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Bacterial pathogens are a major cause of infectious diseases in aquatic animals.
The abuse of antibiotics in the aquatic industry has led to the proliferation of
antibiotic resistance. It is therefore essential to develop more effective and safer
strategies to increase the efficacy and extend the life span of the antibiotics used
in aquaculture. In this study, we show that six aquaculture bacterial pathogens (i.e.,
Aeromonas hydrophila, Vibrio alginolyticus, Edwardsiella tarda, Streptococcus iniae,
Vibrio harveyi, and Vibrio fluvialis) in the stationary phase can be rapidly killed after
immersion in gentamicin- or neomycin-containing, ion-free solutions for a few minutes.
Such hypoionic shock treatment enhances the bacterial uptake of gentamicin in an
ATP-dependent manner. Importantly, we demonstrate, as a proof of concept, that
gentamicin under hypoionic shock conditions can effectively kill A. hydrophila in vivo
in a skin infection model of zebrafish (Danio rerio), completely curing the infected
fish. Given that pathogenic bacteria generally adhere to the skin surface and gills of
aquatic animals, our strategy is of potential significance for bacterial infection control,
especially for small-scale economic fish farming and ornamental fish farming. Further,
the combined treatment can be completed within 5 min with a relatively small volume
of solution, thus minimizing the amount of residual antibiotics in both animals and
the environment.

Keywords: aquaculture bacteria, persister, antibiotic tolerance, aminoglycoside, gentamicin, neomycin,
hypoionic shock, zebrafish

INTRODUCTION

Aquaculture is the fastest-growing animal food industry at present and provides human society
with one of the most sustainable forms of edible protein and nutrient production, making it
a fundamental part of future food production (Froehlich et al., 2018). Similar to other animal
production sectors, fish production relies on intensive and semi-intensive cultivations, which result
in increased disease outbreaks (Little et al., 2016; Kotob et al., 2017). Fish diseases are often caused
by bacteria, viruses, fungi, parasites, or a combination of these pathogens, with bacterial pathogens
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being the most common etiology (Dhar et al., 2014; Lafferty
et al., 2015). Given that bacteria can survive well in aquatic
environments independent of a host, bacterial diseases have
become major impediments to aquaculture (Haenen et al.,
2013). Various effective vaccines have been developed against
many fish bacterial pathogens. Nevertheless, some infectious
bacterial diseases that cannot be controlled using conventional
inactivated vaccines are threatening aquaculture (Tafalla et al.,
2013). In addition, attenuated bacterial vaccines can potentially
revert to a pathogenic form, which poses a tremendous risk to
the whole environment (Matsuura et al., 2019). Furthermore,
some bacterial pathogens are difficult to culture or completely
unculturable, making them unsuitable for vaccine development
(Takano et al., 2016).

Antibiotics are widely used to prevent and control bacterial
diseases in aquaculture (Cabello et al., 2016; Santos and Ramos,
2018). Nevertheless, long-term antibiotic usage, particular
overuse and misuse, has led to the emergence and proliferation
of antibiotic resistance (Baym et al., 2016; Du et al., 2019).
Improving the efficacy of antibiotics is a promising strategy
for extending the life span of current antibiotic drugs (Levy
and Marshall, 2004; Nambiar et al., 2014). Previously, we found
that treatment in non-electrolyte (e.g., glycerol) solutions or in
ultrapure water exhibits a potentiation effect on the killing of
bacteria by aminoglycosides, while treatment in strong electrolyte
(e.g., NaCl) solutions barely exhibits any potentiation effects
(Jiafeng et al., 2015). In particular, stationary-phase Escherichia
coli cells can be killed after treatment in aminoglycoside-
containing ultrapure water for only 1–2 min (Jiafeng et al., 2015).
It should be noted that bacteria enter a non-growth state defined
as a stationary phase when nutrients are insufficient in their living
surroundings (Navarro Llorens et al., 2010), and stationary-phase
bacteria are much more resistant than exponential-phase cells
to destruction by antibiotics (Levin and Rozen, 2006; McCall
et al., 2019). Furthermore, we showed that such hypoionic shock
(i.e., the absence of ions) could dramatically potentiate the killing
of nutrient shift- or starvation-induced E. coli persister cells by
aminoglycosides in 3 min (Chen et al., 2019).

