
Journal of Pathology Informatics 13 (2022) 100139

Contents lists available at ScienceDirect

Journal of Pathology Informatics

j ourna l homepage: www.e lsev ie r .com/ locate / jp i
Original Research Article
Empowering digital pathology applications through explainable knowledge
extraction tools
Stefano Marchesin a, Fabio Giachelle a, Niccolò Marini b, Manfredo Atzori b,c, Svetla Boytcheva d,
Genziana Buttafuoco e, Francesco Ciompi f, Giorgio Maria Di Nunzio a, Filippo Fraggetta e, Ornella Irrera a,
Henning Müller b, Todor Primov d, Simona Vatrano e, Gianmaria Silvello a,⁎

a Department of Information Engineering, University of Padua, Padua, Italy
b Information Systems Institute, University of Applied Sciences Western Switzerland, Delémont, Switzerland
c Department of Neuroscience, University of Padua, Padua, Italy
d Sirma AI, Bulgaria
e Pathology Unit Gravina Hospital Caltagirone ASP Catania, Italy
f Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
⁎ Corresponding author.
E-mail addresses: stefano.marchesin@unipd.it (S. Marche

http://dx.doi.org/10.1016/j.jpi.2022.100139
Received 16 August 2022; Received in revised form 6
Available online 15 September 2022
2153-3539/©2022TheAuthor(s). Published by Elsev
(http://creativecommons.org/licenses/by-nc-nd/4.0/
A B S T R A C T
A R T I C L E I N F O
Keywords:
Clinical practice
Digital pathology
Expert systems
Explainable AI
Knowledge extraction
Machine learning
Exa-scale volumes ofmedical data have been produced for decades. Inmost cases, the diagnosis is reported in free text,
encoding medical knowledge that is still largely unexploited. In order to allow decoding medical knowledge included
in reports, we propose an unsupervised knowledge extraction system combining a rule-based expert system with
pre-trained Machine Learning (ML) models, namely the Semantic Knowledge Extractor Tool (SKET). Combining
rule-based techniques and pre-trained ML models provides high accuracy results for knowledge extraction. This
work demonstrates the viability of unsupervised Natural Language Processing (NLP) techniques to extract critical in-
formation from cancer reports, opening opportunities such as data mining for knowledge extraction purposes, preci-
sion medicine applications, structured report creation, and multimodal learning.
SKET is a practical and unsupervised approach to extracting knowledge from pathology reports, which opens up
unprecedented opportunities to exploit textual and multimodal medical information in clinical practice. We also pro-
pose SKET eXplained (SKET X), a web-based system providing visual explanations about the algorithmic decisions
taken by SKET.
SKET X is designed/developed to support pathologists and domain experts in understanding SKET predictions,
possibly driving further improvements to the system.
Introduction

Exascale volumes of multimodal data have been produced for decades
in the biomedical domain. Biomedical data include patient information,
clinical data, biological laboratory data, bio-images, bio-signals, instrumen-
tal examinations, and genetic data.

Hundred of thousands of reports have been used to describe findings
leading to diagnoses, encoding vastmedical knowledge. Free-text reporting
is the standard for communicating the diagnosis, guiding patients’ treat-
ment, and other applications, such as cancer registries. Processing high vol-
umes of free-text reports, usually performed manually, is also required to
extract knowledge to train Machine Learning (ML) algorithms.

However, the manual analysis of data becomes an extremely time-
consuming process since reports vary widely between institutions, might
be written in languages other than English, contain noise, and do not
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present a standard structure. In this context, Natural Language Processing
(NLP) methods are central1–8 as they empower the efficient automatic pro-
cessing of thousands of clinical reports and the extraction of key informa-
tion for several downstream tasks, such as clinical note mining9,10 and
structuring,11 risk prediction,12 clinical decision-support,13 and precision
medicine retrieval.14

In the context of digital pathology, NLP techniques can drive notice-
able advances by exploiting the availability of textual pathology reports
paired with digital histopathology images (i.e., Whole Slide Images
(WSIs)) in clinical practice. WSIs are used as a gold-standard to diagnose
cancer cases and related diseases.15,16 Within WSIs, tissue patterns and
morphology vary depending on the image magnification level – enabling
different tasks such as detection, classification, or segmentation.17 How-
ever, the lack of training datasets containing pixel-wise annotations for
entire images18–20 limits the effectiveness of supervised ML models.21
ilvello).

tember 2022

Pathology Informatics. This is an open access article under the CC BY-NC-ND license

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpi.2022.100139&domain=pdf
http://dx.doi.org/10.1016/j.jpi.2022.100139
mailto:stefano.marchesin@unipd.it
mailto:gianmaria.silvello@unipd.it
Journal logo
http://dx.doi.org/10.1016/j.jpi.2022.100139
http://creativecommons.org/licenses/by-nc-nd/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/21533539
www.elsevier.com/locate/jpi


Table 1
Data size. For each medical center, we report the number of
diagnostic reports associated with each use-case. The “–”
symbol represents the lack of reports for a given use-case.

Colon Cervix Lung

AOEC 1704 1777 1902
RUMC 2065 2350 –

1 Access credentials for reviewing: demo/demo.
2 https://www.cap.org/protocols-and-guidelines.
3 https://w3id.org/examode/ontology/.
4 ExaMode stands for “Extreme-scale Analytics via Multimodal Ontology Discovery & En-

hancement” and is an H2020 project financed by the EU commission. More information can
be found at: http://www.examode.eu/.
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Nevertheless, from the textual pathology reports, it is possible to extract
key concepts (e.g., the diagnosis outcome) to annotate the associated
WSIs. Although noisy, the extracted concepts can then serve as weak
labels to train prediction models for image classification tasks.22,23 How-
ever, even though automated solutions involving ML are increasingly
being integrated into biomedical domains, NLP applications to digital pa-
thology are less common. Compounding the situation further, the actual
use of Artificial Intelligence (AI) algorithms in digital pathology requires
a large amount of data annotations by pathologists. However, they are
rarely available in a clinical setting.1,24

To overcome such limitation, this work aims at proving the viability of
unsupervised NLP techniques to automatically extract critical information
from pathology reports and use it for different digital pathology applica-
tions, such as automatic report annotation, pathological knowledge visual-
ization, and WSI classification. In this regard, we present the Semantic
Knowledge Extractor Tool (SKET), an unsupervised hybrid knowledge
extraction system that combines an expert system with pre-trained ML
models to extract knowledge from pathology reports. In recent years, NLP
has shifted from using rules to ML approaches,8,25 which have the advan-
tage of learning regularities from data and of generalizing to previously
unseen patterns.

