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Abstract: Accumulating studies have shown that the epidermal growth factor receptor (EGFR)
signaling pathway plays an essential role in mediating cellular entry of numerous viruses. In this
study, we report that bovine herpesvirus 1 (BoHV-1) productive infection in both the human lung
carcinoma cell line A549 and bovine kidney (MDBK) cells leads to activation of EGFR, as demonstrated
by the increased phosphorylation of EGFR at Tyr1068 (Y1068), which in turn plays important roles in
virus infection. A time-of-addition assay supported that virus replication at post-entry stages was
affected by the EGFR specific inhibitor Gefitinib. Interestingly, both phospholipase C-y1 (PLC-y1) and
Akt, canonical downstream effectors of EGFR, were activated following virus infection in A549 cells,
while Gefitinib could inhibit the activation of PLC-y1 but not Akt. In addition, virus titers in A549 cells
was inhibited by chemical inhibition of PLC-y1, but not by the inhibition of Akt. However, the Akt
specific inhibitor Ly294002 could significantly reduce the virus titer in MDBK cells. Taken together,
our data suggest that PLC-y1 is stimulated in part through EGFR for efficient replication in A549 cells,
whereas Akt can be stimulated by virus infection independent of EGFR, and is not essential for virus
productive infection, indicating that Akt modulates BoHV-1 replication in a cell type-dependent
manner. This study provides novel insights on how BoHV-1 infection activates EGFR signaling
transduction to facilitate virus replication.
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1. Introduction

Bovine herpesvirus 1 (BoHV-1) is a member of the family Herpesviridae and the subfamily
Alphaherpesvirinae. BOHV-1 acute infection causes inflammatory disease in the upper respiratory tract,
lesions on mucosal surfaces, and depression of host immune responses, which can facilitate secondary
infection by other pathogens [1-3]. Consequently, this can result in bovine respiratory disease complex
(BRDC), a life-threatening disease that affects cattle of all ages [4]. Early statistical data indicates that
BRDC costs the U.S. cattle industry ~$3 billion annually [5]. Additionally, BOHV-1 is the most frequently
diagnosed pathogen associated with viral abortion in the North American cattle industry [4,6]. BoHV-1
may cause abortion storms in a herd, with 25-60% of cows undergoing abortion [4]. As such, BoHV-1
infection represents an important disease in cattle.

Humans are not susceptible to BoHV-1 infection. However, since 2010, the virus has been shown
to productively infect human cancer cells, such as the human lung adenocarcinoma cell line A549,
inducing cell death [7-9]. This important finding suggests that BoHV-1 may represent a prospective
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reagent for cancer therapy [7]. Moreover, it provides us an alternative cell model for the comparative
study of viral replication mechanisms in diverse cell cultures.

Epidermal growth factor receptor (EGFR) is a glycoprotein with a molecular weight of ~170 kDa
that consists of an extracellular receptor domain, a transmembrane domain, and an intracellular domain
with protein-tyrosine kinase activity [10]. Apart from the full-length EGFR protein, isoforms with
distinct molecular weights, including 110, 80, and 60 kDa resulting either from alternative splicing or
proteolytic cleavage of the receptor are known to exist [11]. Binding of EGFR to its cognate ligands leads
to phosphorylation of the protein—tyrosine kinase domain and subsequent activation of downstream
effectors, such as PLC-y1 and Akt, to perform diverse functions [12,13]. Increasing evidence indicates
that EGFR is activated by various viruses, leading to multiple pathogenic effects [14]. In example,
EGEFR kinase is activated by influenza A virus and hepatitis B virus to promote virus entry [15,16],
and EGFR signaling is usurped during respiratory syncytial virus (RSV) infection to suppress IFN
regulatory factor (IRF) 1-dependent CXCL10 production, resulting in suppression of host antiviral
signaling [17]. Additionally, both EGFR/Erk1/2 and EGFR/STATSs cascades are mobilized to control
epithelial inflammatory responses following rhinovirus infection [18]. However, the effects of EGFR on
BoHV-1 infection are currently unknown. Given that the canonical EGFR downstream effects including
PLC-y1, MAPK, Akt and JNK are unanimously activated during BoHV-1 productive infection in
MDBK cells [19,20], we hypothesized that BoHV-1 infection activates EGFR signaling to facilitate viral
replication. Furthermore, it has been reported that EGFR is activated in response to radiation-induced
DNA damage to promote cell survival [21], and in BoHV-1-infected A549 cells, detectable DNA
damage is induced at 24 and 48 hours (h) after infection [22]. As such, this work supports that EGFR
is concomitantly activated at late stages of infection. Considering that EGFR signaling plays a key
role in lung cancer progression, and that EGFR-targeted therapies represent effective approaches for
the clinical treatment of lung tumors [23-26], studying the interplay between BoHV-1 infection and
EGEFR signaling with an emphasis on A549 cells is important not only in understating virus replication
mechanisms but also in elucidating its oncolytic mechanisms.

