicola	DSM 15968	AJ783916	Mus musculus
MOT91	Corynebacterium stationis	DSM 20302	FJ172667	Mus musculus
MOT92	Facklamia tabacinasalis	ATCC 700838	Y17820	Mus musculus
MOT93	Lactobacillus murinus	ATCC 35020	AJ621554	Mus musculus
MOT94	lleibacterium valens	DSM 103668T	NR_156909	Mus musculus
MOT95	Rhodanobacter glycinis	NBRC 105007	EU912469	Mus musculus
MOT96	Rodentibacter pneumotropicus	ATCC 35149	M75083	Mus musculus
MOT97	Dubosiella newyorkensis	DSM 103457T	NR_156910	Mus musculus
MOT98	Helicobacter ganmani	CCUG 43526	AF000221	Mus musculus
MOT99	Muribaculum intestinale	DSM 28989	KR364784	Mus musculus
MOT100	Porphyromonas gingivalis	ATCC 33277	AF414809	Mus musculus
MOT101	Devosia riboflavina	ATCC 9526	AJ549086	Mus musculus
MOT102	Cutibacterium acnes	ATCC 6919	X53218	Mus musculus
MOT103	Corynebacterium mastitidis	DSM 44356	Y09806	Wild Mus musculus

^aAccession numbers are provided for 16S rRNA gene sequences of the type strains of named species.

from the murine swab samples, was identified among the amplicon sequencing data of the 16S rRNA gene. The species has been observed in the wild mouse species and occasionally in experimental SPF laboratory mice, but never in healthy, untreated SPF mice.

Laboratory versus wild mouse oral bacterial community. The SPF laboratory mice included in this study represented diverse background strains (C57BL/6J, C3H/Orl, CD-1, BALB/c) and were also obtained from a range of diverse sources (commercially purchased, in-house colonies, conventionalized from germfree mice, and genetic knockouts). In addition, samples were also collected from the formerly wild wood mouse *Apodemus sylvaticus* and the wild house mouse *Mus musculus domesticus*. Beta-diversity analyses of the oral microbial populations of the sampled mice (Fig. 2) showed distinct separation in the clustering of all three groups of mice. However, a number of shared species have also been observed between them, including *Lactobacillus murinus* (MOT93) and *Streptococcus danieliae* (MOT10) (Table 1).

Culture versus 16S rRNA gene community profiling. Custom reference data sets for community profiling analysis were constructed using the current version of the database and used for data analysis. Analysis of the Illumina MiSeq amplicon sequencing data (the V1-V2 region of the 16S rRNA gene) in SPF mouse samples using the

FIG 1 Taxonomic diversity in the murine oral microbiome database. The maximum-likelihood tree describes the phylogenetic relationships between the 103 mouse oral taxa (MOTs) identified in the murine oral microbiome database. Black asterisks indicate the MOTs of novel, previously unidentified species. Phylum clusters are color coded: *Firmicutes* (red), *Proteobacteria* (green), *Bacteroidetes* (blue), and *Actinobacteria* (orange).

custom reference data set revealed that 98% of the total number of reads could be assigned to species level. Further comparative analysis of culturing data with this amplicon sequencing data set revealed a significant consensus in the SPF mouse samples, with all of the cultured species being represented at comparable levels with the next-generation sequencing (NGS) data (Fig. 3). Among the wild *Mus musculus domesticus* samples, 95% of the reads were identified to the species level using the custom reference data set, even though very little consensus has been observed with the culturing data in terms of abundance of individual species (Fig. 4). This could be explained by the fact that the species that show significantly higher abundance in the NGS data set (*Muribacter muris, Neisseria* species 1, and *Porphyromonas gingivalis*) are

FIG 2 Beta-diversity analyses of the oral microbiome of various mouse species. Beta-diversity analyses of oral microbial populations of SPF laboratory mice (green), wild *Mus musculus domesticus* mice (blue), and wood mice *Apodemus sylvaticus* (red) using the 16S rRNA gene amplicon community data targeting the V1-V2 region were performed.

predominantly slow growers and therefore could have been missed being detected in the 48-h culturing protocol followed in this study.

In the samples from the formerly wild wood mouse *Apodemus sylvaticus*, the proportion of reads positively identified using the custom data set fell to 83%, even though a higher consensus between culturing and NGS was observed compared to the wild *Mus musculus domesticus*, despite the increased diversity (Fig. 5).

Current versions of the reference data sets have been constructed for both the mothur and DADA2 pipelines and are available to download at https://figshare.com/s/ 2470f05ab77cdf40b2f8.

Mouse oral bacterial genomes. Draft genomes of 55 murine oral bacterial isolates have been generated, sourced from all the mouse groups included in this study (Table 2). Representative genome sequences have been uploaded to the NCBI bacterial genome database and are publicly available at NCBI BioProject PRJNA671681. After assembly, the genomes had a mean contig number of 135 (\pm 134) and GC% ratios ranging from 28 to 73%.

Predominant bacterial genera in laboratory mice. The following three genera were found to be of particular interest due to their presence in a wide range of samples tested.