Moreover, the advent of efficient Neural Language Models (NLMs)26–29

paved the way for the pre-training era, where large NLMs trained in a self-
supervised fashion on huge datasets are used to develop NLP models for a
number of downstream tasks. Nevertheless, similarly to Santus et al.,9 we
argue that rule-based techniques capture critical information that should
be used together with – and not substituted by – ML to improve perfor-
mance.

We evaluate SKET effectiveness on entity linking and text classification,
considering 3 different diseases: colon, cervix, and lung cancer. In this re-
gard, we resort on diagnostic reports coming from 2 medical centers in
Italy and The Netherlands. Then, we compare SKET with unsupervised
ML approaches to understand the impact that combining rule-based
techniques and pre-trained ML models have on the extraction of knowl-
edge frompathology reports. The achieved results highlight the viability
of ML methods for information extraction in the pathology domain, but
also stress the importance of expert knowledge to reach the high levels
of accuracy required to (semi-)automate the clinical practice. Moreover,
the applicability of the proposed approach is enhanced by the consid-
ered multilingual setting.

Besides effectiveness, we must consider that understanding and
explaining decisions and outcomes is crucial in clinical practice.

However, the black-box nature of many ML models, especially those
based on Deep Learning, makes it difficult to understand and trace back
the underlying decision process. Hence, there is an urgent need for a shift
towards eXplainable Artificial Intelligence (XAI).31,32,69,70

In the biomedical domain, clinicians and domain experts need to under-
stand why a specific output has been produced to trust the system and its
predictions; moreover, the explainability of algorithmic decisions is
increasingly required for legal reasons.68 To this end, we propose SKET eX-
plained (SKET X). This web-based system allows domain experts to interact
with SKET and visually comprehend the outcomes, rules, and parameters
used in the knowledge extraction process. In addition, SKET X allows
users to compare different SKET executions (e.g., with varying parame-
ters of the system) and inspect punctual information, which provides
valuable insights into the knowledge extraction process and the contri-
bution of each component and parameter. SKET X aims to support pa-
thologists and domain experts in the interaction with SKET, allowing
them to gain an in-depth comprehension of the system decision process
– and thus increasing trust and confidence in the system. Beyond
explainability, we also report different digital pathology applications
where SKET has been successfully integrated as a core system.33,34 In
particular, we deepen the use of SKET in such applications and the ad-
vantages it entails.

SKET source code is publicly available at https://github.com/ExaNLP/sket.
Besides, SKET can also be deployed as a Docker container. For information
2

about the Docker version of SKET, please refer to https://github.com/
ExaNLP/sket#docker. SKET X is available at http://w3id.org/sketx1.

The rest of this paper is organized as follows: Section 2 - "Material" de-
scribes the considered data resources. Section 3 - "Methods" presents SKET.
Section 4 - "Evaluation" describes the experimental setup and reports quantita-
tive and qualitative results. Section 5 - "Understanding through explainability"
presents SKET X. Section 6 - "Digital pathology applications" outlines the digi-
tal pathology downstream applications empowered by SKET. Finally,
Section 7 - "Conclusions and future work" draws some conclusions.
Material

The data used to develop and evaluate SKET comes from 2 different
medical centers: the Cannizzaro Hospital (AOEC), Catania, Italy and the
Radboud University Medical Center (RUMC), Nijmegen, The Netherlands.
The AOECdata include diagnostic reports for colon, cervix, and lung cancer
cases, written in Italian and associatedwithWSIs. All datawere collected in
the clinical workflow and fully anonymized afterwards. Similarly, the
RUMC data consist of diagnostic reports and the associated WSIs for
colon and cervix cases, written in Dutch – after the use of speech-to-text
tools – and anonymized. For both medical centers, the considered reports
have been provided directly in digital format and span several diagnostic
outcomes. Note that other medical centers may provide reports in non-
digital format, thus requiring a digitization step upstream of SKET.
Table 1 reports the total number of diagnostic reports for each considered
use-case and medical center.

Diagnostic reports contain the results of the analyses performed on spe-
cific tissues (or cells) to obtain a pathological–clinical diagnosis – i.e., pres-
ence or absence of the disease. AOEC and RUMC diagnostic reports follow
the College of American Pathologists (CAP) international guidelines2 for
pathology reports35,36 and contain the patient’s personal and clinical-
specific information, the description of how a specimen appears to the
naked eye and at the microscope, and provide the final diagnosis.

Asmentioned above, AOEC and RUMC diagnostic reports are written in
Italian and Dutch, respectively. However, most of the resources required to
develop NLP methods that extract concepts from unstructured text are in
English. To overcome this limitation, we first translated diagnostic reports
in English and then performed data curation over them. We used the
open-source, pre-trained Marian Neural Machine Translation (NMT)
models,37 which exhibit a Transformer-based38 encoder–decoder architec-
ture with 6 layers in each component. Given the complexity of the task,
such an automatic approach introduces systematic translation errors that,
if propagated, could hamper the effectiveness of the extraction process.
For this reason, we performed a data curation step, in which recurring,
manually identified translation errors were corrected through the use of
handcrafted rules.

We defined an ontology3 for modeling the clinical reports in the digital
pathology domain: ExaMode4 ontology. Amongst other aspects not relevant
for the current work, the ontology specifically defines the key concepts and

https://github.com/ExaNLP/sket
https://github.com/ExaNLP/sket#docker
https://github.com/ExaNLP/sket#docker
http://w3id.org/sketx
https://www.cap.org/protocols-and-guidelines
https://w3id.org/examode/ontology/
http://www.examode.eu/


Fig. 1. SKET architecture. SKET main components are: (A) Named Entity Recognition, (B) Entity Linking, (C) Data Labeling, and (D) Graph Creation.

5 https://github.com/ExaNLP/sket/tree/main/sket/nerd/rules/.
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properties to model the diagnosis of colon, cervix, and lung cancer, the
anatomical location where the disease might be located, the procedure
employed to get the tissue, and the tests conducted on the tissue. Despite
many medical ontologies focusing specifically on cancer exist, no single
ontology comprehensively models all the diseases related to the cases
mentioned above, their anatomical location, topography, and pathology
laboratory process.