Here, for the first time we report that EGFR signaling is activated in BoHV-1-infected cell cultures
(A549 and MDBK cells), which in turn play important roles in subsequent virus replication. For efficient
replication, PLC-y1 is stimulated in BoHV-1-infected A549 cells partially through EGFR. However, Akt,
a canonical EGFR downstream signaling mediator, is activated in A549 cells with an EGFR-independent
mechanism, contributing only a limited role in virus replication. These findings add to our knowledge
of how BoHV-1 manipulates EGFR and its downstream pathways for efficient replication in different
cell cultures.

2. Materials and Methods

2.1. Cells and Viruses

A549 cells (purchased from the Chinese model culture preservation center, Shanghai, China) were
maintained in DMEM medium (Thermo Fisher Scientific Inc, Waltham, MA, USA) supplemented with
10% fetal bovine serum (FBS) (Thermo Fisher Scientific Inc., Waltham, MA, USA, cat # 10270-106).
MDBK cells (purchased from the Chinese model culture preservation center, Shanghai, China) were
maintained in DMEM supplemented with 10% FBS. BoHV-1 (N]J-16-1 isolated from bovine semen
samples [27]) was propagated in MDBK cells. Aliquots of virus stocks were stored at —70 °C until use.

2.2. Antibodies and Reagents

Phospho-EGFR-Y1068 monoclonal Ab (mAb) (cat# 2234S), Akt mAb (cat# 9272S), phospho-Akt
(Ser473) mADb (cat# 9271S), phospho-PLC-y1(Ser1248) mAb (cat# 8713), PLC-y1 pAb (cat# 28225S),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mAb (cat# 2118), HRP labeled goat anti-rabbit
IgG and goat anti-mouse IgG were purchased from Cell Signaling Technology (Danvers, MA, USA).
EGER polyclonal antibody (pAb) (cat# A11577) and 3-Tubulin Rabbit pAb (cat# AC015) were provided
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by ABclonal Technology (Woburn, MA, USA). All the primary antibodies employed for Western
blots were at a 1:1000 dilution. The chemical inhibitors used in this study, U73122 (cat# HY-13419),
Gefitinib [28] (cat# HY-50895), and LY294002 [28] (cat# HY-10108), were provided by MedChemExpress
(Monmouth Junction, NJ, USA). U73122 is an inhibitor that can specifically inhibit PLC-y1
phosphorylation at Ser1248 [19,29]. Gefitinib is an EGFR inhibitor that can selectively inhibit EGFR
tyrosine kinase activity by binding to the adenosine triphosphate (ATP)-binding site [30]. LY294002
can specifically inhibit Akt phosphorylation by inactivation of its direct activator phosphoinositide
3-kinases (PI3K) [31].

2.3. Cell Viability Assay

Cell viability was assessed by using a Trypan blue exclusion test, as described by Fiorito et al. [32,33],
with modifications. In brief, either A549 or MDBK cells were seeded into flat 24-well plates and
incubated overnight. Confluent cells were exposed to either a DMSO control or the individual
chemicals specified for the time length indicated. The cells were collected after trypsinization,
and an aliquot of the cell suspension was mixed with an equal volume of 0.4% Trypan-blue (0.4%)
(Bio-Rad, Hercules, CA, USA, #1450021). After 10 min, cell numbers were counted by using a Burker
chamber under a light microscope. The percentage of cell viability in the chemical treatment groups
was calculated by normalization of the number of live cells to that in the control samples. The cell
viability of the mock treated control was arbitrarily assigned as 100%.

2.4. Virus Replication Inhibition Assay

Confluent A549 or MDBK cells in 24-well plates were pretreated with either DMSO control or
indicated inhibitors (Gefitinib, U73122, and LY294002) for 2 h before infection. Cells were then infected
with BoHV-1 (MOI of 1) in the presence of the DMSO control or indicated inhibitors at the concentrations
specified. After inoculation for 2 h, the cells were washed three times using PBS, and fresh DMEM
medium containing either DMSO control or indicated inhibitors was added. After infection for the
time length indicated, the cell cultures were collected, and viral titers were determined in MDBK cells.
The results were expressed as TCID5p/mL calculated using the Reed—Muench method.

