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Fetal movement (FM) is an essential physiological parameter to determine the health status of the fetus. To address the problems
of harrowing FM signal extraction and the low recognition rate of traditional machine learning classifiers in FM signal detection,
this paper develops a passive FM signal detection system based on intelligent sensing technology. FM signals are obtained from the
abdomen of the pregnant woman by using accelerometers. +e FM signals are extracted and identified according to the clinical
nature of the features hidden in the amplitude and waveform of the FM signals that fluctuate in duration. +e system consists of
four main stages: (i) FM signal preprocessing, (ii) maternal artifact signal preidentification, (iii) FM signal identification, and (iv)
FM classification. Firstly, Kalman filtering is used to reconstruct the FM signal in a continuous low-amplitude noise background.
Secondly, the maternal artifact signal is identified using an amplitude threshold algorithm.+en, an innovative dictionary learning
algorithm is used to construct a dictionary of FM features, and orthogonal matching pursuit and adaptive filtering algorithms are
used to identify the FM signals, respectively. Finally, mask fusion classification is performed based on the multiaxis recognition
results. Experiments are conducted to evaluate the performance of the proposed FM detection system using publicly available and
self-built accelerated FM datasets. +e classification results showed that the orthogonal matching pursuit algorithm was more
effective than the adaptive filtering algorithm in identifying FM signals, with a positive prediction value of 89.74%. +e proposed
FM detection system has great potential and promise for wearable FM health monitoring.

1. Introduction

Stillbirth is a widespread problem of the world today. It is
estimated that, in high-income countries, 2.6 million babies
died in uteri in 2015, with one in every 113～769 preg-
nancies dying in utero after 28 weeks of gestation [1]. It has
been suggested that active maternal perception of intra-
uterine FM is an economical and convenient method for the
early detection of fetal impairment [2, 3]. However, most
pregnant women are unaware of the health status of the fetus
in their womb between pregnancy and delivery. Some fe-
tuses are at risk of developing complications that may result
in future disease, handicap, or death [4]. For those at ad-
vanced maternal age and risk, FM detection can identify
those complications that potentially alter the outcome of
labor and help the practitioner to make timely interventions

to avoid the development of stillbirth [5]. In a population-
based study in Japan, the maternal response was prolonged
following reduced FM in stillbirth [6]. In some cases of
stillbirth in pregnancy, more than 50% of pregnant women
felt a gradual decrease in intrauterine FM in the days before
the onset of stillbirth [7]. Studies have shown that the
number of intrauterine movements towards a pregnant
woman can last for days or even weeks from decreasing to
disappearing, and doctor interventions during this period
may result in a healthy, living baby [8–10]. +erefore, early
detection of potential risk factors and timely intervention to
reduce the likelihood of stillbirth can be achieved by
establishing antenatal FM detection.

+e main clinical methods of identifying FM are ul-
trasound techniques and maternal perception of FM. Ul-
trasound technology allows visual assessment of fetal health,
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including intrauterine growth, amniotic fluid volume, and
Doppler flow [11], but this technique requires experienced
clinicians to operate the ultrasound equipment, and in
addition, prolonged exposure to the intrauterine fetus to
ultrasound can cause radiation damages. Another active
method of identification, the self-counting of FM by the
pregnant woman in a calm and stable state, is a preliminary
assessment of the intrauterine health of the fetus, which,
compared to ultrasound techniques, can be performed at
home and is economical and convenient for monitoring the
fetus during pregnancy. However, the sensitivity of FM
varies greatly from pregnant women [12], and it is chal-
lenging to monitor FM in the long term by subjective
judgment. In recent years, wearable health monitoring de-
vices had become a hot spot of research in the biomedical
field, and the use of wearable acceleration sensors and
modern digital signal processing techniques to achieve
automatic recognition of FM has received widespread at-
tention from researchers from all walks of life [13–24]. +e
accelerometers are small, inexpensive, noninvasive, sensi-
tive, and stable and have become the ideal solution for
noninvasive FM recognition.