FIG 3 Relative abundances in the SPF laboratory mice (n = 13). We compared oral microbial population analyses in three background strains of SPF mice by laboratory culture (red) and Illumina MiSeq 16S rRNA gene amplicon sequencing (green) amplifying the V1-V2 region of the 16S rRNA gene. The amplicon sequencing data were analyzed using DADA2 v1.8 against a custom-made taxonomy reference data set from this database. The top 10 most relatively abundant taxa identified after normalization of counts are listed.

(i) *Streptococcus. S. danieliae* MOT10 was the most commonly detected species in all SPF laboratory mouse groups from multiple sources and mouse strains (Fig. 6A). This species was also isolated from the wild *Mus musculus domesticus. Streptococcus* species 5 MOT45 was isolated from the wood mouse *A. sylvaticus* (Fig. 5) and was found to be very closely related to, but distinct from, *S. danieliae* (16S rRNA gene sequence similarity, 98.4%) forming a murine *S. danieliae* cluster.

Some isolates of *S. acidominimus* MOT11 were observed in a group of SPF mice belonging to the BALB/c strain, whereas a few novel streptococcal species were also isolated in single occurrences (*Streptococcus* species 1, 2, and 3; MOTs 12 to 14).

(ii) Lactobacillus. With only two exceptions, all of the lactobacilli in mice were identified as *L. murinus* MOT93 (Fig. 6B). The two exceptions belonged to the *L. taiwanensis-gasseri-johnsonii* cluster at >99% identity and could not be distinguished based on the 16S rRNA gene sequence analysis. *In silico* DNA-DNA hybridization gene sequence analysis identified them as *L. johnsonii* MOT51 at 72.1% genome identity.

(iii) *Gemella*. All *Gemella* isolates from laboratory mice were found to belong to a novel, as yet unnamed, species, *Gemella* species 2 MOT43 (Fig. 6C). The nearest phylogenetic neighbor is the canine oral species, *Gemella palaticanis* at 97.4% 16S rRNA gene sequence identity. Another single, novel *Gemella* isolate was observed in *A. sylvaticus* wood mice and designated *Gemella* species 1 MOT33.

DISCUSSION

We report here the details of a curated murine database to represent the diversity of the oral microbiome in laboratory and wild mouse populations.

The low diversity of the mouse oral bacterial community, especially in SPF laboratory mice, has particularly stood out in this characterization. The presence of such a

FIG 4 Relative abundances in the wild house mouse *Mus musculus domesticus* (n = 8). We compared oral microbial population analyses in the wild house mouse *Mus musculus domesticus* by laboratory culture (red) and Illumina MiSeq 16S rRNA gene amplicon sequencing (green) amplifying the V1-V2 region of the 16S rRNA gene. The amplicon sequencing data were analyzed using DADA2 v1.8 against a custom-made taxonomy reference data set from this database. The top 10 most relatively abundant taxa identified after normalization of counts are listed.

small and specifically targeted population makes accurate species level identification especially significant for improving the outcomes of studies. In addition, the collection of draft genomes of the representative MOTs from the database is also of great benefit for microbial population studies in mice. This repository of genomes should enable the generation of quality reference data sets for metagenomic and metatranscriptomic analyses of mouse-based oral studies.

A comparative analysis of the culture and 16S rRNA gene community profiling data has further confirmed the low diversity of the lab mouse oral microbiome (see Fig. S1 in the supplemental material), which is dominated by four species-level taxa. We have reported here only a representative subset of the samples we have sequenced in order to demonstrate the development of the database. However, over the course of multiple experimental studies, we have shown the consistency in the results of these population analyses (2, 7). The diversity of oral species-level taxa, in comparison, was found to be higher in the wild mouse species. Such variations in the microbial diversity and load within host species has been reported in the gut microbiome of other organisms and has largely been attributed to the influence of diet and environment (22, 23).

Another observation of this study has been the variations observed between different strains of the laboratory mice; we have previously also observed this between batches of the same strain of mice obtained from commercial sources (unpublished data), which has also been reported in some older studies (24). Recently, Abusleme et al. also reported the variations observed in the oral microbial communities in C57BL/6 mice purchased from two major commercial animal suppliers and the increased stability of a particular type of population when the mice were cohoused (8).

FIG 5 Relative abundances in the wood mouse *Apodemus sylvaticus* (n = 16). We compared oral microbial population analyses in the formerly wild wood mouse *Apodemus sylvaticus*, sampled from two sources (sets 1 and 2), by laboratory culture (red) and Illumina MiSeq 16S rRNA gene amplicon sequencing (green) amplifying the V1-V2 region of the 16S rRNA gene. The amplicon sequencing data were analyzed using DADA2 v1.8 against a custom-made taxonomy reference data set from this database. The top 10 most relatively abundant taxa identified after normalization of counts are listed.

This raises a very important issue of having a well-curated reference database, as well as internal controls, to ensure accuracy in results in microbiome studies.