2.5. Western Blotting Analysis

A549 cells in 60 mm dishes were mock-infected or infected with BoHV-1 at an MOI of 1 for
24, 36, or 48 h. Cells were lysed with RIPA buffer (1 x PBS, 1% NP-40, 0.5% sodium deoxycholate,
and 0.1% SDS) supplemented with a protease inhibitor cocktail. Cell lysates were clarified by
centrifugation at 16,000 g for 10 min. The clarified supernatant was subjected to Western blotting
analysis using the antibodies specified. GAPDH was probed as a protein loading control. The intensity
of the detected protein bands was quantitatively analyzed with the free software Image] (https:
//imagej.nih.gov/ij/download.html), and was normalized to the protein loading control; each analysis
was compared with that of the uninfected control, which was arbitrarily set as 1.

3. Results

3.1. BoHV-1 Productive Infection in Cell Culture Leads to EGFR Activation

In order to characterize whether EGFR was activated during infection of A549 cells, protein
levels of phospho-EGFR at Tyr1068 (Y1068), a known inducible autophosphorylation site correlated
with EGFR kinase activity, was detected via Western blot at 24, 36, and 48 hpi, as determined
elsewhere [15]. We found that the levels of phospho-EGFR(Y1068) were dramatically elevated
following BoHV-1 infection at all time points sampled (Figure 1A). Quantitative analysis indicated that
phospho-EGFR(Y1068) levels increased approximately 6.5, 13.3, and 25.3-fold after infection for 24, 36,
and 48 h, respectively (Figure 1B). Steady-state EGFR protein levels were not affected at 24 and 36 h
post-infection (hpi), but after infection for 48 h they were decreased to approximately 20% relative
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to the uninfected control (Figure 1C,D). This depletion of EGFR at 48 hpi may reflect the virus host
shutoff function. These results suggest that BoOHV-1 infection stimulated EGFR activation, which was
not dependent on the steady-state EGFR protein levels.
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Figure 1. BoHV-1 infection in A549 cells stimulated EGFR phosphorylation (A,C) Confluent A549 cells
in 60 mm dishes were infected with BoHV-1 at an MOI of 1. After infection for 24, 36, or 48 h, cell lysates
were analyzed by Western blotting to detect phosphorylated-EGFR(Y1068) (A) and EGFR (C). Data are
representative of three independent experiments. (B,D) The relative band intensity was analyzed
with software Image], and each analysis was compared with that of an uninfected control, which was
arbitrarily set as 1. Significance was assessed with a Student’s t-test (* p < 0.05); ns: not significant.

We further explored the effects of BoHV-1 productive infection on EGFR signaling in bovine kidney
cells (MDBK cells). As can be seen in Figure 2A, sustained activation of EGFR was stimulated during
virus infection in MDBK cells, with phospho-EGFR(Y1068) protein levels increased to approximately
3.8-, 7.6-, 8.9-, and 6.1-fold relative to the uninfected control at 4, 8, 12, and 24 hpi, respectively
(Figure 2B). Steady-state EGFR protein levels were significantly decreased at 24 hpi (Figure 2C),
reduced to approximately 50% relative to the uninfected control (Figure 2D). In addition, relative to
the mock-infected cells at 0 h, steady-state EGFR protein levels in the uninfected cells were consistently
increased more than 4-fold from 4 to 24 h. It is probable that higher levels of EGFR were induced to
overcome the adverse effects of serum starvation. These data suggest that BoHV-1 infection in MDBK
cells also leads to the activation of EGFR, with a similar trend observed in virus-infected A549 cells.

3.2. EGFR Inhibitor Decreased BoHV-1 Infection in Cell Culture

As our previous results demonstrated that BoHV-1 productive infection led to activation of EGFR
in both A549 and MDBK cells, we next investigated whether EGFR signaling played an important role
in virus infection. To address this question, we treated virus-infected A549 cells with the chemical
inhibitor Gefitinib, a known selective inhibitor of EGFR tyrosine kinase [30]. We first confirmed
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that Gefitinib at a concentration of 10 uM did not show apparent cytotoxicity in A549 cells after
treatment for 48 h ([15] and Figure 3A,D upper panel). As expected, 10 uM Gefitinib significantly
inhibited the activation of EGFR induced by virus infection at 36 hpi (Figure 3B) Relative to the DMSO
control, 10 uM Gefitinib had no observable effects on virus replication at 24 hpi, but at 36 and 48 hpi
the virus titers were reduced by approximately 1.4- and 1.7-logs, respectively (Figure 3C). Ten pM
Gefitinib moderately reduced virus infection-induced cytopathology effects at 24 and 48 hpi (Figure 3D,
lower panel), which confirmed that the reduced virus yield by Gefitinib was not due to cytotoxicity in
Ab549 cells. A time-of-addition assay indicated that when 10 uM Gefitinib was added at 0, 3, or 8 hpi,
approximately 10-fold less virus production was consistently observed (Figure 3E,F). Collectively,
these data show that an EGFR inhibitor inhibited BoHV-1 titers in A549 cells, modulating the virus
post-entry stage(s).