Methods

SKET adopts a combination of pre-trained Named Entity Recognition
(NER) models and unsupervised Entity Linking (EL) methods to extract
key concepts (entities) from the diagnostic reports and to link them to the
reference ontology. The use of pre-trained NER models and unsupervised
ELmethods makes SKET suitable for weak supervision tasks. In this regard,
the pathological concepts extracted from diagnostic reports can serve as
weak labels to train prediction models for image classification tasks,22,23

or as nodes to build report-level knowledge graphs for information retrieval
tasks.39

As reported in Fig. 1, SKET consists of 4 components: (A) Named Entity
Recognition, (B) Entity Linking, (C) Data Labeling, and (D) Graph Creation.
Components (A) and (B) are sequential, whereas components (C) and
(D) are parallel. Below, we describe for each component the different
methods and techniques we adopted, expanded, or developed.

Named entity recognition

NER is the task of identifying and categorizing key information –
i.e., entities – within text. An entity can be any word or phrase that consis-
tently refers to the same concept or object of the world. Each identified
entity is classified into a pre-defined category, such as disease, protein,
gene, cell type, etc.

SKET relies on a combination of pre-trained neural models and rule-
based techniques to perform NER. At its core, SKET adopts ScispaCy
models,40which provide full NER pipelines for biomedical data, comprising
large medical vocabularies, and Word2Vec26 word vectors trained on the
PubMed Central Open Access Subset.41 It is worth mentioning that SKET
has been designed to be deployed with any of the core models available
at: https://allenai.github.io/scispacy/.

Then, SKET extends the ScispaCy pipeline with 2 additional compo-
nents: Entity Fusion and Negation Detection.
3

Entity Fustion: SKET extends the NER pipeline with a set of rules used
to identify and merge specific entities otherwise regarded as separate by
ScispaCy. For instance, “transverse” and “colon” are considered as separate
entities, whereas we are interested in “transverse colon” as a unique entity.
Hence, we developed regular expressions that identify trigger terms indica-
tive of a set of otherwise potentially separate entities. Once a trigger term is
identified, SKETmatches the entities extracted by ScispaCy with the candi-
date terms associated with the trigger. Depending on the trigger term, the
match that SKET performs between extracted entities and candidate
terms follows different rules based on directional and positional attributes.
Directional attributes specify the set of extracted entities to be matched
with the candidate trigger terms, and it can assume 3 values:

(1.) PRE: match with the entities preceding the trigger entity.
(2.) POST: match with the entities succeeding the trigger entity.
(3.) BOTH: match between the entities both preceding and succeeding the

trigger entity.

Positional attributes specify the maximum distance allowed between
the trigger entity and the other one, and it can assume 2 values:

(1.) EXACT: the matched entity must be right before/after the trigger
entity.

(2.) LOOSE: the matched entity can be anywhere before/after the trigger
entity.

The described set of rules has been developed on a holdout dataset
and it is available on the SKET GitHub repository.5 The dataset consists of
50 diagnostic reports for each use-case and medical center, for a total of
250 diagnostic reports.

Negation Detection: To handle negated entities, we extend the NER
pipeline with NegEx,42 a negation detection algorithm evaluating whether
extracted entities are negatedwithin text. NegEx uses regular expressions to
identify the scope of trigger terms that are indicative of negation, such as
“no” or “ruled out”. Then, the entities extractedwithin the scope of a trigger
term are marked as negated. In this way, SKET identifies – and removes
from the final list of extracted entities – those entities that NegEx regards
as negated. For example, if we consider the phrase “free of dysplasia”,

https://allenai.github.io/scispacy/
Image of Fig. 1
https://github.com/ExaNLP/sket/tree/main/sket/nerd/rules/
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NegEx identifies the trigger term “free of” and marks “dysplasia” as
negated, which is then removed by SKET.

Entity linking

EL is the task of assigning uniquemeanings to entitiesmentionedwithin
text. In other words, the objective of EL is to determine whether a given
entity refers to a specific concept or object within a reference ontology.

SKET employs a combination of ad-hoc and similarity matching tech-
niques to link the extracted entities to unique concepts within the ExaMode
ontology. Given an extracted entity, SKETfirst tries tomatch it using ad-hoc
matching and when it fails SKET employs similarity matching.

Ad-hoc matching: SKET uses regular expressions to identify trigger
terms indicative of a specific ontological concept. Once a trigger term is
identified, SKET matches the entity containing the trigger term with the
closest ontology concept. For instance, if an extracted entity contains the
term “carcinoma”, then SKET links the entity to the ontology concept
“colon adenocarcinoma”. As for Entity Fusion, the ad-hoc matching rules
have been developed on the holdout dataset and are available on GitHub.

Similarity matching: SKET performs similarity matching using a com-
bination of string and semantic matching techniques. For string matching,
SKET relies on the Gestalt Pattern Matching (GPM) algorithm,43 which
computes the similarity of 2 strings as the number of matching characters
divided by the total number of characters in the 2 strings. Matching charac-
ters are those in the longest common subsequence plus, recursively,
matching characters in the unmatched region on either side of the longest
common subsequence. For semantic matching, SKET exploits the word
vectors provided by ScispaCy models.40 In other words, SKET performs
semantic matching as the cosine distance between the vector representa-
tions of the extracted entities and the ontology concepts –where vector rep-
resentations are the mean of the word vectors composing the extracted
entities or the ontology concepts.

Both string and semantic matching produce a ranking of ontology con-
cepts ordered by decreasing similarity with a given target entity. To com-
bine the 2 rankings – and select the concept with the highest rank – SKET
performs rank fusion using the CombSUM44 with min–max normalization.
Before selection, a pruning phase is performed on the combined ranking, in
which ontology concepts with a similarity score lower than a pre-deter-
mined threshold are removed. The threshold value has been set empirically
to 1.8 using the holdout dataset. The pruning phase aims to increase preci-
sion by reducing false positives, which occur when ontology concepts are
incorrectly linked to the extracted entities.

Data labeling

SKET also provides labels as one of its main outputs. Given the set of
concepts extracted from each diagnostic report, SKET maps a clinically rel-
evant subset of such concepts to a set of annotation classes defined by AOEC
pathologists. For each use-case, we report below the set of annotation
classes.

Colon annotations: (1) Cancer; (2) Adenomatous polyp - high grade
dysplasia; (3) Adenomatous polyp - low grade dysplasia; (4) Hyperplastic
polyp; (5) Non-informative.

Cervix annotations: (1) Cancer - adenocarcinoma in situ; (2) Cancer -
adenocarcinoma invasive; (3) Cancer - squamous cell carcinoma in situ;
(4) Cancer - squamous cell carcinoma invasive; (5) High grade dysplasia;
(6) Low grade dysplasia; (7) HPV infection present; (8) Koilocytes; (9) Nor-
mal squamous; (10) Normal glands.