In the current field of wearable sensor-based FM signal
detection measurements, some researchers use amplitude
threshold-based algorithms to identify FM signals in a con-
tinuous low-amplitude noise background, provided that the
pregnant woman needs to remain stable during the mea-
surement of FM [13, 14, 16]. However, this method is sus-
ceptible to noisy signals and therefore does not achieve the
desired recognition results. In some other studies, feature
extraction of the raw acceleration signal was performed to
obtain clinically essential features of the FM signal. +e related
methods include time-domain feature statistics [20] and time-
frequency (TF) feature analysis [15, 18, 19]. Boashash et al. [18]
proposed a TF matched pursuit (TFMP) algorithm and a TF
matched filtering (TFMF) algorithm to classify and detect the
FM signals recorded by accelerometers. +e proposed TFMP
and TFMF methods achieve positive prediction values of 83%
and 85% for FM signal classification results, respectively. +e
automatic matching detection of FM signals was achieved with
higher reliability than the amplitude threshold algorithm.
However, the inability to build robust dictionary atoms, limited
by human empirical observation, prevents the TFMP algorithm
from rapidly decomposing the energy of the signal to below
70% during a limited number of matching iterations, resulting
in missed recognition of some noise-contaminated FM signals.
In addition, some researchers have used traditional machine
learning classifiers to train and predict the extracted raw ac-
celeration time- and frequency-domain feature signals that aim
to distinguish the FM signal class of other noisy signal classes
[17, 21–24]. Vullings and Mischi [17] proposed a method of
noninvasive monitoring of FM by using TF characteristics.+e
support vector machine (SVM) classifier was used to train and
predict the preprocessed fetal movement TF features, achieving
an accuracy of 75% and a specificity of 87% for FM signal
classification. +e final judgment output of this method de-
pends on a small number of support vector feature samples,
and a large number of redundant sample sizes are excluded,
which improves the efficiency of FM recognition. However, the

algorithm is more sensitive to the kernel function and the
related parameter selection, and the parameter selection is
taken empirically, which is not very reliable. Zhao et al. [24]
proposed a wearable system for home and long-term FM
assessment. Firstly, the FM time-domain and wavelet-domain
signal features of the original acceleration acquisition are
extracted, then the feature sequences are downscaled using the
random forest algorithm, and finally, based on the extracted
features, the fuzzy ARTMAP, a lightweight machine learning
algorithm, is used to classify and recognize the FM signals. +e
specificity of this method of FM signal classification is 99%, but
the sensitivity is only 77%.

According to the above analysis, to solve the problems of
harrowing FM signal extraction and low recognition rate,
this paper proposes a passive FM detection system based on
intelligent sensing technology. Firstly, a Kalman filtering
algorithm is used to reconstruct the FM signal containing a
large amount of unpredictable random noise. Secondly, the
maternal artifact signal is identified using an amplitude
threshold algorithm, such as maternal body movement,
breathing, and laughter being misidentified as FM signals.
Finally, the K-singular value decomposition (K-SVD) [25]
dictionary learning algorithm was used to build a complete
dictionary of FM and non-FM features, and the orthogonal
matching pursuit (OMP) and adaptive filtering algorithms
[26] were used to achieve automatic recognition of FM
signals, respectively. +e experimental results validate the
strong robustness of the method of FM signal detection and
improve the reliability and accuracy of FM detection. +e
main contributions to this paper are as follows:

(a) +e K-SVD dictionary learning algorithm is pro-
posed to obtain a complete dictionary of FM features
of the training of a large number of FM datasets,
which compensates for the shortcomings of con-
structing dictionary atoms by human empirical
observation. +e accuracy of recognition is im-
proved. +e Kalman filter is used to reconstruct the
FM signal in a continuous low-amplitude noise
background. Both improve the denoising perfor-
mance of the system and reduce the complexity of
the computation. At the same time, the performance
of the proposed orthogonal matching pursuit algo-
rithm and the adaptive filtering algorithm are
compared for FM signal detection.

(b) +e FM signal acquisition and recognition system uses
a miniature ultralow-power processor and acceler-
ometers. It increases the endurance of the system and
also facilitates integration into a soft wearable circuit
board. +e microprocessor has an on-chip-integrated
low-power Bluetooth communication module, which
allows the data returned by the front-end sensor to be
uploaded in real time via a wireless communication
protocol and the data to be received and saved on the
smartphone APP side. +e current FM status is ob-
served through data visualization.