We then investigated the effects of EGFR on virus infection in MDBK cells. Ten uM Gefitinib
showed no cytotoxicity to MDBK cells after treatment for 24 h (Figure 4A,D, upper panel). As expected,
the activation of EGFR induced by virus infection at 24 hpi was significantly blocked by 10 uM
Gefitinib (Figure 4B). After infection for 24 h, virus titers were significantly inhibited by 10 uM Gefitinib,
which was reduced by approximately 1-log, as detected in comparison to that of the MDSO control
(Figure 4C). When the cell morphology was examined, 10 uM Gefitinib had minor effects on alleviating
the virus infection-induced cytopathology effects in MDBK cells (Figure 4D, lower panel), supporting
that the reduced viral titers in Gefitinib-treated cells were not due to the cytotoxicity to MDBK cells.
Overall, these results indicate that BoHV-1 infection leads to the activation of EGFR in both A549 and
MDBK cells, which in turn plays an important role in virus infection.
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Figure 2. BoHV-1 productive infection in MDBK cells stimulated EGFR phosphorylation.
(A,C) Confluent MDBK cells in 60 mm dishes were infected with BoHV-1 at an MOI of 1. After infection
for4,8,12, or 48 h, cell lysates were analyzed by Western blotting to detect phosphorylated-EGFR(Y1068)
(A) and EGEFR (C). Data is representative of two or three independent experiments. (B,D) The relative
band intensity was analyzed with Image J software, and each analysis was compared with that of the
uninfected control, which was arbitrarily set as 1. Significance was assessed with a Student’s t-test
(* p < 0.05); ns: not significant.
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Figure 3. The EGFR inhibitor Gefitinib affected BoHV-1 replication in A549 cells. (A) A549 cells
in 24-well plates were treated with Gefitinib at a concentration of 10 uM for 48 h. The cytotoxicity
of Gefitinib was then analyzed by the Trypan-blue exclusion test. (B) A549 cells in 60 mm dishes
pretreated with either the DMSO control or Gefitinib (10 uM) were infected with BoHV-1 (MOI = 1)
in the presence of DMSO control or Gefitinib, respectively. After infection for 36 h, the cell lysates
were prepared and p-EGFR(Y1068) was detected by Western blot. (C) A549 cells in 24-well plates
pretreated with either DMSO control or Gefitinib (10 uM) were infected with BoHV-1 (MOI = 1) in
the presence of DMSO control or Gefitinib, respectively. After infection for 24, 36, or 48 h, the cell
cultures were collected and virus titers were determined in MDBK cells. (D) A549 cells in 24-well plates
were infected with BoHV-1 (MOI = 1) for 24 and 48 h, with or without Gefitinib (10 uM) treatment.
The cell morphology was observed under a light microscope. Images shown are representative of two
independent experiments (magnification: 200x). (E) Diagram showing five different experimental
conditions in the time-of-addition assay: (I) DMSO treatment from —1 to 36 hpi, (II) Gefitinib treatment
from —1 to 36 hpi, (III) Gefitinib treatment from 0 to 36 hpi, (IV) Gefitinib treatment from 3 to 36 hpi,
and (V) Gefitinib treatment from 8 to 36 hpi. (F) Viral titer for the time-of-addition assay. Results are
the mean of three independent experiments, with error bars showing standard deviations. Significance
was assessed with student ¢-test (* p < 0.05); ns: not significant.
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Figure 4. The EGFR inhibitor Gefitinib affected BoHV-1 replication in MDBK cells. (A) MDBK cells
in 24-well plates were treated with Gefitinib at a concentration of 10 uM for 24 h. The cytotoxicity
of Gefitinib was then analyzed by a Trypan-blue exclusion test. (B) MDBK cells in 60 mm dishes
pretreated with either DMSO control or Gefitinib (10 uM) were infected with BoHV-1 (MOI = 1) in the
presence of DMSO control or Gefitinib, respectively. After infection for 24 h, cell lysates were prepared
and p-EGFR(Y1068) was detected by Western blot. (C) MDBK cells in 24-well plates pretreated with
either DMSO control or Gefitinib (10 uM) were infected with BoHV-1 (MOI = 1) in the presence of
DMSO control or Gefitinib, respectively. After infection for 24 h, cell cultures were collected and virus
titers were determined in MDBK cells. Results are the mean of three independent experiments, with
error bars showing standard deviations. Significance was assessed with a Student’s t-test (* p < 0.05);
ns: not significant. (D) MDBK cells in 24-well plates, either with or without BoHV-1 infection (MOI = 1),
were treated with Gefitinib (10 uM) for 24 h. The cell morphology was observed under a light
microscope. Images shown are representative of two independent experiments (magnification: 200x).