Lungannotations: (1) Cancer - non-small cell cancer, adenocarcinoma;
(2) Cancer - non-small cell cancer, large cell carcinoma; (3) Cancer - non-
small cell cancer, squamous cell carcinoma; (4) Cancer - small cell cancer;
(5) No cancer.

Thus, the Data Labeling component produces annotations from diagnos-
tic reports that can be used to perform weakly supervised classification
tasks.
4

Graph creation

SKET also builds report-level knowledge graphs using the extracted
concepts as nodes and the semantic relations of the ExaMode ontology as
edges. The use of ontology concepts and relations to describe diagnostic re-
ports increases the semantic understanding of the underlying data.45 Once
created, report-level knowledge graphs are encoded in a machine-readable
format through Resource Description Framework (RDF).

Evaluation

Tasks

We evaluate the effectiveness of SKET on Entity Linking (Task 1) and
Text Classification (Task 2). The evaluation of SKET on entity linking also
serves as a proxy to validate the quality of the RDF graphs it produces. On
the other hand, text classification results help understanding the viability
of using SKET as an automatic annotator in weak supervision tasks. Be-
tween the 2 tasks, text classification has a prominent role as it provides
weak annotations that can be used to reduce the high costs of training can-
cer assisted diagnosis tools –which prevent unleashing the full potential of
digital pathology applications.34

Datasets

Entity linking (Task 1):We evaluate SKET effectiveness to extract con-
cepts from pathology reports on a subset of the proprietary data described
in Section 2 - "Material". For each use-case and medical center, 250 reports
have been manually annotated by experts using the concepts from the
ExaMode ontology. Overall, the total number of annotated reports amounts
to 1250. In terms of annotations, all use-cases have been annotated with a
large number of different concepts. For colon cancer, the number of differ-
ent concepts that can be found within reports stands at 19, while for cervix
and lung cancer amounts to 21 and 11, respectively. This large number of
different concepts highlights the complexity of the task, both for model pre-
dictions and human annotation efforts. In particular, the task can be seen as
an extrememulti-label classification problem,46,47 where the goal is to tag a
given report with a subset of the relevant concepts from a large concept list.

Text classification (Task 2): To evaluate the effectiveness of SKET to
weakly annotate pathology reports, the proprietary data described in
Section 2 - "Material" has beenmanually labeled by experts using the anno-
tation classes defined by AOEC pathologists. For each use-case, AOEC and
RUMC reports have been annotated with one or more classes, making the
task a multi-label classification problem. Table 2 reports the total number
of reports annotated for each class in each use-case. Given the multi-label
nature of the task, the total number of annotations does not reflect the
total number of reports. As a side note, the class imbalance of the datasets
reflects a real-case scenario, where certain conditions – e.g., low-grade dys-
plasia in colon cases – occur more often than others in the clinical routine.

Baselines

Entity linking (Task 1): We compare SKET with 2 unsupervised ap-
proaches based on Bio FastText27,48 and BioClinical BERT29,49 models.
For a fair comparison, both approaches adopt the same NER ScispaCy
pipeline used by SKET, but without the extensions introduced with it.
Then, the approaches perform EL by computing the cosine distance be-
tween the vector representations of the extracted entities and the ontology
concepts – obtained with FastText in one case and with BERT in the other.
The ontology concept closest to the extracted entity is kept and, when ap-
propriate, mapped to the corresponding annotation class. Both methods
represent a straightforward approach to perform text classification with
lack of annotated data.

Text classification (Task 2):We compare SKET with the Bio FastText
and BioClinical BERT unsupervised approaches described above. Beyond
unsupervised approaches, we also use SKET to weakly annotate diagnostic



Table 2
Number of annotated diagnostic reports for each use-case. Label counts are indepen-
dent of each other except for “Non-informative” in colon, “Normal squamous” and
“Normal glands” in cervix, and “No cancer” in lung, which only occur when none of
the others does.

Colon
Cancer 495
Adenomatous polyp – high-grade dysplasia 510
Adenomatous polyp – low-grade dysplasia 841
Hyperplastic polyp 508
Non-informative 1140

Cervix
Cancer - adenocarcinoma in situ 125
Cancer - adenocarcinoma invasive 32
Cancer - squamous cell carcinoma in situ 638
Cancer - squamous cell carcinoma invasive 88
High-grade dysplasia 1544
Low-grade dysplasia 1053
HPV infection present 1221
Koilocytes 86
Normal squamous 1265
Normal glands 1266

Lung
Cancer - non-small cell cancer, adenocarcinoma 961
Cancer - non-small cell cancer, large cell carcinoma 68
Cancer - non-small cell cancer, squamous cell carcinoma 528
Cancer - small cell cancer 144
No cancer 247

Table 4
Text classification results on colon, cervix, and lung cancer pathology reports. The
considered measures are subset accuracy, micro F1, and weighted F1. The † symbol
represents the statistical difference of SKET from unsupervised FastText- and BERT-
based approaches – verified using a paired t-test with a p-value < 0.01. Bold values
represent the highest scores achieved for each measure.

Approach Model Measures

Accuracy Micro F1 Weighted F1

Colon
Unsupervised SKET 0.7525† 0.8386† 0.8373†

FastText 0.4146 0.5298 0.5514
BERT 0.5167 0.5697 0.6587

Weakly supervised FastText 0.7116 0.8287 0.8276
BERT 0.7586 0.8432 0.8421

Cervix
Unsupervised SKET 0.5281† 0.7791† 0.7611†

FastText 0.2533 0.4882 0.4445
BERT 0.3066 0.3962 0.4867

Weakly supervised FastText 0.4744 0.7542 0.7566
BERT 0.5397 0.7901 0.7737

Lung
Unsupervised SKET 0.8137 0.8387 0.8262

FastText 0.5221 0.7296 0.6853
BERT 0.8523† 0.8630† 0.8526†

Weakly supervised FastText 0.7701 0.8313 0.8247
BERT 0.8127 0.8375 0.8249
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reports and then train FastText and BERTmodels in a supervised fashion. In
this case, we stack a classification layer on top of the pre-trainedmodels and
perform end-to-end classification – i.e., the models take diagnostic reports
as input and directly produce classes as output. Due to the introduction of
supervised models, performances on text classification are obtained
through 10-fold cross-validation.
Results

Entity linking (Task 1): Table 3 reports the results obtained by SKET
and the considered baselines on entity linking. Overall, we see that SKET
achieves high performances for both micro- and weighted-average F1mea-
sures in each use-case. As for accuracy, the performances vary depending
on the use-case, and the lowest score is obtained in colon cancer with a
value of 0.6280. In terms of use-cases, the best SKET results are obtained
on lung cancer. Compared to colon and cervix cases, lung cancer presents
a lower number of concepts to identify, thus reducing the task complexity.
On the other hand, colon and cervix use-cases show similar SKET perfor-
mances, having a comparable number of concepts.
Table 3
Entity linking results on colon, cervix, and lung cancer pathology reports. The con-
sidered measures are subset accuracy, micro F1, and weighted F1. Bold values rep-
resent the highest scores achieved for each measure.