Here, we investigated whether this unique approach can kill
aquaculture bacterial pathogens, given that bacterial pathogens
usually infect fish by attaching to their skin surface, gills,
and gut lining, which are always in intimate contact with the
surrounding water (Benhamed et al., 2014). We show that
six aquaculture bacterial pathogens (i.e., Aeromonas hydrophila,
Vibrio alginolyticus, Edwardsiella tarda, Streptococcus iniae,
Vibrio harveyi, and Vibrio fluvialis) in the stationary phase
are killed rapidly in vitro by gentamicin and neomycin under
hypoionic shock conditions. Importantly, we demonstrate the
in vivo efficacy of the new approach against A. hydrophila
infections in a zebrafish model.

MATERIALS AND METHODS

Strains, Media, and Reagents
The aquatic bacterial strains used in this study consisted
of five Gram-negative bacteria (i.e., Aeromonas hydrophila,

Vibrio alginolyticus, Edwardsiella tarda, Vibrio harveyi, and
Vibrio fluvialis) and one Gram-positive strain (i.e., Streptococcus
iniae). The sources of all aquatic bacterial strains and their
relevant characteristics are listed in Supplementary Table S1.
Bacteria were cultured in Lysogeny broth (LB) medium at
37◦C (V. alginolyticus, E. tarda, V. harveyi, and V. fluvialis)
or 30◦C (A. hydrophila and S. iniae) in a shaker (220 rpm).
The antibiotics used in this study were gentamicin and
neomycin. Other chemicals used included carbonyl cyanide
m-chlorophenyl hydrazone (CCCP) and its analog carbonyl
cyanide-trifluoromethoxyphenyl hydrazone (FCCP), as well as
eugenol (an anesthetic for zebrafish). The information for
the antibiotics and chemicals used in the study is presented
in Supplementary Table S2. All chemical reagents were of
analytical purity.

Antibiotic Tolerance Test for Six Aquatic
Bacterial Cells in Stationary Phase
In brief, the aquatic bacterial strains from frozen stock listed in
Supplementary Table S1 were seeded in LB medium at a ratio of
1:1,000 and cultured at 37◦C (V. alginolyticus, E. tarda, V. harveyi,
and V. fluvialis) or 30◦C (A. hydrophila and S. iniae) in a shaker
(220 rpm) for 24 h to prepare stationary-phase cells, as previously
described (Yao et al., 2016; Chen et al., 2019). Each antibiotic
was added to the cultured cells at varying concentrations (refer to
Supplementary Table S2), and the mixture was further agitated
for 5 min or 3 h. Hundred microliters of the treated cells was
washed twice using phosphate-buffered saline (PBS; 0.27 g/L of
KH2PO4, 1.42 g/L of Na2HPO4, 8 g/L of NaCl, and 0.2 g/L
of KCl, pH = 7.4) with centrifugation (13,000 g, 30 s) and
spot-plated onto LB agar dishes at a 10-fold serial dilution in
PBS. After incubation at 37◦C for at least 12 h, the colony-
forming units (CFU) on the dishes were counted after taking a
picture of each dish.