(c) +e wearable FM detection system proposed in this
paper can quickly detect fluctuating signals in the
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abdomen of pregnant women and identify M signals
using dictionary-based learning and sparse represen-
tation algorithms, which can meet the FM monitoring
needs of pregnant women during pregnancy. +e
system has significant medical value in the field of
e-health.

2. Materials and Methods

+e proposed FM detection system consists of four key
components: (1) FM signal preprocessing, (2) artifact signal
identification, (3) FM signal identification, and (4) FM
classification. +e block diagram of the flow of the proposed
FM detection system is shown in Figure 1. +e specific
description is as follows:

(a) FM signal preprocessing is preprocessing of the
maternal abdominal wall fluctuation signals collected
from each of the six axes of the dual acceleration
sensors using the Kalman filter algorithm

(b) +e artifact signal identification is performed on the
preprocessed signal using an amplitude threshold
algorithm to identify whether it contains maternal
feature artifacts

(c) +e K-SVD dictionary learning algorithm is used to
build a complete dictionary of FM and non-FM
features, and the OMP and adaptive filtering algo-
rithms are used to match the features of the pre-
identified signals, respectively, and the label
corresponding to the dictionary with the most minor
reconstruction error is used as the recognition result

(d) +e recognition results of the six axes are judged
according to the mask fuser Mk (1 : 6) as the final
classification output of the system

2.1. Preprocessing of the FM Signal. +e FM signal is pre-
processed using the Kalman filtering algorithm. A sliding
window needs to be added to the signal before pre-
processing. Studies have shown that the FM signal is di-
vided into single- and double-crested movements and is
distributed over a range of 2.56 s with a sampling frequency
of 100Hz. +erefore, the time window used in this paper is
2.56 seconds, with no overlap between windows. +e ac-
celeration sensor is susceptible to the effects of external
noise and other factors, mainly DC components and
random noise. +e DC component can be corrected simply
by the equation ΔS � Sk − Sk − 1, k � 1, 2, 3, . . . , n, where
ΔS represents the amount of signal change from one
moment to the next. However, the random noise from
artefactual signals such as maternal breathing, coughing,
laughter, and body movement is unpredictable and cannot
be corrected by simply calculating the amount of change
using the above method and requires a filter to eliminate
the random noise. To process random signals, the Kalman
filter is optimal and most efficient. +erefore, the Kalman
filtering algorithm is used for the preprocessing of the FM
signal in this paper.

+e Kalman filter principle uses the previous moment’s
estimate and the current moment’s observation to make an
optimal estimate of the system state at the present moment.
+e equation of state is shown as follows:

xk � Akx(k−1) + Bkuk + wk, (1)

where Ak is the state transfer matrix, Bk is the input matrix of
the system, uk is the system input at moment k, and wk is the
system process noise. If the system has no input matrix,
initialize Bk∗uk to 0. According to the equation of state, the
measured values are obtained as follows:

yk � Hkxk + Vk, (2)

where Hk is the system measurement matrix and Vk is the
system measurement noise. In the general model, wk and Vk
are set to obey a Gaussian distribution.

+e Kalman filtering algorithm works in two stages:
prediction and update. +e specific steps of the Kalman
filtering algorithm for the preprocessing of FM signals are
given in Algorithm 1.

According to the Kalman filtering algorithm, the FM
signals before and after reconstruction are obtained, as
shown in Figure 2.

2.2. Artifact Signal Detection. +e purpose of artifact rec-
ognition is to identify artifacts such as movement of the
pregnant mother’s body or artifacts such as heartbeat,
laughter, and coughing to avoid these signals being mis-
identified as FM signals. Usually, the peak amplitude of
artifact signals such as maternal body movement, laughter,
and coughing is more significant than 0.1 g, the peak am-
plitude of respiratory signals is less than 0.015 g, and the peak
amplitude of other background noise signals is between
0.06 g and 0.1 g, while the peak amplitude of FM signals is
roughly distributed between 0.015 g and 0.06 g. +ese pa-
rameters are obtained from empirical observations of FM
signals, background noise, and non-FM signals recorded by
typical accelerometers [19]. +e maternal body position
movement created the artefactual noise signal fragment
shown in Figure 3. Based on the above analysis, the lower
limit of the amplitude threshold for the amplitude threshold
prerecognition algorithm in this paper is A1� 0.015 g, and
the upper limit is A2� 0.06 g, and the peak amplitude of the
preprocessed signal fragment is within this range before it
can enter the detector. +e signals are collected by the two
acceleration sensors within each time window set; if one of
the sensors has an axis signal with a peak amplitude greater
thanA3� 0.1 g, then the signal is identified as a characteristic
artifact and classified as non-FM, ending this identification.
If the peak signal amplitude is more excellent than 0.015 g
and less than 0.06 g, then the current signal fragment can
proceed to the next level of the detector. If the peak signal
amplitude of an axis is more significant than 0.06 g and less
than 0.1 or less than 0.015 g, then no feature artifacts are
identified, and a binary zero is output to the mask fuser,
which is combined with the signal identification results of
the other axes to form the final production.
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2.3. FM Signal Detection