3.3. Potential Involvement of EGFR Signaling in the Activation of PLC-y1 by BoHV-1 Infection in A549 Cells

To more closely investigate the EGFR signaling pathway, we next examined the phosphorylation
levels of PLC-y1 at S1248 in BoHV-1-infected A549 cells, and found these levels to be consistently
increased at 24, 36, and 48 hpi (Figure 5A). Quantitative analysis indicated that the levels of
PLC-y1(51248) were increased by approximately 4-, 5.5-, and 8.9-fold relative to the control, as detected
at 24, 36, and 48 hpi, respectively (Figure 5B). PLC-y1 steady-state protein levels were not affected until
after infection for 48 h (Figure 6A), which at this time point were reduced to approximately 60% relative
to the control (Figure 6C). Taken together, the increased phosphorylation levels of PLC-y1 attributed to
virus infection were not due to increased PLC-y1 steady-state protein levels, supporting that BoHV-1
productive infection in A549 cells led to sustained activation of PLC-y1 at 24, 36, and 48 hpi.

We then investigated whether PLC-y1 signaling affected BoHV-1 replication in A549 cells, using the
PLC-y1 specific inhibitor U73122 as reported previously [19,29,34]. U73122 at a concentration of 2.5 uM
did not show overt cytotoxicity in A549 cells after incubation for 48 h (Figure 5D). The phosphorylation
of PLC-y1 at 51248 induced by virus infection was significantly blocked at 36 hpi (Figure 5E), suggesting
that U73122 could inhibit the activity of PLC-y1. Relative to the DMSO control, 2.5 pM U73122 inhibited
virus titers at 36 hpi, with titers reduced by ~1 log (Figure 5F). These results suggest that BoHV-1
productive infection in A549 cells leads to the activation of PLC-y1, which is important for efficient
viral infection.

To investigate whether BoHV-1 infection stimulated PLC-y1 through EGFR, virus-infected A549
cells were treated with either DMSO control or the EGFR inhibitor Gefitinib. Total cell lysates were
then analyzed by Western blotting to detect the variation of PLC-y1(51248). We found that virus
infection-stimulated PLC-y1 was significantly inhibited by Gefitinib (Figure 6A). Quantitative analysis
indicated that PLC-y1(51248) levels were consistently reduced to more than 50% relative to the control,
detected at 24, 36, and 48 hpi, respectively (Figure 6B-D). In the context of virus infection, Gefitinib
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showed no effect on PLC-y1 steady-state protein expression at any time point examined (Figure 6E-H),
suggesting that the decreased PLC-y1(51248) levels by Gefitinib were not due to the reduction of total
PLC-y1 expression. These data indicate a potential role of EGFR in the activation of PLC-y1 attributed
to BoHV-1 infection.