Eradication of Aquatic Bacteria by
Aminoglycosides Under Hypoionic
Shock Conditions
Treatment with aminoglycosides combined with hypoionic shock
was performed as previously described (Jiafeng et al., 2015;
Chen et al., 2019). In brief, 100 µl of stationary-phase cells
was centrifuged (12,000 g, 1 min) in an Eppendorf tube, and
the medium was completely removed. Cell pellets were re-
suspended in ultrapure water (i.e., without the presence of
ions; 0.9% NaCl solution was used as the negative control)
containing gentamicin or neomycin at the concentrations listed
in Supplementary Table S2. Ultrapure water was prepared by
Milli-Q R© Advantage A10 (Millipore). The cell suspension was
kept at room temperature (i.e., 25◦C) for 5 min, and the cells
were washed twice with PBS before spot-plating on LB agar dishes
for cell survival assays as described above. Similarly, the effect of
ATP was evaluated by agitating the cell culture in the presence
of 20 µM of protonophore CCCP or FCCP for 1 h before the
combined treatment.
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Intracellular ATP Level Assay
A luciferase-based kit (BacTiter-GloTM, Promega, G8231) was
used to measure ATP levels according to the manufacturer’s
instructions. Briefly, stationary-phase cells, with or without
20 µM of protonophore CCCP or FCCP pretreatment for 1 h,
were quickly mixed with the working solution at equal volumes
and then transferred to a 96-well plate before light recording on a
FLUOstar Omega Microplate Reader using a Luminometer.

Assay for the Uptake of
Fluorescent-Labeled Gentamicin
A fluorescent probe (Ex580 nm, Em600−700 nm) was attached
to gentamicin as we recently reported (Wu et al., 2020). After
salts were removed through dialysis, the fluorescent-labeled
gentamicin was dissolved in ultrapure water at 100 µg/ml for the
treatment of A. hydrophila or V. alginolyticus cells as described
above. The cells were then washed twice with PBS and re-
suspended in 500 µl of cell wall-digestion buffer (30 mM of
Tris–HCl, pH 8.0, 1 mM of EDTA, 1 mg/ml of lysozyme) for
further incubation at room temperature for 5 h. The cells were
subjected to three cycles of freezing treatment at−80◦C, followed
by thermal denaturation at 90◦C for 10 min (note: we confirmed
that gentamicin had high thermal stability; Chen et al., 2019),
and then centrifuged to remove the cell debris and denatured
proteins. Afterward, an equal volume of supernatant containing
fluorescent-labeled gentamicin was placed in a quartz cuvette,
and the fluorescence intensity in the supernatant was determined
with a fluorescence spectrometer (Spectrofluorometer FS5,
EDINBURGH). In addition, the amount of fluorescent-labeled
gentamicin uptaken by CCCP or FCCP-pretreated cells was
measured. A standard curve was prepared by directly adding
fluorescent-labeled gentamicin at different concentrations (0, 25,
50, and 100 µg/ml) to persister cells suspended in cell wall
digestion buffer. All procedures described above were performed
under dim lighting to prevent fluorescence quenching.

Animal Experiments
Zebrafish were purchased from Fuzhou aquarium market and
acclimated for 2 weeks before infection. The zebrafish were
handled according to the procedures defined by the Animal
Ethical and Welfare Committee of Fujian Normal University
(approval no. IACUC 20190006, Fuzhou, China). The zebrafish
were anesthetized after being immersed in 45 mg/L of eugenol
for about 8 min (Sánchez-Vázquez et al., 2011). After anesthesia,
the fish were lightly scraped along the lateral surface behind
the pectoral fins with a sterile scalpel to remove several scales
(Neely et al., 2002; Zhang et al., 2016). When the scraped fish
recovered from anesthesia, they were infected by swimming in
water containing 5.0 × 107 CFU/ml of A. hydrophila at 30◦C
for 3 h. Zebrafish infected by A. hydrophila were rinsed with
deionized water for a few seconds and then were randomly
divided into three groups (A: mock group without treatment;
B: treated with gentamicin-containing ultrapure water; and C:
treated with gentamicin-containing 0.9% NaCl solution). The
concentration of gentamicin in animal experiments is 25 µg/ml.
After treatment for 5 min, three fish from each group were

selected randomly, and two-fifths of each fish’s body was cut,
weighed, and homogenized in saline at a ratio of 100 mg/ml
(w/v). The lysates were spot-plated on LB agar dishes for bacterial
survival assays. For quantification, each sample was spot-plated
in triplicate. The injury and survival rates of the zebrafish were
observed 48 h after antibiotics treatment. All experiments were
performed three times. In addition, three fish scraped without
infection were homogenized to count the basal number of
bacteria in the fish themselves.