Approach Model Measures

Accuracy Micro F1 Weighted F1

Colon
Unsupervised SKET 0.6280 0.8861 0.8694

FastText 0.0660 0.5000 0.6146
BERT 0.1840 0.3905 0.4527

Cervix
Unsupervised SKET 0.7020 0.8322 0.8368

FastText 0.0900 0.2802 0.3439
BERT 0.0720 0.2715 0.2940

Lung
Unsupervised SKET 0.8624 0.9375 0.9262

FastText 0.2510 0.5610 0.6506
BERT 0.3806 0.6804 0.8395

5

When we compare SKET performances with unsupervised approaches,
we can see that SKET outperforms them for all measures in each use-case.
This result shows the effectiveness of combining ad-hoc rules with ML
models, which make SKET both precise and sensitive. Indeed, ad-hoc
matching makes SKET precise while semantic matching makes it sensitive.
To further support this outcome, we observe that the performances of
unsupervised baselines – only relying onMLmodels and semanticmatching
– have low accuracy values. Given that we consider entity linking as a
multi-label task, we resort on subset accuracy – where the set of concepts
predicted for a report must exactly match the corresponding set of
ground-truth concepts. Thus, accuracy values are more prone to rapidly
decreasing with a large number of classes, and less precise models are
naturally affected by this behavior.

Text classification (Task 2): Table 4 reports the results obtained by
SKET and the considered baselines on text classification. Overall, we
observe that SKET achieves high performance on colon and lung cancer
use-cases, whereas it shows low accuracy values on cervix cancer. The
motivation behind this drop in performance on cervix reports can be attrib-
uted to the high number of annotation classes (i.e., 10) and the multi-label
setting. We recall that we rely on subset accuracy, which performs exact
match between predicted and ground-truth labels – causing performance
to drop faster when the number of classes is larger. The higher values for
both micro- and weighted F1 measures, which do not perform exact
match between predicted and ground-truth labels, further support this
intuition.

Compared to unsupervised baselines, SKET achieves better performance
in both colon and cervix use-cases. In particular, the (relative) performance
gap between SKET and baselines varies from 20% to 40% across measures.
To confirm SKET effectiveness, we conducted a paired t-test and found that
there is a statistical difference (p-value < 0.01) between its performance
and that of the baselines on all the considered measures.

This outcome shows the effectiveness of introducing ad-hoc rules at
both NER and EL levels, as well as the soundness of combining different
matching techniques together. On the other hand, the unsupervised
BERT-based approach outperforms both SKET and FastText in lung cancer.
In this case, the paired t-test confirmed a statistical difference between
BERT performance and that of SKET and FastText. Nevertheless, the perfor-
mance gap between BERT and SKET never exceeds 5%. This highlights the
robustness of SKET across different use-cases and makes it a viable solution
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in real scenarios, where annotated data are hard and expensive to get (such
as in clinical practice). Besides, the lung cancer use-case presents 2 major
differences with colon and cervix ones. First of all, lung annotation classes
all revolve around different, but closely related, cancer types. As a conse-
quence, contextualized NLMs (e.g., BERT29) – which are able to properly
model the small semantic, contextual variations of such classes – achieve
competitive results. Secondly, lung cancer data only consists of AOEC re-
ports. The lack of RUMC reports makes the dataset more homogeneous
and easier than the others, thus reducing classification inconsistencies for
baseline models too.

Regarding weakly supervised models, the results reported in Table 4
demonstrate the effectiveness of using SKET to weakly annotate diagnostic
reports and then train FastText and BERTmodels in a supervised fashion. In
this regard, both weakly supervised FastText- and BERT-based approaches
outperform their unsupervised counterparts. The only exception is for
BERT on lung cancer data, where the unsupervised BERT approach
achieves top performance. On the other hand, the weakly supervised
BERT obtains the best results overall in both colon and cervix use-cases.
Hence, SKET proves to be effective when used to bootstrap supervised
models in absence of manual annotations. Following this procedure, super-
vised models can first be trained on data automatically annotated by SKET
and then fine-tuned on small manually annotated batches, thus reducing
annotation times and costs.

Understanding through explainability

In recent years, the application of AI algorithms in the biomedical do-
main has experienced unprecedented growth30,50,51 – especially to perform
clinical decision-support and diagnostic activities.52–54 Therefore, there is
an urgent need for eXplainable Artificial Intelleigence (XAI) tools that can
help clinicians and domain experts understand algorithm predictions and
their underlying rationale. In this regard, explainability techniques high-
light decision-relevant aspects of algorithms that contribute to specific pre-
dictions, thus trying to answer why a model has made a certain
decision.31,55,56 Hence, explainability methods are essential for humans –
and in particular for clinicians – to decide whether to trust algorithm pre-
dictions and the (underlying) models that generated them.69,70 Among its
different uses, explainability can be employed to understand the rationale
of NER and EL outputs – such as the entitymentions and concepts identified
by SKET within clinical reports.

However, since most of the data that humans can easily “visualize”
regards objects restricted to the two/three-dimensional space, there is an
urgent need not only for explainable models but also for explanation
interfaces.31 To this end, we have developed SKETX,6 aweb-based environ-
ment to interact with SKET and get useful insights about the extraction pro-
cess and the related outputs. Through SKET X, pathologists and domain
experts can visually comprehend SKET and the different components acti-
vated during the knowledge extraction process – thus getting a point-wise
explanation of the outputs obtained for the provided diagnostic reports.

SKET X exploits Visual Analytics (VA) techniques to support domain ex-
perts in the visual comprehension of SKET outputs by means of intuitive
and interactive interfaces. Such interfaces allow users to inspect and find
out non-evident patterns in data and take decisions accordingly.57 Specifi-
cally, VA techniques enable users to visually comprehend the results of an
ongoing task,while it advances asynchronously in the background. Because
of this, VA techniques are also used to visually adjust the parameters of a
model running as a background task to continuously refine its outputs.58,59

SKET X workflow

SKET X is an interactiveWebapp that runs SKET on a set of uploaded re-
ports. SKETX is based on SKET pipelines definable by the userwho can cus-
tomize the parameters and run SKETmultiple times to compare the outputs
6 http://w3id.org/sketx access provided with username and password: demo.
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and all the intermediate steps of the process. Each pipeline runs as an asyn-
chronous task, handled by a schedulerwith a queuemanager. The pipelines
are organized for straightforward access in the dashboard interface, shown
in Fig. 2. The dashboard provides information about the SKET pipelines ex-
ecuted by the users and enables access and download of the SKET outputs.