3.4. The Activation of Akt Signaling in BoHV-1-Infected A549 Cells is Independent of EGFR

Akt, a canonical downstream effector of the EGFR pathway, is important for BoHV-1 infection in
MDBK cells [35-37], but its role during virus infection in A549 cells has been unknown. To address
this question, we initially detected whether Akt signaling was activated in BoHV-1-infected A549
cells. As can be seen in Figure 7A, the phosphorylation of Akt at 5473 was consistently enhanced
at 24, 36 and 48 hpi. However, the levels of total Akt gradually decreased following virus infection,
with reductions to 57.6%, 46.8%, and 25.6% at 24, 36, and 48 hpi, respectively, compared to uninfected
cells (Figure 7A,B). These results support that virus infection in A549 cells also stimulates Akt signaling.
As observed in virus-infected MDBK cells [37], Akt was activated after infection for 0.5 and 1.0 h
(Figure 7C).
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Figure 5. BoHV-1 infection in A549 cells stimulated PLC-y1 signaling. (A) A549 cells in 60 mm dishes
were mock-infected or infected with BoHV-1 (MOI = 1) for 24, 36, or 48 h. The cell lysates were then
prepared for Western blots to detect p-PLC-y1(S1248), PLC-y1, and GAPDH. (B,C) The relative band
intensity of both p-PLC-y1(51248) (B) and PLC-y1 (C) was analyzed with Image] software, and each
analysis was compared with that of the uninfected control which was arbitrarily set as 1. (D) A549 cells
in 24-well plates were treated with U73122 at a concentration of 2.5 uM for 48 h. Cytotoxicity was then
analyzed by a Trypan-blue exclusion test. (E) A549 cells in 60 mm dishes pretreated with either DMSO
control or U73122 (2.5 pM) were infected with BoHV-1 (MOI = 1) in the presence of a DMSO control
or U73122, respectively. After infection for 36 h, the cell lysates were prepared and p- PLC-y1(51248)
was detected by Western blot. (F) A549 cells in 24-well plates pretreated with either DMSO control or
U73122 (2.5 uM) were infected with BoHV-1 (MOI = 1) in the presence of DMSO control or U73122,
respectively. After infection for 36 h, cell cultures were collected and virus titers were determined in
MDBK cells. Results are the mean of three independent experiments, with error bars showing standard
deviations. Significance was assessed with a Student’s t-test (* p < 0.05); ns: not significant.
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Figure 6. The activation of PLC-y1 signaling in BoHV-1-infected A549 cells is inhibited by EGFR
inhibitor Gefitinib. (A) A549 cells in 60 mm dishes pretreated with either DMSO or Gefitinib (10 pM)
were infected with BoHV-1 (MOI = 1) in the presence of the indicated chemical. After infection for 24,
36, or 48 h, cell lysates were prepared and subjected to Western blot to detect p-PLC-y1(51248) (A) and
PLC-v1 (E), respectively. (B-D, F-H) The relative band intensity was analyzed with Image] software,
and each analysis was compared with that of the uninfected control, which was arbitrarily set as 1.
Data shown are representative of three independent experiments. Significance was assessed with a
Student’s t-test (* p < 0.05).

We then investigated whether Akt signaling was necessary for BoHV-1 replication in A549 cells
using the Akt-specific inhibitor Ly294002. Five pM Ly294002 did not show cytotoxicity in A549 cells
after treatment for 48 h (Figure 7D). As expected, the activation of Akt induced by virus infection at
36 hpi was significantly blocked by 5 uM Ly294002 (Figure 7E). Relative to the DMSO control, 5 pM
Ly294002 did not show inhibitory effects on virus titers detected at either 36 or 48 hpi (Figure 7F).
Consistent with our previous report that BoHV-1 infection in MDBK cells stimulated Akt at 24 hpi [37]
(Figure 7G). Ly294002 at a concentration of 5 uM showed no cytotoxicity to MDBK cells (Figure 7F),
but it significantly inhibited the activation of Akt stimulated by virus infection and BoHV-1 titers,
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as detected at 24 hpi (Figure 7G,I). Taken together, these data show that BoHV-1 infection led to
activation of Akt during infection of both A549 cells and MDBK cells, but was important for virus
infection in MDBK cells but not in A549 cells, suggesting that Akt signaling affected BoHV-1 infection
in cell type-specific manner.
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Figure 7. BoHV-1 infection stimulated Akt for efficient replication in a cell type-specific manner.
(A) A549 cells in 60 mm dishes were mock-infected or infected with BoHV-1 (MOI = 1) for 24, 36, or 48 h.
The cell lysates were prepared for Western blot to detect p-Akt(S473) and Akt. (B) The relative band
intensity of Akt was analyzed with Image] software, and each analysis was compared with that of
uninfected control, which was arbitrarily set as 1. (C) A549 cells in 60 mm dishes were mock-infected
or infected with BoHV-1 (MOI = 1) for 0.5 and 1 h. The cell lysates were then prepared for Western blot
to detect p-Akt(5473). (D,H) Either A549 or MDBK cells in 24-well plates were treated with Ly294002
at a concentration of 5 uM for 48 and 24 h, respectively. The cytotoxicity was then analyzed by a
Trypan-blue exclusion test. (E) A549 cells in 60 mm dishes pretreated with either DMSO control or
Ly294002 (5 uM) were infected with BoHV-1 (MOI = 1) in the presence of a DMSO control or Ly294002,
respectively. After infection for 36 h, cell lysates were prepared and p-Akt(5473) was detected by
Western blot. (F) A549 cells in 24-well plates pretreated with either a DMSO control or Ly294002 (5 uM)
were infected with BoHV-1 (MOI = 1) in the presence of DMSO or Ly294002, respectively. At 36 and
48 hpi, cell cultures were collected and virus titers were determined in MDBK cells. (G) MDBK cells in
60 mm dishes pretreated with either the DMSO control or Ly294002 (5 M) were infected with BoHV-1
(MOI = 1) in the presence of DMSO control or Ly294002, respectively. After infection for 24 h, the cell
lysates were prepared and p-Akt(5473) was detected by Western blot. (I) MDBK cells in 24-well plates
pretreated with either the DMSO control or Ly294002 (5 uM) were infected with BoHV-1 (MOI = 1) in
the presence of DMSO or Ly294002, respectively. At 24 hpi, cell cultures were collected and virus titers
were determined in MDBK cells. Data and error bars denote the variability between three independent
experiments. Significance was assessed with a Student’s t-test (* p < 0.05); ns: not significant.