2.3.1. Feature Dictionary Learning. Dictionary learning fil-
ters out the redundant noise of the signal and captures its
essential features. In this paper, the K-SVD algorithm is used
to learn the FM training set Y1 and the non-FM training set
Y2 to construct a complete FM signal dictionary D1 and a
non-FM signal dictionary D2, respectively, and the problem
can be expressed as

min
D,X

Y − DX
2
F,

s.t. ∀i.xi ≤T0,

(3)

where Y � [y1, y2, . . . , yL] ∈ Rm×L denotes the training
sample matrix, and each column is a training sample. L is the
number of training samples. D ∈Rm×n indicates a dictionary
to be studied. X� [x1, x2, . . ., xL] ∈Rn×L denotes a matrix
composed of sparse coefficients.

Equation (3) is more challenging to calculate optimally
for both the dictionary D and the sparse coefficient X.
K-SVD uses an iterative approach to its alternate opti-
mization. +e algorithm consists of three main stages: the
first stage is the initialization of the dictionary; the second
stage is the sparse encoding stage, where L training
samples in the training set Y are sparsely decomposed in
turn using the OMP algorithm; the third stage, the dic-
tionary update stage, uses the singular value decompo-
sition algorithm to decompose the sparse coefficients and
the dictionary according to the error minimization
principle, continuously approaching the error minimi-
zation until the dictionary and the sparse coefficient
matrix are obtained. +e feature dictionary constructed
using the K-SVD dictionary learning algorithm is shown
in Figure 4. +e length of the fetal and nonfetal dictio-
naries is 256∗ 256, respectively, which are complete
dictionaries.
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Figure 1: Flowchart of the FM detection system.

Input: a raw FM signal xi, i � 1, 2, . . . , 6, state error covariance moment Q, and observation error covariance moment R.
Output: optimal filtrated output Si, i � 1, 2, . . . , 6.
Initialise Si(1) � 1; P(1) � 0.
Perform the Kalman filtering algorithm used to calculate the optimal filtered output sequence S.
for i � 1: 6
for t � 2: k

K(t) � (P(t − 1)/(P(t − 1) + R));
Si(t) � Si(t − 1) + K(t)(x(t) − Si(t − 1);
P(t) � P(t − 1) − K(t)P(t − 1) + Q;

end for
end for
Get the optimal filtered output Si, i � 1, 2, . . . , 6.

ALGORITHM 1: Preprocessing of FM signals.
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2.3.2. FM Signal Sparse Detection. A complete feature
dictionary is constructed from the above K-SVD dictionary
learning. +e OMP algorithm is used to match the feature
atoms in the dictionary with the FM signal samples to
achieve an optimal linear approximation of the FM signal
samples. According to the sparsity coefficient, the recon-
struction error of the FM signal samples on the FM and non-
FM feature labels, respectively, is calculated. +e class with
the lowest reconstruction error is selected as the label for this
FM signal sample, thus achieving sparse recognition. +e
specific steps for the identification of light FM signals are
shown in Algorithm 2.

2.3.3. Adaptive Filtering Detection of FM Signals. +e
adaptive least mean square (LMS) algorithm is an appli-
cation of Wiener filtering. Each tap weight of the filter is

optimized iteratively to minimize the mean square error
between the original and reference signals [27]. +e steps of
the LMS algorithm are as follows:

(a) Compute an FIR filter system 􏽢r(n) with a causal
sequence that can be approximated by a finite-length
M point sequence. +is is shown in the following
equation:

􏽢r(n) � 􏽘
M

m�0
wm(n)r(n − m), (4)

where M denotes the order of the filter.
(b) Calculate the instantaneous error e(n) at the current

moment. +is is shown in the following equation:

e(n) � d(n) − 􏽢r(n). (5)

(c) Update the filter weights wm(n) using a recursive
approach. +is is shown in the following equation:

wm(n + 1) � wm(n) + 2μe(n)r(n − m), for 0<m<M.