RESULTS

Five-Minute Hypoionic Shock Treatment
Enables Gentamicin and Neomycin to Kill
Stationary-Phase Aquaculture Bacteria
Bacteria in the stationary phase are highly tolerant to antibiotics
under conventional treatment conditions, presumably due
to stress- or starvation-induced growth arrest (Rittershaus
et al., 2013; Martins et al., 2018). Here, we examined the
antibiotic tolerance of six aquaculture bacteria, specifically
Aeromonas hydrophila, Vibrio alginolyticus, Vibrio fluvialis,
Vibrio harveyi, Edwardsiella tarda, and Streptococcus iniae (with
the concentrations of these cells being 8.6 × 109, 3 × 109,
3.6 × 109, 3.9 × 109, 5.5 × 108, and 3.4 × 108, respectively),
by treating the stationary-phase cells with aminoglycoside
antibiotics dissolved in 0.9% NaCl solution (Figure 1 and
Supplementary Figure S1). In China, gentamicin is widely used,
and neomycin is the only aminoglycoside currently certified
for aquaculture applications (Liu et al., 2017). Therefore, these
two aminoglycosides were evaluated. We found that neither
gentamicin nor neomycin could kill the above bacteria after
incubation for 5 min when dissolved in 0.9% NaCl solution.
When the cells were treated with the antibiotics in 0.9% NaCl
solution for 3 h, the bacteria exhibited different degrees of
antibiotic susceptibility: 3.4 and 31.3% of A. hydrophila were
killed by gentamicin and neomycin, respectively; V. alginolyticus,
V. fluvialis, and V. harveyi were eliminated by 1∼2 orders of
magnitude; E. tarda and S. iniae were killed by gentamycin by
about 4 orders of magnitude.

Bacterial cells in the stationary phase were next treated with
gentamicin- or neomycin-containing ultrapure water for 5 min
for comparison with the antibiotic treatment in 0.9% NaCl
solution (Figure 2 and Supplementary Figure S2). Substantial
amounts of all aquaculture bacteria were killed by neomycin-
containing ultrapure water. Similarly, S. iniae colonies were
undetectable on LB agar dishes after 5 min treatment with
neomycin-containing ultrapure water (as indicated by the
asterisks in Figure 2E), indicating a reduction in the surviving
cells by more than 6 orders or magnitude. Notably, A. hydrophila,
V. alginolyticus, E. tarda, and S. iniae were killed by gentamicin-
containing ultrapure water by 3∼4 orders of magnitude, but only
a very limited potentiation effect was observed on gentamicin
with V. fluvialis and V. harveyi (Supplementary Figure S2B).
In contrast, neither gentamicin nor neomycin had a killing effect
when dissolved in the NaCl solution. These results indicate that
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FIGURE 1 | Antibiotic tolerance of six aquaculture bacteria under conventional treatment conditions. (A–F) Stationary-phase cells of the indicated bacteria
[Aeromonas hydrophila, Vibrio alginolyticus, Vibrio fluvialis, Vibrio harveyi, Edwardsiella tarda, and Streptococcus iniae, (A–F), respectively], which were treated with
gentamicin (Genta) or neomycin (Neo) dissolved in 0.9% NaCl solution for 5 min or 3 h and then spot-plated on Lysogeny broth (LB) agar dishes for cell survival
assays. The concentrations of antibiotics used were as follows: 25 µg/ml of Genta and 50 µg/ml f Neo for S. iniae; 100 µg/ml f Genta and 200 µg/ml f Neo for the
other five bacteria.

hypoionic shock treatment enables aminoglycoside antibiotics to
rapidly reduce stationary-phase aquaculture bacteria.