Among the three predominant host-specific MOTs identified, S. danieliae MOT10 is of particular interest due to its dominance of the oral bacterial community in the SPF laboratory mice. A recently proposed species of the Streptococcus genus, S. danieliae MOT 10 was originally described based on a murine cecal isolate for which the authors suggested an oral/upper respiratory tract origin (25). There have been few other reports of the organism so far (26-28), all of them of murine origin. The organism has also been reported to be one of the key drivers in the establishment of the oral microbial community in laboratory SPF mice after the eruption of teeth (8). Gemella species 2 has been isolated from oral samples of multiple strains of laboratory mice and needs further characterization to be taxonomically identified as an official bacterial species. Of these three species, L. murinus is the only species that was part of the Altered Schaedler Formula, the community of microbes that were used to originally colonize gnotobiotic mice to develop SPF laboratory mice as we know them today (29, 30). Similar examples of host specificity have also been reported in other mouse microbiomes, including the colonization of segmented filamentous bacteria (31) and Muribaculaceae (19) in the mouse gut microbiome. This specificity also strongly indicates to the phenomenon of host-microbe coevolution and fitness characteristics (32).

In addition, there has been an increasing interest in recent times in the relevance of wild rodent models in research (33, 34), particularly for understanding natural progressions of certain diseases in relation to the microbiome. A study involving microbial transfer of wild mice into laboratory mice has demonstrated the role of the natural or

TABLE 2 Details of the draft microbial genomes sequenced as part of the development of the murine oral microbiome database^a

Sample ID	Species ID		Total length (bp)	GC%	Source	Accession no
19428wA1_WT6	Staphylococcus xylosus	MOT01	2806698	32.68	SPE C3H/Orl	IADGI 000000000
19428wB1_WM06	Staphylococcus saprophyticus	MOT02	2920674	32.00	Anodemus sylvaticus	
3 3BalbC2O2 S3	Staphylococcus Japrophyticus	MOT03	2925394	32.36	SPE BALB/C	JADGI T000000000
19428wC1 HT5	Staphylococcus lentus	MOT03	2910603	31.73	SPE C3H/Orl	JADGI F000000000
19428wG1_AF2	Staphylococcus lentus	MOT03	2856564	31.81	SPE C57BL/61	
ACT.1	Staphylococcus sciuri	MOT05	2737620	32.5	SPE C3H/Orl	JADGMB00000000
19428wF1_BL01	Staphylococcus sciuri	MOT05	2833136	32.42	SPE C57BL/61	
19428wF1_P912	Staphylococcus warneri	MOT07	2628448	32 57	SPE C3H/Orl	
19428wH1_IOV5	Staphylococcus arlettae	MOT09	2600982	33.35	SPE C3H/Orl	JADGMC00000000
1 1BalbC102 S1	Streptococcus danieliae	MOT10	1356823	44.6	SPE BALB/c	IADGI V00000000
STR 1	Streptococcus danieliae	MOT10	1969143	44 5	SPE C3H/Orl	
CCW3111	Streptococcus danieliae	MOT10	1616067	45.03	SPE C57BL/61	
5 7CXCR22O2 S5	Streptococcus danieliae	MOT10	2927540	43 29	SPE BALB/c	
19428w/B2_HT4	Streptococcus acidominimus	MOT11	2221310	42 77	SPE C3H/Orl	
6 8CXCR2302 S6		MOT11	2509022	43.7	SPE BALB/c	
19428w/C2_LYSM12	Streptococcus species 1	MOT12	2417981	40 73	SPE C3H/Orl	
19428wD3 AN2	Streptococcus species 7	MOT12 MOT13	2374918	40.75	SPE C3H/Orl	
CIP106318T 1	Gemella palaticanis	MOT18	1720464	77.55	Culture collection type strain	
10428w/H2 1568	Shigalla flavnari	MOT10	5100000	50 71	SPE C3H/Orl	
19428W12_1508	Enterococcus faecalis	MOT20	6434324	30.71		
10428w/B3_C2	Enterococcus adlinarum	MOT20	3661725	J9.02 40.12		
FNT 1	Enterococcus gallinarum	MOT21	3703521	40.12		
10/28//C3 W/T12	Muribactor muris	MOT22	2520282	40		
7 18CYCB221ANO S7	Muribacter muris	MOT22	2520202	44.95	SPE BALB/c	
10420WE2 DK2	Microsoccus alogyarao	MOT22	2555511	43.90		
19420WE5_DK2	Nicrococcus aloeverae	MOT24	2559004	72.95	SPF C57BL/0J	
19420WF5_WW05	Pasteurena species i	MOT25	2204212	39.91		
19420WG5_F14		MOT27	4110280	43.44		
19420WE4_PII	Dysgonomonas mossii Bastaraidas asidifacians	MOT20	4110200	37.31		
0_33U35_C5_30	Bacteroides acidifacions	MOT29	5220201	44.5		
19420WD5_P2510	Microbactorium naludicala	MOT29	2800652	45.20		
19420WA4_P1012	Microbacterium paluaicola	MOT30	2609052	70.55	Anodomus sulvatisus	
19426WD4_WF04	Cranulicatella species 1	MOT22	2000001	22.29	Apodemus sylvaticus	
19426WC4_WWU1	Microsoccus yunnanonsis	MOT27	2005/5/	33.14 72.07		
19428WG4_IOV6		MOT37	24/3/32	/5.0/		
19428WE5_W307	Gitrah astar kasari	MOT38	2244448	41.43	SPF C57BL/0J	
19428WH4_BL23	Citrobacter Koseri	MOT39	4821534	53.81	SPF C57BL/6J	
19426WA5_IIII0III_51	Rothia hasimunum	MOT40	2077034	39.02		
19428WB5_Imom_SW	Proleus mirabilis	MOT41	3939005	38./9	SPF C5/BL/0J	
DSIMITUUU999.1	Sangulbacter mullitus	MOT42	4257609	70.05	Culture Collection; Type Strain	
19428WG2_W12a	Gemella species 2	MOT43	1404407	30.33	SPF C3H/Orl	
GH3.1	Gemella species 2	MOT43	1503132	28.2	SPF C3H/Orl	
GLI.I	Gemena species 2	MOT45	1299399	30.25	SPF C3H/OFI	
19428WA2_WIM07	Streptococcus species 5	MOT45	1/14/30	41.26	Apodemus sylvaticus	JADGLN0000000
19428WD2_WM131	Streptococcus cuniculi	MOT46	240/100	42.7	Apodemus sylvaticus	
19428WD4_HM13	Escherichia coli	MOT48	5021976	50.62	SPF C3H/Orl	
19428WE2_CC3	Lactobacillus johnsonii	MOT51	1903680	34.48	SPF C3H/Orl	JADGKX00000000
4_5BalbC4O2_54	Staphylococcus aureus	MOT58	2825/68	33.69	SPF BALB/C	JADGLS00000000
19428WD1_P36	Staphylococcus aureus	MOT58	2692071	32.75	SPF C3H/Orl	JADGLA00000000
SIF.1	Staphylococcus aureus	MO158	2699934	32.8	SPF C3H/Orl	JADGKH00000000
GW2.1	Staphylococcus capitis	MOT71	2450948	32.8	SPF C3H/Orl	JADGMA00000000
WMus004.1	Actinomyces bowdenii	MOT83	3174558	71.17	Wild Mus musculus domesticus	JADGKF000000000
WMus003.1	Providencia alcalifaciens	MOT84	3909646	41.88	Wild Mus musculus domesticus	JADGLZ000000000
2_2BalbC1BO2_S2	Lactobacillus murinus	MOT93	2341418	40.54	SPF BALB/c	JADGLU00000000
19428wF2_HT12	Lactobacillus murinus	MOT93	2254694	39.68	SPF C3H/Orl	JADGME00000000
LAC.1	Lactobacillus murinus	MOT93	2089346	40.1	SPF C3H/Orl	JADGKI00000000