(6)

(d) n � n + 1. Repeat the above steps until the condition
is met and stop iterating.

+e FM signals are detected using an adaptive filtering
algorithm, and the reference signals are obtained using dic-
tionaries D1 and D2 obtained from dictionary learning de-
scribed above, with D1 representing the FM class and D2
representing the non-FM class. +e optimal linear approxi-
mation of the test samples is achieved by adaptively traversing
the feature atoms in both dictionaries and matching the test
samples. According to the optimal filtering output and the
mean square error value of the test sample, the class corre-
sponding to the feature atom with the smallest error is selected
as the class label of this test sample, and the identification of the
FM signal is achieved.
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Figure 4: Dictionary of fetal and nonfetal movement character-
istics. (a) FM dictionary. (b) Non-FM dictionary.
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2.4. FM Classification. +is stage classifies FM based on the
mask-fused binary vector Mk (1 : 6), where binary 1 indicates
an FM signal and 0 indicates a non-FM signal. If the signal

from one or more axes of each of the two accelerometers is
identified as an FM signal, the output of the mask fusion
results in one and is classified as an FM. Otherwise, it is

Input: the preprocessed FM signal Si, i � 1, 2, . . . , 6, dictionary Dk, k� 1, 2, and sparsity T0.
Output: identify the class Li, i � 1, 2, . . . , 6.
Sparse FM recognition using the OMP algorithm.
for i � 1: 6
for k � 1: 2

while t<T0
Initialise the number of iterations t� 1. Residual r0 � Si. Index set U0 �Ø. D�Dk.
Find the index λt corresponding to the maximum value of the product within each atom of the residue rt−1 and the dictionary

D, denoted as λt � argmaxj∈U(t−1)
|r(t−1), dj|.

Update the index set Ut �Ut−1∪λt. Reconstruct the dictionary Dt � [D(t−1), dλt].
􏽢xt � argmin􏽢xy − D􏽢x2

2 is obtained using least-squares calculations.
Update the residuals rt � y − Dt􏽢xt.

end while
Buffered sparse residuals ek � rt.

end for
If e1< e2, identify as FM Li � 1; otherwise, identify as non-FM Li � 0.

end for

ALGORITHM 2: FM signal sparse detection.
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Figure 5: Flowchart of the mask fusion process.
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Figure 6: Experiments with an FM signal acquisition and recognition system.
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classified as a non-FM. A flowchart of the mask fusion
process is shown in Figure 5.

3. Datasets and Evaluation Indicators

3.1.Datasets. +e data sources used in this paper are a self-
designed FM signal acquisition system and FM acceler-
ation data from the Zenodo public database (ZFMAD)
[28].

To verify the performance of the FM detection system
proposed in this paper, the FM signal acquisition and the FM
recognition experiments based on the OMP algorithm
shown in Figure 6 were carried out. An acceleration sensor is
designed on each side of the leading hardware circuit board
to detect FM signals. +e hardware circuit system consists of
two 3-axis acceleration sensors (mCube, MC3672), a 32 bit
microprocessor (Nordic, nRF52840), and an on-chip low-
power Bluetooth module. +e on-chip wireless Bluetooth
communication protocol on the controller uploads the data
collected by the front-end accelerometer to the mobile app
for storage and visualization. For ease of transmission, the
raw data collected by the two acceleration sensors were
experimentally amplified by a factor of 10,000 before being
uploaded. +e main circuit board containing the acceler-
ometer and microprocessor is packaged in a portable case
along with a lithium battery, and a belt is used to secure the
device to the pregnant woman’s abdomen to ensure stable
measurements over time. +e measurement range of the
acceleration sensor is set to ±2g (1g � 9.8m/s2), the sensi-
tivity is 4096 times/g, and the sampling frequency is set to
100Hz. +e I2C protocol is used for transmission between
the sensor and the processor.