Hypoionic Shock-Induced Gentamicin
Potentiation Against Aquaculture
Bacteria Is Partially Dependent on ATP
The tolerance of bacteria to antibiotics is closely related to
intracellular ATP levels (Meylan et al., 2017; Shan et al., 2017;
Pu et al., 2019). We next sought to determine whether hypoionic
shock-induced aminoglycoside potentiation against aquaculture
bacteria is affected by the ATP level in the bacterial cells. CCCP
and FCCP are uncouplers of the proton motive force (PMF) that
drives ATP synthesis and thus are able to reduce intracellular

ATP levels (Kinoshita et al., 1984; Tapia et al., 2006). To this end,
we treated aquaculture bacteria (A. hydrophila, V. alginolyticus,
E. tarda, and S. iniae) with CCCP and FCCP for 1 h and then
subjected them to gentamicin treatment under hypoionic shock
conditions (note: V. fluvialis and V. harveyi were not analyzed
here due to a very limited potentiation effect of hypoionic
shock on gentamicin).

Cell survival assays revealed that CCCP, as well as
its functional analog FCCP, efficiently suppressed the
hypoionic shock-induced gentamicin potentiation that kills
stationary-phase aquaculture bacteria in 5 min (Figure 3 and
Supplementary Figure S3). An intracellular ATP assay also
confirmed that pretreatment with CCCP or FCCP significantly
reduced the intracellular ATP levels in all of the bacteria
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FIGURE 2 | Hypoionic shock-induced potentiation of gentamicin and neomycin effects against the six aquaculture bacteria. (A–F) Survival of stationary-phase cells
of Aeromonas hydrophila (A) Vibrio alginolyticus (B), Vibrio fluvialis (C), Vibrio harveyi (D), Edwardsiella tarda (E), and Streptococcus iniae (F) following 5 min
treatment with Genta or Neo dissolved in ultrapure water or 0.9% NaCl. The concentrations of antibiotics used were as follows: 25 µg/ml of Genta and 50 µg/ml of
Neo for S. iniae; 100 µg/ml of Genta and 200 µg/ml of Neo for the other five bacteria. ∗ in Panel F indicates that No CFU detected during cell survival assay by
100000-fold dilution.

evaluated (Figure 3). These results suggest that hypoionic shock-
induced potentiation of gentamicin’s effect against aquaculture
bacteria is, at least, partially dependent on intracellular ATP.

Hypoionic Shock Enhances the Bacterial
Uptake of Gentamicin
Aminoglycoside antibiotics such as gentamicin and tobramycin
must traverse the bacterial cytoplasmic membrane prior to
initiating their lethal effects, and the uptake of aminoglycosides is
facilitated by the PMF or ATP (Taber et al., 1987; Fraimow
et al., 1991; Allison et al., 2011). Therefore, we further
explored whether hypoionic shock treatment affects the
bacterial uptake of gentamicin antibiotics. For this purpose,
fluorescent gentamicin was synthesized by conjugating
coumarin–hemicyanine scaffolds to gentamicin (Wu et al.,
2020). The conjugation did not affect the bactericidal efficacy
of gentamicin (Supplementary Figure S4A). The fluorescent
gentamicin taken up by A. hydrophila or V. alginolyticus

was extracted through cell wall digestion coupled with
cycled freezing/thawing and thermal denaturation and then
subjected to a fluorescence assay. Fluorescent gentamicin at
standard concentrations was directly incubated with bacterial
lysates before a fluorescence assay. The maximal fluorescent
intensity of fluorescent gentamicin was approximately
640 nm (Figure 4A).