^aThe 55 draft genomes are available to download from BioProject (PRJNA671681), while the individual accession numbers have been provided in the table itself.

wild microbiota in disease resistance and protective immune mechanisms (35). Further, a more recent study by the same group also showed that laboratory mice bred from such wild mice (referred to as wildlings) exhibited the elevated microbial diversity of the parent wild mice accompanied by a stability to perturbations such as antibiotics and diet, implying that a natural or wild immunity could be more

0.02

FIG 6 Phylogenetic diversity of the predominant bacterial genera in laboratory mice. Maximum-likelihood phylogenetic trees represent the diversity in murine oral bacterial isolates for the three most abundant genera: *Streptococcus* (A), *Lactobacillus* (B), and *Gemella* (C). Each tree has been rooted with an outlier and constructed using 100 bootstrap replicates. The branches in green refer to the taxonomic IDs in each genus of the murine isolates from this study.

comparable to that seen in the diversity of human illnesses (36). Hence, we considered it pertinent to include the bacterial taxa from some of these wild mouse samples (formerly wild wood mice [*Apodemus sylvaticus*] and wild *Mus musculus domesticus* mice) in the database, in addition to cultured oral isolates which could be used for *in vivo* and *in vitro* experimentations in the future. We fully appreciate that at present we

report this from a limited number of sources and therefore representing only a fraction of the actual diversity observed in the wild, but we have plans to further expand this resource with the inclusion of more diverse sources based on availability.

It is also pertinent here to point out the presence of certain taxa in this murine oral microbial population potentially of intestinal origin, which could be attributed to the coprophagic behavior in murine populations. Compared to the mouse intestinal bacterial collection database, we notice the presence of some shared taxa with our database, particularly species belonging to the order *Lactobacillales* (19). Equally, oral bacteria might also be found in the gut, particularly lactobacilli because of their aciduric nature. However, despite this overlap, the oral microbiome in mice remains distinct, far simpler, and less diverse than in the murine gut microbiome (see Fig. S2 and S3), as we have demonstrated by amplicon sequencing and characterization of a limited subset of murine fecal samples.

It is necessary to stress that this study primarily describes the development of a framework for this murine oral microbial database, which by its nature remains a work in progress. Work is under way with collaborators at the Forsyth Institute, Cambridge, MA, to make the final version of this database publicly available as the Mouse Oral Microbiome Database (MOMD), on the lines of the Human Oral Microbiome Database (HOMD) (16). This will enable the addition of sequences from other researchers in the field; these will be curated and made publicly available. Meanwhile, the cultured isolates analyzed for this database can be made available to interested researchers on request by contacting the authors. Further work is also being undertaken using sequence analysis and cloning to characterize the uncultured as well as the identified but unnamed novel species, including their taxonomic nomenclature, for the further expansion of the database.

We hope that this should enable researchers across the world to access and develop suitable reference data sets for both culture and culture independent studies of the murine oral microbiome.