FM data were collected from four healthy pregnant
volunteers, all of whomwere in a period of frequent and active
FM during their gestational cycle. +e average time recorded
per subject was 60 minutes. During the measurement, our
laboratory assistant helped the pregnant woman to wear the
equipment and recorded the period during which the preg-
nant woman perceived the onset of FM. Before starting the
experiment, the pregnant woman is asked to locate the area of
the abdomen where FM is most strongly perceived and to
place the device directly above that area, secured by a belt so
that the sensors on either side of the device can collect the vital
FM signals. A clip of the FM signal recorded based on active
maternal perception is shown in Figure 7.

3.2. Evaluation Indicators. Real FM actively perceived by
the pregnant woman is used as the standard. Evaluation
indicators include true detection rate (TDR) and positive
prediction value (PPV).+e true detection rate represents
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Table 1: Results of adaptive filtering-based FM recognition.

Subject TMF DME FD TDR (%) PPV (%)
1 12 11 3 91.67 78.57
2 11 9 2 81.82 81.82
3 7 7 1 100.0 87.5
4 9 9 2 100.0 81.82
All 39 36 8 92.31 81.82

Table 2: Results of FM recognition based on the OMP algorithm.

Subject TMF DME FD TDR (%) PPV (%)
1 12 11 1 91.67 91.67
2 11 9 1 81.82 90.0
3 7 7 1 100.0 87.5
4 9 8 1 88.89 88.89
All 39 35 4 89.74 89.74
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the ratio of samples detected correctly to the total number
of pieces. +e positive prediction value represents the
ratio of the number of positive samples detected correctly
to the number of instances marked as positive in the test
result.

TDR � 100 ×
DME
TMF

,

PPV � 100 ×
DME

DME + FD
,

(7)

where DME recognized real FM, TMF is real FM based
on active maternal perception, and FD is false
recognition.

4. Results and Discussion

+e experiments were conducted using a MATLAB simu-
lation platform to verify the performance of the proposed
FM detection system. +e dictionary learning database uses
ZFMAD to create a complete dictionary of fetal and nonfetal
features, respectively. A self-built dataset was used to test the
performance of the automatic FM detection system pro-
posed in this paper. A total of 243 segments were screened
for the experiment in four pregnant women, with 39 periods
of FM signals and 204 periods of non-FM signal segments.
+e results of the adaptive filtering-based FM signal iden-
tification are shown in Table 1. According to Table 1, it can
be learned that the overall true detection rate of adaptive
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Figure 9: Results of OMP-based FM detection (blue) compared with the original signal (green) and maternal perception (red). (a) Subject 1
detection result. (b) Subject 2 detection result. (c) Subject 3 detection result. (d) Subject 4 detection result.
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filtering-based FM signal identification is 92.31%, and the
positive prediction value is 81.82%. Subject 3 had the best
available detection, with a true detection rate of 100% and a
positive prediction value of 87.5%. Although the true de-
tection rate for subject 1 was 91.67%, the positive prediction
value was only 78.85%. +e reason for this may be that the
artifact signal created by the random slight body movements
towards the pregnant woman during the measurement is
highly similar to the time-frequency characteristics of the
FM signal signature, resulting in a relatively high chance of
misidentification.

+e relationship curves between the sparsity and true
detection rate and positive prediction value of the
OMP-based algorithm for FM signal detection are shown in
Figure 8. As can be seen from Figure 8, the best results in
terms of true detection rate and positive prediction value of
the FM signal are achieved when the sparsity T0 � 3. With
sparsity greater than 9, although the positive prediction
value is on an increasing trend, the true detection rate of the
system decreases significantly. +e ideal FM detection
system would want to detect every critical FM event
possible while still ensuring accuracy. +us, the optimal
parameter for the sparsity of the OMP algorithm proposed
in this paper is 3. +e specific results of the sparse detection
of FM signals are given in Table 2.

According to Table 2, it can be observed that the overall
true detection rate and positive prediction value for sparse
recognition reached 89.74%. Subject 1 had the best detec-
tion, with a true detection rate and a positive prediction
value of 91.67%. Subject 3 had a true detection rate of 100%,

but with a positive prediction value of 87.5%; the results
performed relatively poorly compared to the other three
samples.