A regression analysis (Supplementary Figure S4B) based on
the standards (Figure 4A) showed that the concentration of
gentamicin extracted from A. hydrophila upon hypoionic shock
was approximately 69.58 µg/ml, while that extracted from the
cells treated with 0.9% NaCl solution was only 37.96 µg/ml.
Notably, we found that the amount of gentamicin taken up by
the cells pretreated with CCCP or FCCP was reduced to 60–
70%. Similarly, the concentration of gentamicin extracted from
V. alginolyticus upon hypoionic shock was about 64.45 µg/ml,
which was significantly reduced in NaCl solution or upon
pretreatment with CCCP or FCCP (Figure 4B).
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FIGURE 3 | Hypoionic shock-induced potentiation of gentamicin effects against aquatic pathogenic bacteria is partially dependent on ATP. (A–D) Left parts in each
panel: survival of stationary-phase cells of Aeromonas hydrophila, Vibrio alginolyticus, Edwardsiella tarda, and Streptococcus iniae. Cells were pretreated with CCCP
or FCCP for 1 h and then subjected to 5-min treatment with gentamicin dissolved in ultrapure water. Right parts in each panel: ATP levels in CCCP- or
FCCP-pretreated cells.

Gentamicin Under Hypoionic Shock
Conditions Significantly Improved the
Survival of Zebrafish Infected by
Aeromonas hydrophila
In recent years, zebrafish (Danio rerio) has been used as an
important alternative to mammalian models in the study of
human infectious disease (Allen and Neely, 2010; Meijer and
Spaink, 2011; Sullivan et al., 2017). In order to explore the in vivo
efficacy of combined treatment with hypoionic shock and also
probe the potential application of the combined treatment against
aquaculture bacterial pathogens, a zebrafish infection model was
used in this study. After infection by A. hydrophila (for details,
refer to the “Materials and Methods” section), the zebrafish were
rinsed with deionized water for a few seconds and randomly
divided into three groups before being subjected to different
treatments for 5 min: mock treatment, gentamicin dissolved in
ultrapure water (Genta + H2O), and gentamicin dissolved in
NaCl solution (Genta+ NaCl).

Bacterial cell survival assays revealed that 3.75 × 106 CFU/ml
of A. hydrophila cells from the homogenate of wound tissues
from zebrafish were viable without treatment (mock). Treatment
with Genta + NaCl reduced the number of viable cells to

3.3 × 105 CFU/ml. Strikingly, viable A. hydrophila cells were
almost undetectable when the zebrafish were treated with
Genta + H2O (Figure 5A). These results indicated that short-
term exposure to gentamicin-containing ultrapure water is more
effective at killing bacteria in infected fish than exposure to
gentamicin-containing NaCl solution.

Consistently, we observed that the infection sites in some
fish in the mock group and Genta + NaCl group became red
and swollen 12 h after infection (Figure 5B). Animal survival
assays revealed that approximately 20% of zebrafish in the
control (mock) group began to die 12 h post-infection, and
only about 60% of this group survived 48 h post-infection. In
the Genta + NaCl group, 70% of zebrafish survived 48 h post-
infection. Surprisingly, none of the zebrafish in the Genta+H2O
group died or exhibited swelling (Figure 5C).

DISCUSSION

Outbreaks of infectious disease are considered a significant
constraint in the aquaculture industry, causing more than 10
billion USD worth of losses annually on a global scale (Evensen,
2016). The currently available commercial vaccines are aimed at
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FIGURE 4 | Hypoionic shock enhances the bacterial uptake of fluorescent-labeled gentamicin. (A,B) Left parts: the fluorescence spectra for fluorescent gentamicin
taken up by Aeromonas hydrophila (A) or Vibrio alginolyticus (B) were monitored with a spectrofluorometer. Mock, bacteria lysate without antibiotic treatment. Genta
25–100, standard concentration fluorescence labeled antibiotic (25, 50, and 100 µg/ml) mixed with bacteria lysate. In the Genta-H2O (Genta dissolved in ultrapure
water), Genta-NaCl (Genta dissolved in saline), Genta-H2O-CCCP (CCCP-pretreated and Genta dissolved in ultrapure water), and Genta-H2O-FCCP
(FCCP-pretreated and Genta dissolved in ultrapure water) groups, the fluorescent gentamicin taken up by bacterial cells was monitored with a spectrofluorometer.
(A,B) Right parts: ratios for fluorescent gentamicin uptake in different experimental groups compared with those in the hypoionic shock-treated group (Genta-H2O).