MATERIALS AND METHODS

Mouse sampling and ethics. All animal experiments were conducted in accredited facilities in accordance with the UK Animals (Scientific Procedures) Act 1986 (Home Office license number 7006844). Fieldwork for the wild *Mus musculus domesticus* work was approved by the Animal Welfare Ethical Review Body (AWERB) at the Department of Zoology, University of Oxford.

Conventional SPF C3H/Orl and BALB/c mice were maintained in individually ventilated cages (IVCs) at the animal care facilities of Queen Mary University of London. Conventional SPF C57BL/6J mice were maintained in IVCs at the animal care facilities of King's College London. SPF C57BL/6J and CD-1 mice were also purchased commercially from Charles River Laboratories UK. In all, 191 SPF mice have been sampled over the course of 6 years for various experimental studies, and isolates obtained from the swabbing of these mice have been used for the analysis and development of this database.

One set (set 1) of formerly wild, now laboratory-bred, *A. sylvaticus* wood mice sampled in 2014 (n = 20) was originally established from wild wood mice that were live trapped from the UK woodlands and are now housed at the University of Edinburgh. Wild wood mice sampled in January 2017 (n = 39) were housed at the facilities at Fera Science (Sand Hutton, York), and the colony began with wild-caught wood mice from the grounds of the Institute; these animals had been laboratory-bred for 20 years and are referred to as set 2.

Wild house mice (*Mus musculus domesticus* [n=21]) were sampled on the island of Skokholm in Wales, UK. These mice were captured temporarily in traps, sampled, and then released back into the wild.

Bacterial culturing. The murine oral cavity was swabbed for 30 s, using sterile fine-tip rayon swabs (VWR International), while the animal was held in a scruff. The swab was then placed in a tube containing 100 μ l of reduced John's transport medium (see Text S1 in the supplemental material). Swabs from wild mice were stored at -20° C before being transported on ice to the laboratory. Serial dilutions of the suspension were spread onto blood agar plates containing 5% defibrinated horse blood (TCS Biosciences, UK) and incubated for aerobic and anaerobic (80% N₂, 10% H₂, and 10% CO₂) growth at 37°C for 48 h in a Don Whitley anaerobic chamber. The CFUs of predominant cultivable bacteria on each plate were counted. On an average, four to six different colony types could be identified on each blood agar plate. Every different colony morphology type observed was isolated and purified by subculture by restreaking the samples twice on fresh blood agar plates. Once the purity was established, the cultured isolate was cryopreserved for storage in Microbank bead tubes (Prolab Diagnostics) in duplicate. Briefly, a loopful of pure culture was aseptically transferred into the

manufacturer's cryopreservative liquid containing beads, the tube was inverted four to five times for emulsification and allowed to stand for 2 min. Any excess liquid was aseptically removed, and the bead tube was then frozen at -70° C.

165 rRNA gene amplification and sequencing. Genomic DNA for each isolated bacterial strain was extracted by using a GenElute bacterial DNA kit (Sigma-Aldrich), following the Gram-positive protocol according to manufacturer's instructions, and used as a template for PCR. The 16S rRNA gene in the bacterial strains was amplified using modified versions of the universal 27FYM and 1492R 16S rRNA gene primers with built-in redundancies (see Text S2), using Phusion Green Hot Start II High Fidelity PCR Master Mix (Thermo Fisher Scientific). PCR conditions were as follows: initial denaturation at 98°C for 30 s; followed by 25 cycles of 98°C for 10 s, 47°C for 45 s, and 72°C for 30 s; followed in turn by a final extension at 72°C for 10min. The amplified products were purified using Macherey-Nagel NucleoSpin gel and PCR Clean-Up (Fisher Scientific), followed by Sanger sequencing using the universal M13 primers M13 uni(-21) and M13 rev(-29) (Eurofins Genomics). For certain samples, internal primers for the 16S rRNA gene (342R, 357F, 519R, 907R, 926F, 1100R, 1114F, and 1392R) were also used for sequencing to improve the sequence coverage accuracy. All primer sequences have been provided in Text S2.

Allocation of mouse oral taxa. The forward and reverse sequences for each sample were assembled using the CAP3 assembly tool (37). Sequences were identified by BLAST interrogation of the NCBI nucleotide database. A sequence identity threshold of 98.5% was used for assignation to species, which is consistent with current recommendations (38) and the value used previously for the related human and canine oral databases (17, 18). Sequences were aligned by means of the CLUSTALW algorithm in Bioedit (39), and maximum-likelihood phylogenetic trees for each genus were constructed using MEGA7 (40) with 100 bootstrap replicates. Each species-level taxon was assigned an MOT number. For taxa that were not identified as validly proposed species at 98.5% identity, a novel species-level designation was assigned as "Genusname_species1," and a new MOT number was allocated. For isolates that could not be definitively distinguished by 16S rRNA gene sequence analysis, each of the possible matching species was assigned a unique MOT ID in order to ensure maximum diversity capture. Assignment of taxa was also carried out using 16S rRNA gene amplicons selected from the MiSeq sequencing data that were not assigned an ID based on the existing reference database and then following the same BLAST protocol as described above. Visualization and annotation of the final phylogenetic tree of the identified 103 MOTs was performed using the web interface of iTOL v4 (41).