Viruses 2020, 12, 927 11 of 16

To characterize whether Akt was stimulated during BoHV-1 infection through EGFR, virus-infected
Ab549 cells were treated with the EGFR specific inhibitor Gefitinib throughout infection, and levels
of Akt(5473) were assessed by Western blot. We found that in virus-infected cells, treatment with
Gefitinib did not show inhibitory effects on either the levels of Akt(5473) or the steady-state Akt protein
(Figure 8A-H). Collectively, these data provide evidence that in BoHV-1-infected A549 cells, activation
of Akt was not completely dependent on the canonical upstream activator EGFR. An EGFR-independent
mechanism for the activation of Akt might be employed in virus-infected A549 cells.
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Figure 8. Activated Akt stimulated by BoHV-1 infection in A549 cells was inhibited by the EGFR
inhibitor Gefitinib. (A) A549 cells in 60 mm dishes pretreated with either DMSO or Gefitinib (10 uM)
were infected with BoHV-1 (MOI = 1) in the presence of the chemical indicated. After infection for
24, 36, or 48 h, cell lysates were prepared and subjected to Western blot to detect p-Akt(5473) (A) and
Akt (E). (B-D) and (F-H) The relative band intensity was analyzed with Image] software, and each
analysis was compared with that of the uninfected control which was arbitrarily set as 1. Data shown
are representative of two or three independent experiments. Significance was assessed with a Student’s
t-test; ns, not significant.
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4. Discussion

Accumulated studies have demonstrated that a large number of viruses usurp EGFR signaling
with diverse mechanisms to build a favorable cellular environment for efficient entry, as reviewed
previously [38]. For example, EGFR acts as a co-receptor for the entry of both human cytomegalovirus
(HCMV) and adeno-associated virus 6 (AAV6) [39,40], and the EGFR/PI3K/MEK/Rock/cofilin cascade
is manipulated by HSV-1 to promote F-actin polymerization for efficient entry into neuronal cells [41].
Prior studies in the literature are generally in agreement that EGFR plays a critical role in the entry
stages for most viruses [16,38]. As such, we hypothesized that EGFR-mediated virus entry represents
a versatile mechanism that might also apply to BoHV-1. Here, we reported that BoHV-1 infection
activates EGFR signaling in two cell types (MDBK and A549 cells), which in turn play an important role
in the virus infection (Figures 1-4). To further our understanding of the role of EGFR signaling during
virus infection, we performed a time-of-addition assay, and found that post-entry stages were also
affected by the EGFR-specific inhibitor Gefitinib during infection of A549 cells (Figure 3). This result
was not surprising, as it has been reported previously that upon stimulation, activated EGFR can
translocate into the nucleus, where it acts as a transcription factor by binding to and activating AT-rich
consensus DNA sequences [42,43], regulating the expression of host genes, such as the peroxisome
proliferator-activated receptor y coactivator-1a (PGC-1c) gene [44,45]. Of note, the BoHV-1 genome
possesses an abundance of A-T rich sequences. Whether EGFR could bind directly to the viral
genome to regulate pertinent gene transcription is an interesting issue that warrants further study
with CHIP-seq. Moreover, viral genome replication and viral particle assembly, as well as virus
budding and egress, are potentially affected by EGFR inhibition, an additional area deserving of
subsequent investigation.

Ligand binding induces the phosphorylation of EGFR in the conserved cytoplasmic domain
having protein—tyrosine kinase activity, which allows multiple adaptor and effector proteins to bind
through their Src homology 2 domains, leading to the activation of downstream signaling cascades,
including phosphatidylinositide 3-kinases (PI3Ks)/Akt and PLC-y1, as reviewed previously [38].
In line with this recognized paradigm, we found that virus infection activated PLC-y1 partially
through EGFR, as treatment with the EGFR specific inhibitor Gefitinib led to a significant inhibition of
PLC-y1 phosphorylation in virus-infected cells (Figure 6). In addition, in the presence of Gefitinib,
residual PLC-y1(51248) levels were approximately two-fold higher than those during mock infection,
and Gefitinib could not completely extinguish virus infection (Figure 5). We assumed that either
viral proteins or viral nucleic acid may have the capacity to stimulate PLC-y1 independent of EGFR,
which need further studies in the future.