specific animals, for example, some fish and lobsters (Assefa and
Abunna, 2018; Adams, 2019), and cannot be widely administered
to other aquatic animals, especially invertebrates lacking acquired
immunity. Most of the novel alternative biocontrol strategies
for fish bacterial diseases, such as probiotics, bio-encapsulated
vaccines, and phage therapy, are still in the research phase (Pérez-
Sánchez et al., 2018; Soliman et al., 2019). On the contrary,
the activity spectrum, mode of action, resistance mechanisms,
and current applications of most important antibiotic classes
have been well investigated (Mohr, 2016). It is highly desirable
to develop more effective and safer approaches for current
antibiotics. For example, Peng et al. (2015) found that exogenous
glucose or alanine plus kanamycin can kill multidrug-resistant
Edwardsiella tarda both in vitro and in a mouse model for
urinary tract infection. Glycerol monolaurate, lauric acid, 5-
methylindole, and even the commonly used diabetic drug
metformin were found to act synergistically with aminoglycoside
to eliminate Staphylococcus aureus persisters (Hess et al., 2014;
Liu et al., 2020; Sun et al., 2020). Various adjuvants, including
metabolites (Allison et al., 2011; Peng et al., 2015), for antibiotic
potentiation have been well documented (Liu et al., 2019).

Here, we show that hypoionic shock enables gentamicin
and/or neomycin antibiotics to reduce six stationary-phase
aquaculture pathogenic bacteria, consistent with our previous

studies (Jiafeng et al., 2015; Chen et al., 2019). Furthermore,
this hypoionic shock-induced potentiation of gentamicin was
also observed in zebrafish infected with Aeromonas hydrophila.
Mechanistically, the potentiation seems to be achieved by
enhancing the bacterial uptake of gentamicin under hypoionic
shock conditions. Given pathogenic bacteria generally infect fish
on the surface of the skin (Benhamed et al., 2014), our approach
may represent a promising strategy for bacterial infection control
in aquaculture. This approach is eco-friendly, non-toxic, and
non-immunogenic, with the exception of the required operation
to transfer the fish into aminoglycoside-containing ultrapure
water. Currently, a small-scale application of this approach is
being performed in our laboratory.

Our approach is also advantageous with respect to food
safety and environmental health, given that it takes only a few
minutes to complete the treatment; therefore, a smaller amount of
antibiotics and less time for antibiotic exposure are required. As
such, contamination of the environment by residual antibiotics
and/or retention of the antibiotics within animal bodies can be
minimized. Currently, the use of antibiotics in aquaculture leads
to the accumulation of residual antibiotics in sea and freshwater
foods (Song et al., 2017; Chen et al., 2018), which may have
adverse effects on humans (Cabello, 2006). Similarly, residual
antibiotics in water or aquatic sediments may facilitate the spread
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FIGURE 5 | Hypoionic shock facilitates gentamicin killing of Aeromonas hydrophila in a zebrafish model. (A) The survival percentage of the pathogenic bacteria on/in
the zebrafish treated with gentamicin dissolved in ultrapure water (Genta + H2O) or in 0.9% NaCl solution (Genta + NaCl) for only 5 min. The mock groups were not
treated with antibiotics. The number of bacteria on/in the zebrafish before infection was subtracted (Supplementary Figure S5C) from the results for each group.
(B) The gross pathology of zebrafish infected by A. hydrophila at 12 h. The infection site of some fish in the mock groups and salt treatment groups became red and
swollen. (C) The survival percentage of zebrafish infected by A. hydrophila after 48 h.

of antibiotic resistance in environmental bacteria (Gullberg et al.,
2011; Cabello et al., 2016). In addition, compared with the
stimulation of aminoglycoside potentiation by metabolites, which
takes a few hours to manifest (Allison et al., 2011; Peng et al.,
2015), our approach, which does not consume metabolites and
requires only a few minutes, may have certain advantages.
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