MiSeq 16S rRNA gene sequencing library preparation and DNA sequence analysis. Whole genomic DNA was extracted from the above swabs using the DNeasy PowerSoil kit (Qiagen) according to the manufacturer's instructions. Cell lysis was performed in the PowerBead tubes provided with the kit by bead beating on a vortex at maximum speed for 20 min. PCRs were performed with Phusion Green Hot Start II High Fidelity PCR Master Mix (Thermo Scientific) targeting the V1-V2 variable regions of the 16S rRNA gene using fusion primers 27F-YM (AGAGTTTGATYMTGGCTCA) and 338R-R (TGCTGCCTCCCGTAGRAG) combined with MiSeq adaptors and barcodes to achieve a double indexing system. The PCR conditions were as follows: initial denaturation for 5 min at 95°C; followed by 25 cycles of 95°C for 45 s, 53°C for 45 s, and 72°C for 45 s; followed in turn by a final extension of 72°C for 5 min. The amplified PCR products were cleaned and normalized in equimolar amounts by using a Sequal Prep normalization plate kit (Thermo Fisher Scientific). Extraction kit controls and PCR negative controls were included in the amplification plates, as well as sequencing pools. Pooled amplicons were sequenced at the Barts and the London Genome Centre using an Illumina MiSeq 2×250 flow cell for paired-end sequencing. The generated reads were quality checked, filtered, trimmed, denoised, dereplicated, and assembled into amplicon sequence variants (ASVs) using the DADA2 v1.8 pipeline (42). The assembled ASVs were then assigned taxonomy at the genus and species level using a custom-formatted reference database constructed using the taxa included in this database. Compared to the mean of total reads in the murine swab samples, the negative controls generated a very low percentage of reads (<0.1% in the PCR control and <1% in the kit control). Once this was confirmed, the negative samples were eliminated from further analyses. The generated ASV counts were normalized for sequencing depth by using the median of ratios method in the DeSeq2 (43) package in R, followed by beta-diversity and relative abundance analyses of the microbial population. Graphical analysis and plots were created using the R packages phyloseq (44) and ggplot2 (45). The raw sequencing reads have been uploaded to the NCBI SRA database (accession no. PRJNA642845).

Bacterial genome sequencing. A selection of bacterial isolates from the database were cultured, purity checked, and genomic DNA extracted using the GenElute Bacterial Genomic DNA kit (Sigma-Aldrich). These isolates are representatives of the cultured microbial population observed in various murine studies and include multiple candidates of the more commonly observed *Streptococcus*, *Lactobacillus*, and *Staphylococcus* species-level taxa. Genomic DNA libraries were prepared by MicrobesNG UK using Nextera XT Library Prep kit (Illumina, San Diego, CA) and sequenced on the Illumina HiSeq using a 250-bp paired-end protocol. Reads were adapter trimmed using Trimmomatic 0.30 with a sliding window quality cutoff of Q15 (46). *De novo* assembly was performed on samples using SPAdes version 3.7 (47), and contigs were annotated using Prokka 1.11 (48). Further genome analysis and annotation was also performed using the RAST server (https://rast.nmpdr.org/) (49). Phylogenetic distance and relatedness of certain isolates were determined using the genome-to-genome distance calculator, in the form of an *in silico* DNA-DNA hybridization (50).

Data availability. The 16S rRNA gene V1-V2 region amplicon sequencing data from this study are available from the NCBI SRA database under accession no. PRJNA642845. Draft genome sequences of

representative murine oral bacterial isolates are available to download from NCBI BioProject no. PRJNA671681. 16S rRNA gene sequences of the novel, unnamed bacterial isolates from this study are available under NCBI accession numbers MN095260 to MN095271. The 16S rRNA gene sequences for all the isolates analyzed in this study are available under NCBI accession numbers MW175535 to MW175859. Custom taxonomy reference data sets of the database for NGS analysis using mothur and DADA2 pipelines are available to download from https://figshare.com/s/2470f05ab77cdf40b2f8.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. TEXT S1, DOCX file, 0.01 MB. TEXT S2, DOCX file, 0.01 MB. TEXT S3, DOCX file, 0.01 MB. TEXT S4, DOCX file, 0.01 MB. FIG S1, TIF file, 2.4 MB. FIG S2, TIF file, 1.5 MB. FIG S3, TIF file, 2.7 MB.

ACKNOWLEDGMENTS

This study was funded by the UKRI Medical Research Council (award MR/P012175/2). W.G.W. is supported by NIH-NIDCR (grant R37 DE016937). The wild *Mus musculus* work was funded by a NERC fellowship NEL011867/1 to S.C.L.K. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

We thank D. Randall and F. Filomena for providing access to their murine bacterial isolates for inclusion of data in this study. We thank Melanie Clerc at the University of Edinburgh and the staff at Fera for assistance in collecting the wood mouse samples.

S.J., W.G.W., and M.A.C. contributed to conception, design, data acquisition, and analysis and interpretation and drafted and critically revised the manuscript. J.A.-O. contributed to data acquisition, analysis, and interpretation and drafted and critically revised the manuscript. A.H., E.H., R.S., S.C.L.K., and A.B.P. contributed to data acquisition and critically reviewed the manuscript. All authors gave final approval and agree to be accountable for all aspects of the work.