In contrast to the canonical paradigm, Gefitinib did not show inhibitory effects on the activation of
Akt attributed to virus infection (Figure 8), an indicator of PI3K activity, suggesting that EGFR signaling
is not the exclusive upstream activator of the PI3K/Akt cascade in the context of virus infection. This is
not surprising, because the activation of Akt by HSV-1 UL46 encoded proteins has been reported
previously [46]. As HSV-1 is genetically close to BoHV-1, it is plausible that selected proteins encoded
by BoHV-1 may also have the capacity to activate Akt, which was not inhibited by Gefitinib.

The PI3K/Akt pathway is exploited by multiple viruses for efficient replication (reviewed in [47]).
In this study, we show that Ly294002, a widely used Akt-specific inhibitor, inhibited BoHV-1 titers
in MDBK cells but not in A549 cells (Figure 7E]I), suggesting that Akt affects BoHV-1 infection in
a cell type-specific manner. The established bovine cell line MDBK is derived from the kidney of
an apparently normal adult Bos Taurus, while the human cell line A549 was generated through
explant culture of lung carcinomatous tissue [48]. The diverse origins (human vs. Bos Taurus and
lung vs. kidney) and biological characters (carcinoma vs. normal) of these two cell cultures may
partially account for the distinct effects of Akt activation during virus replication. Interestingly, this is
not the first report to show that PI3K/Akt signaling had no effect on virus efficient infection, as it
has been previously reported that Ly294002 had no effects on porcine reproductive and respiratory
syndrome virus (PRRSV) propagation in MARC-145 cells [49]. Here, for the first time, we show
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that Akt-specific inhibitor LY294002 has effects on BoHV-1 infection in a cell type-dependent manner.
Considering that pro-survival cellular signaling pathways are generally important for either the
establishment or maintenance of BoHV-1 latency, and that EGFR is also expressed in the trigeminal
ganglion [50], a critical site for establishment of BoHV-1 latency and reactivation cycles, subsequent
study of the role of EGFR in BoHV-1 latency- reactivation cycles in vivo is warranted.

BoHV-1 represents a promising oncolytic vector, having the capacity to infect a diversity of human
tumor cells, including A549 cells [7,9,51,52]. Currently, the mechanism(s) underlying the oncolytic
effects and how tumor cells support virus infection is poorly understood. In this study, we show
for the first time that the EGFR/PLC-y1 cascade is activated during BoHV-1 virus infection in A549
cells for efficient replication (Figure 1, Figure 3, Figure 5, and Figure 6). Although Akt signaling is
activated in virus-infected A549 cells, it is not necessary for efficient virus replication (Figure 7F).
These data add to our knowledge of how EGFR signaling transduction affects productive virus infection
in A549 cells, which contributes to our understanding of the oncolytic effects of this virus. So far,
great effort has been directed toward developing anticancer agents with the capacity to interfere with
EGEFR activity, based on the theory that EGFR signaling is important for the progression of diverse
cancers [53,54]. Here, we show that even though the pro-survival signaling EGFR was activated due to
BoHV-1 infection in A549 cells, cell death was still induced (Figure 3D). These results support that
BoHV-1 oncolytic effects do not follow the recognized paradigm that an agent having anti-EGFR
activity is ideal for anticancer treatment. Of note, during virus infection, numerous viral products,
including virus protein and nucleic acid, were abundantly introduced into the cells. These viral
products may cooperatively account for this discrepancy. Therefore, there is a need to more closely
study the mechanism(s) governing the oncolytic effects of BoHV-1 and their cell type-specific inhibition
of EGFR activity.

5. Conclusions

In summary, in this study, for the first time we provide evidence that BoHV-1 infection stimulates
the EGFR/PLC-y1 cascade in A549 cells, which in turn is important for efficient virus replication.
Though Akt is stimulated in both BoHV-1-infected A549 cells and MDBK cells, it modulates BoHV-1
infection in a cell type-specific manner. These novel findings contribute to our understanding of how
EGEFR and its canonical downstream effectors (PLC-y1 and Akt) are manipulated during BoHV-1
productive infection in diverse cell types. Furthermore, we found that even though pro-survival
EGEFR signaling was activated in A549 cells following BoHV-1 infection, cell death was still induced,
supporting that increased EGFR activity is not positively associated with BoHV-1 oncolytic effects.
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