The execution of a SKET X pipeline consists at most of 3 phases, where
the currently selected stage is shown on the top of the interface (see
Fig. 3.A).

• Translation: The reports are automatically translated from their original
language to English. Fig. 3 reports the information contained in the Over-
view tab of the interface, i.e. the inputs, outputs, and parameters of the
translation phase.

• Entity linking: The entities automatically recognized within the reports are
linked to the concepts in the ExaMode ontology. This phase’s output con-
sists of the identified mentions and the linked concepts. SKET employs a
combination of hand-crafted rules and pre-trained neural models in this
phase. The rules relevant to the disease of the given report are shown
via a Sankey diagram, where the rules activated for the current report
are highlighted. In this context, a rule is activated when one of the iden-
tifiedmentions – e.g., low degree dysplasia (mild) – satisfies one rule trig-
ger – e.g., dysplasia &&mild – that implies a link to a specific concept –
e.g., mild colon dysplasia – as shown in Fig. 4.

• Classification: SKET exploits mapping rules to decide the appropriate la-
bels for each report. As for the EL phase, the rules relevant for the disease
of the considered report are visualized using a Sankey diagram,where the
activated rules are highlighted. A rule is activated when one of the
identified concepts – e.g., Mild Colon Dysplasia – satisfies one rule
trigger – e.g., dysplasia && mild – that implies a specific label –
e.g., Adenomatous polyp - low grade dysplasia – as shown in Fig. 5. The
mentions and concepts considered in the classification task are regarded
as keymentions/concepts, whereas the ones not satisfying any rule trigger
are regarded as excluded, as shown in Fig. 5.C and 5.D, respectively. For
instance, in Fig. 5 we can observe that the key concepts identified are
Colon Hyperplastic Polyp and Mild Colon Dysplasia, whereas the ex-
cluded ones are Biopsy of Colon and Colon, NOS – both related to the
same excluded mention colon biopsy.

SKET X interface

The interface of SKET X consists of 6 tabs providing different views of
the data, according to the selected phase:

• Overview tab: Overview of the visual outputs available in the other tabs
(i.e., Input, Output, Params, Analytics) for the current phase. The contents
of the Analytics tab are shown in the overview only for the EL and classi-
fication phases.

• Input tab: It reports the input data for the current phase. For instance, if the
considered phase is translation, this tab shows the reports in the original
language, as shown in Fig. 3.B. Instead, if the considered phase is EL, it
shows the translated reports. Similarly, the mentions and the concepts
extracted for each report are shown in this tab for the classification phase.

• Output tab: It reports the output data for the current phase. For translation,
this tab shows the reports translated into English, as shown in Fig. 3.C.
Instead, if the considered phase is EL, it shows the mentions and the
concepts extracted for each report. Similarly, the labels generated for
each report are shown in this tab for the classification phase.

• Params tab: It reports the parameters for the current phase, as shown in
Fig. 3.D. For instance, for EL, it shows the methods and models used by
SKET to perform the linking process between mentions and related con-
cepts. Another important parameter is the threshold used by SKET in the
pruning phase to reduce false positives and thus increase precision, as de-
scribed in Section 3.2 - "Methods, Entity Linking". When the phase consid-
ered is EL, users can change one or more parameters and then re-run
SKET. This is useful to compare 2 pipelines using different parameters.

http://w3id.org/sketx


Fig. 2. SKET X dashboard providing information about the executed SKET pipelines - i.e., pipeline id, use case, pipeline status, start timestamp, end timestamp, description,
pipeline parameters. Users can view the parameters of each pipeline by clicking on the dedicated button (A). Similarly, users can access pipelines data by clicking on the ded-
icated button (B). When the execution of a pipeline ends, its outputs become available for download (C).
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• Analytics tab: It allows the users to analyze the current report’s mentions,
concepts, and labels in detail. In particular, if the considered phase is EL,
users can inspect the identifiedmentions and concepts concerning the re-
port textual content, as shown in Fig. 4.A and C.Moreover, by clicking on
amention, the user can inspect the list of associated concepts. At the same
time, a user can also do the reverse - identifying the relevant mentions for
Fig. 3. (A) SKET X Overview tab for the translation phase, (B) the reports in the original l
settings for the current phase.
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a given concept. In addition, if the considered phase is classification, this
tab shows the labels determined by SKET and the relations between a
label and the concepts from which it derives, as shown in Fig. 5. To visu-
ally explain the rules used by SKET to determine both the concepts and
labels, a Sankey diagram is reported on the right side of the interface as
depicted in Figs. 4.B and 5.B. On the left side of the Sankey diagram,
anguage (input), (C) the translated reports (output) (C), and (D) the parameters and

Image of &INS id=
Image of Fig. 2


Fig. 4. SKET X Analytics tab for the EL phase: (A) reports section, the users can change the current report using the left/right buttons; (B) SKET rules for the NER task; and,
(C) list of mentions and concepts produced by the knowledge extraction process. Each concept and related mentions are highlighted with the same color in (A) and (C). By
clicking/hovering on a specific concept, it is possible to highlight the relevant rules in the Sankey diagram that determined the concept and the relatedmentions in the report
text. On the left side of the Sankey diagram are reported the rules triggers, which are boolean expressions tested on eachmentioned text. If one or morementions satisfy a rule
trigger, then the related concepts on the right side of the Sankey diagram are highlighted and listed in (C).
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the rules triggers are reported, which are boolean expressions tested on the
text of each mention – for the EL phase – and concept – for the classifica-
tion phase. If one or more mentions/concepts satisfy a rule trigger, then
the related concepts/labels on the right side of the Sankey diagram are
highlighted.