We declare there are no competing interests.

REFERENCES

- Greer A, Irie K, Hashim A, Leroux BG, Chang AM, Curtis MA, Darveau RP. 2016. Site-specific neutrophil migration and CXCL2 expression in periodontal tissue. J Dent Res 95:946–952. https://doi.org/10.1177/ 0022034516641036.
- Payne MA, Hashim A, Alsam A, Joseph S, Aduse-Opoku J, Wade WG, Curtis MA. 2019. Horizontal and vertical transfer of oral microbial dysbiosis and periodontal disease. J Dent Res 98:1503–1510. https://doi.org/10.1177/ 0022034519877150.
- Marcotte H, Lavoie MC. 1997. Comparison of the indigenous oral microbiota and immunoglobulin responses of athymic (*nu/nu*) and euthymic (*nu/+*) mice. Oral Microbiol Immunol 12:141–147. https://doi.org/10.1111/j .1399-302x.1997.tb00370.x.
- Gadbois T, Marcotte H, Rodrigue L, Coulombe C, Goyette N, Lavoie MC. 1993. Distribution of the resident oral bacterial populations in different strains of mice. Microb Ecol Health Dis 6:245–251. https://doi.org/10 .3109/08910609309141333.
- Wolff LF, Krupp MJ, Liljemark WF. 1985. Microbial changes associated with advancing periodontitis in STR/N mice. J Periodontal Res 20:378–385. https://doi.org/10.1111/j.1600-0765.1985.tb00449.x.
- Trudel L, St-Amand L, Bareil M, Cardinal P, Lavoie MC. 1986. Bacteriology of the oral cavity of BALB/c mice. Can J Microbiol 32:673–678. https://doi .org/10.1139/m86-124.
- Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA. 2011. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10:497–506. https://doi.org/10.1016/j.chom.2011.10.006.

- Abusleme L, O'Gorman H, Dutzan N, Greenwell-Wild T, Moutsopoulos NM. 2020. Establishment and stability of the murine oral microbiome. J Dent Res 99:721–729. https://doi.org/10.1177/0022034520915485.
- Curtis MA, Zenobia C, Darveau RP. 2011. The relationship of the oral microbiotia to periodontal health and disease. Cell Host Microbe 10:302–306. https://doi.org/10.1016/j.chom.2011.09.008.
- Dutzan N, Kajikawa T, Abusleme L, Greenwell-Wild T, Zuazo CE, Ikeuchi T, Brenchley L, Abe T, Hurabielle C, Martin D, Morell RJ, Freeman AF, Lazarevic V, Trinchieri G, Diaz PI, Holland SM, Belkaid Y, Hajishengallis G, Moutsopoulos NM. 2018. A dysbiotic microbiome triggers T_H17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med 10:eaat0797. https://doi.org/10.1126/scitranslmed.aat0797.
- 11. Polak D, Wilensky A, Shapira L, Halabi A, Goldstein D, Weiss El, Houri-Haddad Y. 2009. Mouse model of experimental periodontitis induced by *Porphyromonas gingivalis/Fusobacterium nucleatum* infection: bone loss and host response. J Clin Periodontol 36:406–410. https://doi.org/10 .1111/j.1600-051X.2009.01393.x.
- Graves DT, Fine D, Teng Y-TA, Van Dyke TE, Hajishengallis G. 2008. The use of rodent models to investigate host-bacterium interactions related to periodontal diseases: rodent models for periodontal disease. J Clin Periodontol 35:89–105. https://doi.org/10.1111/j.1600-051X.2007.01172.x.
- Kirst ME, Li EC, Alfant B, Chi Y-Y, Walker C, Magnusson I, Wang GP. 2015. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol 81:783–793. https://doi.org/10.1128/AEM.02712-14.

- 14. Van Dyke TE, Bartold PM, Reynolds EC. 2020. The nexus between periodontal inflammation and dysbiosis. Front Immunol 11:511. https://doi .org/10.3389/fimmu.2020.00511.
- Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192:5002–5017. https://doi.org/10.1128/JB.00542-10.
- Chen T, Yu W-H, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. 2010. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010:baq013. https://doi.org/10.1093/database/baq013.
- Dewhirst FE, Klein EA, Bennett M-L, Croft JM, Harris SJ, Marshall-Jones ZV. 2015. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences. Vet Microbiol 175:294–303. https://doi.org/10.1016/j.vetmic.2014.11.019.
- Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, Buckley CMF, Davis IJ, Bennett M-L, Marshall-Jones ZV. 2012. The canine oral microbiome. PLoS One 7:e36067. https://doi.org/10.1371/journal.pone.0036067.
- Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, Bresciani A, Martínez I, Just S, Ziegler C, Brugiroux S, Garzetti D, Wenning M, Bui TPN, Wang J, Hugenholtz F, Plugge CM, Peterson DA, Hornef MW, Baines JF, Smidt H, Walter J, Kristiansen K, Nielsen HB, Haller D, Overmann J, Stecher B, Clavel T. 2016. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1:16131. https://doi .org/10.1038/nmicrobiol.2016.219.
- Liu C, Zhou N, Du M-X, Sun Y-T, Wang K, Wang Y-J, Li D-H, Yu H-Y, Song Y, Bai B-B, Xin Y, Wu L, Jiang C-Y, Feng J, Xiang H, Zhou Y, Ma J, Wang J, Liu H-W, Liu S-J. 2020. The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nat Commun 11:79. https://doi.org/10.1038/ s41467-019-13836-5.
- 21. Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, Li X, Long H, Zhang J, Zhang D, Liu C, Fang Z, Chou J, Glanville J, Hao Q, Kotowska D, Colding C, Licht TR, Wu D, Yu J, Sung JJY, Liang Q, Li J, Jia H, Lan Z, Tremaroli V, Dworzynski P, Nielsen HB, Bäckhed F, Doré J, Le Chatelier E, Ehrlich SD, Lin JC, Arumugam M, Wang J, Madsen L, Kristiansen K. 2015. A catalog of the mouse gut metagenome. Nat Biotechnol 33:1103–1108. https://doi .org/10.1038/nbt.3353.
- 22. Reese AT, Dunn RR. 2018. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9:e01294-18. https://doi.org/10 .1128/mBio.01294-18.
- Sanders JG, Lukasik P, Frederickson ME, Russell JA, Koga R, Knight R, Pierce NE. 2017. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol 57:705–722. https://doi.org/10.1093/icb/icx088.
- 24. Rodrigue L, Lavoie MC. 1996. Comparison of the proportions of oral bacterial species in BALB/c mice from different suppliers. Lab Anim 30:108–113. https://doi.org/10.1258/002367796780865853.
- 25. Clavel T, Charrier C, Haller D. 2013. *Streptococcus danieliae* sp. nov., a novel bacterium isolated from the caecum of a mouse. Arch Microbiol 195:43–49. https://doi.org/10.1007/s00203-012-0846-6.
- Benga L, Benten WPM, Engelhardt E, Köhrer K, Gougoula C, Sager M. 2014. 16S ribosomal DNA sequence-based identification of bacteria in laboratory rodents: a practical approach in laboratory animal bacteriology diagnostics. Lab Anim 48. https://doi.org/10.1177/0023677214538240.
- Hernández-Arriaga A, Baumann A, Witte OW, Frahm C, Bergheim I, Camarinha-Silva A. 2019. Changes in oral microbial ecology of C57BL/6 mice at different ages associated with sampling methodology. Microorganisms 7:283. https://doi.org/10.3390/microorganisms7090283.
- Chun J, Kim KY, Lee J-H, Choi Y. 2010. The analysis of oral microbial communities of wild-type and Toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol 10:101. https://doi.org/ 10.1186/1471-2180-10-101.
- Wymore Brand M, Wannemuehler MJ, Phillips GJ, Proctor A, Overstreet A-M, Jergens AE, Orcutt RP, Fox JG. 2015. The altered schaedler flora: continued applications of a defined murine microbial community. Ilar J 56:169–178. https://doi.org/10.1093/ilar/ilv012.
- Schaedler RW, Dubs R, Costello R. 1965. Association of germfree mice with bacteria isolated from normal mice. J Exp Med 122:77–82. https:// doi.org/10.1084/jem.122.1.77.

- Tannock GW, Miller JR, Savage DC. 1984. Host specificity of filamentous, segmented microorganisms adherent to the small bowel epithelium in mice and rats. Appl Environ Microbiol 47:441–442. https://doi.org/10 .1128/AEM.47.2.441-442.1984.
- Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818. https://doi.org/10.1038/nature06245.
- Maurice CF, Knowles SCL, Ladau J, Pollard KS, Fenton A, Pedersen AB, Turnbaugh PJ. 2015. Marked seasonal variation in the wild mouse gut microbiota. ISME J 9:2423–2434. https://doi.org/10.1038/ismej.2015.53.
- Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. 2015. The gut microbiota of wild mice. PLoS One 10:e0134643. https://doi.org/10.1371/ journal.pone.0134643.
- Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B. 2017. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13. https://doi.org/10.1016/j.cell.2017.09.016.
- 36. Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, Sarshad AA, Leonardi I, Collins N, Blatter JA, Han S-J, Tamoutounour S, Potapova S, Claire MBFS, Yuan W, Sen SK, Dreier MS, Hild B, Hafner M, Wang D, Iliev ID, Belkaid Y, Trinchieri G, Rehermann B. 2019. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365:eaaw4361. https://doi.org/10.1126/science.aaw4361
- Huang X, Madan A. 1999. CAP3: a DNA sequence assembly program. Genome Res 9:868–877. https://doi.org/10.1101/gr.9.9.868.
- Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol https://doi.org/10.1099/ijs.0.059774-0.
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98. Information Retrieval, Ltd, London, United Kingdom.
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054.
- Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi .org/10.1093/nar/gkz239.
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869.
- Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8.
- McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8: e61217. https://doi.org/10.1371/journal.pone.0061217.
- 45. Wickham H. 2016. ggplot2: elegant graphics for data analysis, 2nd ed. Springer, Cham, Switzerland.
- Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10 .1093/bioinformatics/btu170.
- 47. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https:// doi.org/10.1093/nar/gkt1226.
- Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. 2013. Genome sequencebased species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https://doi.org/10.1186/1471 -2105-14-60.