• Compare tab: It allows the users to compare the outputs of 2 different
SKET X pipelines in terms of mentions, concepts, and labels identified
for the current report. When the users click on the compare tab, they
are provided with an initial menu that allows them to specify the 2
pipelines to compare. After the selection, users can click on the compare
button to visualize the interface dedicated for the comparison, illus-
trated in Fig. 6. The comparison interface is divided into 4 parts:
(A) the reports section displaying information about the current report
and 2 buttons for switching to the next/previous report; (B) the param-
eters section displaying pipeline information, such as the identifier, the
description, and its parameters; (C) first pipeline section showing the
outputs for the phase selected (e.g., mentions and concepts) and
(D) second pipeline section with the same structure of (C). In particular,
if the considered phase is EL, users can compare the concepts and the
mentions identified by each pipeline and deduce which parameters
have determined the major differences (e.g., the threshold for the
8

NER task). Moreover, by clicking/hovering on each mention, the
users can inspect the list of associated concepts (highlighted in differ-
ent colors) among the 2 pipelines. On top of that, the commonmentions
between the 2 considered pipelines can be highlighted, thus making
them and their related concepts easy to identify. Fig. 6 shows the out-
puts of 2 SKET pipelines that have been executed with different models,
where the first pipeline uses only the neural model while the second
one uses only GPM. Since the 2 pipelines considered in Fig. 6 use differ-
ent models, they identify different concepts and mentions. Indeed, the
common concepts between the 2 pipelines – i.e., Biopsy of Colon, Colon
Hyperplastic Polyp, Colon NOS, and Mild Colon Dysplasia – have been
identified using SKET rules, which are used in both pipelines. On the
other hand, the disjoint concepts have been identified using the neural
model – for Rectal mucous membrane – and GPM – for Adenoma and
Resection – respectively. If the considered phase is classification,
users can also compare the labels generated by each pipeline and the
key concepts associated – i.e., the ones from which the labels are deter-
mined. For instance, in Fig. 7, we can observe that the labels generated
by SKET are Adenomatous polyp – high grade dysplasia and Hyperplas-
tic polyp for the first pipeline (C) while only Adenomatous polyp - high
grade dysplasia for the second one (D). By clicking/hovering on the

Image of Fig. 4


(caption on next page)
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Fig. 6. SKET X Compare tab for the EL phase showing the comparison interface for the 2 pipelines specified for the comparison. The interface is organized in 4 parts: (A) the
reports section displaying information about the current report and 2 buttons for switching to the next/previous report; (B) the parameters section displaying pipeline
information, such as the identifier and its description, and parameters (e.g., the models used for EL phase and the threshold); (C) first pipeline outputs for the phase selected
(e.g., mentions and concepts); and (D) second pipeline outputs for the phase selected. The mentions in common, and the related concepts, are highlighted both in the
report text (A) and also in the mention/concept lists for each pipeline (C) and (D). Hence, we can observe that there is a mention injury-free resection margin and a concept
Resection that are not highlighted since they have been identified only by the second pipeline (D). Nevertheless, the concepts Rectal mucous membrane and Adenoma have
been identified only by respectively the first pipeline (C) and the second one (D), but since both are associatedwith the same commonmention – i.e., adenomatous – they are
highlighted as well.

←
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Hyperplastic polyp label, users can realize that it derives from the
Colon Hyperplastic Polyp concept, which, in turn, is associated with
the polyp sigmoid mention. Nevertheless, the latter mention does not
suggest the presence of a Colon Hyperplastic Polyp. Thus, it is a false
positive. Similarly, users can do the same with the Adenomatous
polyp - high-grade dysplasia label, discovering that it derives from
the Severe Colon Dysplasia concept, which is correctly associated,
through a SKET rule, with the severe dysplasia mention. Finally, users
can also compare the excludedmentions and concepts that are not con-
sidered for the label generation process, but that can be a good indica-
tor to determine whether the chosen threshold for models produces
noisy concepts.
Fig. 5. SKET X Analytics tab for the classification phase: (A) reports section to select t
visualized with a Sankey diagram; and, (C) list of labels, mentions, and concepts dete
same color in (A) and (C). The Sankey diagram highlights the relevant rules by clickin
the rules triggers. If one or more concepts satisfy a rule trigger, then the related label
mentions and concepts involved in the classification task are the key mentions/concepts
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Hence, using SKET X pathologists and domain experts can visually
comprehend why a certain concept/label has been extracted. Moreover,
by leveraging both inspection and comparison functionalities, users can
also understand the impact of different parameters on the obtained out-
puts, and thus investigate the advantages of combining ad-hoc rules with
ML models to improve the overall effectiveness of knowledge extraction
systems.

Digital pathology applications

SKET has been integrated as a core system into different downstream
applications for digital pathology. Fig. 8 depicts the SKET ecosystem,
he current report via left/right buttons; (B) SKET rules for determining the labels
rmined by SKET. Each concept and the related mentions are highlighted with the
g/hovering on a specific label. On the left side of the Sankey diagram are reported
is highlighted on the right side of the Sankey diagram and also listed in (C). The
(C), while the excluded ones are reported in (D).

Image of Fig. 6


Fig. 7. SKET X Compare tab for the classification phase showing the comparison interface for the 2 pipelines specified for the comparison. The interface is organized in 4 parts:
(A) the reports section displaying information about the current report and 2 buttons for switching to the next/previous report; (B) the parameters section displaying pipeline
information, such as the identifier, the description, and its parameters; (C) first pipeline outputs for the phase selected (e.g., mentions and concepts) and (D) second pipeline
outputs for the phase selected. The mentions/concepts considered for determining the report labels are regarded as keymentions/concepts and are differentiated by the ex-
cluded ones. Here, 2 concepts are identified in the first pipeline, namely, Colon Hyperplastic Polyp and Severe Colon Dysplasia, while in the second one only Severe Colon
Dysplasia has been identified. Nevertheless, Colon Hyperplastic Polyp and Sigmoid colon are negligible concepts (i.e., false positives) both associated with the polyp sigmoid
mention. In contrast, Severe Colon Dysplasia is correct since it has been identified using a SKET rule verified by the severe dysplasia key mention.
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Table 5
Number of labels, concepts, mentions, and links automatically annotated by SKET
within MedTAG. Statistics are reported for each use-case and globally.

Annotation type Colon Cervix Lung Total

Labels 9309 16 033 2066 27 408
Concepts 11 932 12 936 2336 27 204
Mentions 10 926 12 070 2336 25 332
Linking 11 932 12 936 2336 27 204
Total 44 099 53 975 9074 107 148

Fig. 8. The SKET ecosystem. From clinical reports, a suite of different applications relying on SKET to process (SKETUP), analyze and annotate (medTAG), explore (ExaNET),
and explain (SKET X) the knowledge contained within reports – also providing weak supervision to train cancer-assisted diagnosis tools.
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where SKET UP represents the online access point to interact with SKET,
SKET X provides explanations for SKET results, medTAG33 integrates
SKET automatic annotations to support semi-automatic tagging, and
ExaNet33 allows to visualize and explore SKET report-level knowledge
graphs. Moreover, SKET labels can also be used to supervise cancer-
assisted diagnosis tools.34

Automatic report annotation

SKET has been integrated as an automatic annotator within
MedTAG.7,33 MedTAG is a collaborative biomedical annotation tool that
provides 4 annotation types:

(1.) Labels:Allows the user to assign, by clicking on the check-boxes, one or
more labels to a document. The labels indicate some reports’ properties
(e.g. “Cancer” label indicates the presence of a cancer-related disease).

(2.) Concepts: Allows the user to specify which concepts are relevant for a
document. Users can take advantage of auto-complete functionalities
for searching the relevant concepts to assign to each document.

(3.) Mentions: Shows the list of the mentions identified by the user in the
report text.

(4.) Linking: Allows the user to link the mentions identified with the corre-
sponding concepts. Users can link the same mention to multiple
concepts.

For each annotation type, SKET provides automatic annotations for re-
ports associatedwith colon, cervix, and lung use-cases. At present,MedTAG
has been used by experts to produce more than 7000 annotations. On the
other hand, SKET annotations within MedTAG exceed 100 000 units.
Table 5 reports SKET annotation statistics for each annotation type.

Pathological knowledge visualization

The report-level knowledge graphs produced by SKET can be explored
with ExaNet8. ExaNet is a visual application that allows users
(e.g., experts and pathologists) to explore the pathology reports linked
data by using an interactive graph visualization tool. ExaNet enables
users to explore graph connections by leveraging pan and zoom functional-
ities. On top of this, ExaNet allows users to visualize an interactive JSON
7 MedTAG is available at https://github.com/MedTAG/medtag-core/.
8 ExaNet can be accessed through the “Reports’ stats” functionality of MedTAG, under the

“Graph” feature associated with each report that has been annotated by SKET.
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serialization of each pathology report, providing also download
capabilities.

Conceptually, ExaNet stems from ontology visualization tools. The visu-
alization of ontologies is a fundamental task to assess ontologies and enable
users to explore, verify, and understand them and their underlying
structures.60–63 Nevertheless, compared to ontology visualization, where
the focus is primarily on the Terminological Box (TBox) – i.e., definition
of classes and properties – ExaNet focuses instead on the Assertional Box
(ABox) – i.e., individuals and instance data. Furthermore, ExaNet replaces
the classes Internationalized Resource Identifier (IRI) with the correspond-
ing literals.
WSI classification

The labels produced by SKET are used to reduce supervised-training
limitations for colon cancer-assisted diagnosis tools34 – limitations that pre-
vent the full exploitation of digital pathology applications. In other words,
SKET labels serve as weak labels to train a deep image classifier.

The proposed model, based on Multiple Instance Learning
Convolutional Neural Networks (CNNs), makes multi-class predictions at
patch-level and then aggregates them through an attention pooling
layer64,65 to obtain multi-label WSI predictions. The multi-label setting re-
flects the very nature of the pathology domain, where images (and
reports) can highlight multiple findings for the same sample. Therefore,
employing models that produce multi-label predictions allows to better
approximate real-world pathology scenarios.

The proposed approach has been trained and tested using data com-
posed of colon WSIs from AOEC and RUMC medical centers. The training
set consists of the WSIs associated with the 3769 colon reports reported
in Table 1, whereas the test set consists of 227 WSIs from AOEC and 423
from RUMC, for a total of 650 WSIs. Colon cancer was chosen as use-case
due to its high social impact and difficulty in diagnosing it. In fact, colon

Image of Fig. 8
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Table 6
CNN colon cancer performance when trained with SKET weak labels (CNN-SKET)
and with manual ones (CNN-GT). Results refer to WSI classification on AOEC and
RUMC data. For each considered measure, we report the average obtained through
10-fold cross-validation. Bold values represent the highest scores achieved for each
measure.

Model Accuracy Micro F1 Weighted F1

CNN-SKET 0.6666 0.7741 0.7694
CNN-GT 0.6795 0.7866 0.7800
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cancer is the fourthmost diagnosed cancer in theworld.66 Besides, the need
to identify malignant polyps – which are cell agglomerations protruding
from the colon surface – makes it problematic to diagnose.66 Thus, to
prove the effectiveness of SKET as a weak annotator, we compared the per-
formance of the image classifier trained with SKET labels against its perfor-
mance when trained using manual labels. Table 6 reports the results for
subset accuracy, micro-, and weighted-average F1 measures, obtained
through 10-fold cross-validation.

The obtained results show the effectiveness of SKET when used as a
weak annotator. The performance obtained using weak labels are close to
those achieved withmanual ones. Precisely, the performance difference be-
tween the 2 CNNs does not exceed 1.3%. Furthermore, we performed the
Wilcoxon Rank-Sum test and verified that such performance difference is
not statistically significant (p-value < 0.05). Thus, SKET allows training
cancer diagnostics models for digital pathology without human interven-
tion, paving the way to the use of ML models in the clinical practice.

Conclusions and future work

In this work, we presented the Semantic Knowledge Extractor Tool
(SKET), an unsupervised hybrid knowledge extraction system that com-
bines rule-based techniques with pre-trained Machine Learning (ML)
models to extract critical pathological concepts from diagnostic reports.
The concepts extracted from diagnostic reports can serve different digital
pathology applications, such as automatic annotation, knowledge visualiza-
tion, discovery, or image classification. A throughout evaluation demon-
strated SKET effectiveness in annotating colon, cervix, and lung cancer
use-cases – making it a viable solution to reduce pathologists’ workload.
The results and analyses highlighted the importance of expert knowledge
in developing unsupervised systems for specialized medicine. Moreover,
the effectiveness of SKET as a weak annotator suggests that it can be used
as a first, cheap solution to bootstrap supervised models in the absence of
manual annotations.

Together with SKET, we also introduced SKET X, a web-based system to
support pathologists and domain experts in the understanding of SKET out-
puts, as well as the role that its different components have on such outputs.
Through SKET X, users can comprehend predictions and get valuable in-
sights into the knowledge extraction process. Beyond explainability, SKET
has also been used to empower different digital pathology downstream ap-
plications. In particular, SKET labels have been used to reduce training lim-
itations for colon cancer-assisted diagnosis tools. The use of SKET for
training deep image classifiers without human intervention paves the way
to ML models in the clinical practice.34

As future work, we plan to extend SKET to other emerging but under-
researched use-cases, such as celiac disease – whose prevalence has signif-
icantly increased over the past 20 years.67
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