For a qualitative view of the recognition results, a
graphical representation of the results is given in Figure 9.

To verify the performance of the two FM signal detection
algorithms proposed in this paper, Table 3 gives a com-
parison of the specific results of the adaptive filtering and
orthogonal matching pursuit algorithms proposed in this
paper for FM recognition. Figure 10 shows a comparison of
the detection results. As observed in Table 3 and Figure 10,
the TDR of the LMS was 92.31%, an increase of 2.57%
compared to the TDR of the OMP algorithm, but the PPV of
the LMS to detect FM was only 81.82%, a decrease of 7.92%
compared to the OMP algorithm.

To better evaluate the performance of the two FM signal
detectors, it is important to consider not only the TDR and
PPV of the detection but also the time to complete the
detection, which reflects the computational complexity of
the algorithm. +e time taken for a program to run de-
termines the efficiency of the systemCPU.+e longer it runs,
the more CPU resources it takes up. According to Table 3,
the average time taken by the LMS to finish detecting an FM
signal is 5.69 s, while the OMP only takes 0.11 s on average to
quickly detect the FM signal. +e reason for this is that an
adaptive optimization algorithm is used to adjust the filter
weights and, after continuous iterative calculations, to find
the appropriate weights that minimize the error between the
optimal estimate and the desired signal. However, the op-
timal algorithm adopted is stochastic gradient descent,
which requires a gradient and optimal weights for all in-
coming data and consumes more time in this optimization
process until convergence. In contrast, the OMP algorithm
introduces orthogonal features that orthogonalize all the
atoms selected at each step of the decomposition, resulting in
faster convergence while ensuring constant accuracy.
+erefore, based on the above experimental analysis, the
OMP-based FM signal detection algorithm outperforms the
LMS, taking into account the true detection rate, positive
prediction value, and computational cost. In this paper, the
OMP-based FM signal detection algorithm is also embedded
into the microprocessor system for practical performance
evaluation to verify the reliability and strong robustness of
the algorithm, and the experimental scenario is shown in
Figure 6.

5. Conclusions

+is paper develops a passive FM detection system based on
intelligent sensing technology. Firstly, the raw FM signal
acquired by the accelerometer is preprocessed using a
Kalman filtering algorithm to reconstruct the FM signal in a
continuous low-amplitude random noise background. +e
signal-to-noise ratio of the FM signal is greatly improved by
constant prediction and correction. Secondly, the artifact
signal is identified using an amplitude thresholding algo-
rithm to discern the mother’s characteristic artifact signal.
+en, the K-SVD dictionary learning algorithm is used to
learn the FM signals of 16 pregnant women from the

Table 3: Comparison of FM recognition results based on LMS and
OMP algorithms.

Approaches TMF DME FD TDR (%) PPV (%) Time (s)
LMS 39 36 8 92.31 81.82 5.69
OMP 39 35 4 89.74 89.74 0.11
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Figure 10: Comparison of TDR and PPV for LMS and OMP FM
signal recognition algorithms.
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ZFMAD public dataset to construct a complete dictionary of
FM and non-FM features. +e dictionary is used as the
matching atom and the reference signal to identify the FM
signal using orthogonal matching pursuit and adaptive filtering
algorithms, respectively. Finally, a mask fusion algorithm is
used to achieve FM classification. Preprocessing using Kalman
filtering compensates for the traditional inability to handle
unpredictable random noise signals using band-pass filtering.
+e shortcomings of building dictionaries from human em-
pirical observation are addressed bymachine learningmethods
of dictionary construction and big data analysis. +e orthog-
onal matching pursuit algorithm and the adaptive filtering
algorithm are also used to automaticallymatch and identify FM
signals and to compare their respective performances. Using
four pregnant volunteers for experimental testing, the positive
prediction value of the LMS-based FM signal detection algo-
rithm was 81.82%, while the positive prediction value of the
OMP algorithm reached 89.74%. Compared with the tradi-
tional TFMP, TFMF, SVM, and the recent fuzzy ARTMAP
fetal movement recognition algorithm, the proposed OMP-
based FM detection algorithm has improved the positive
prediction value by 4.74% to 12.74%. It is worth noting that the
OMP-based FM detection algorithm proposed in this paper
takes only 0.11 seconds to identify FM each time. It greatly
improves the operational efficiency of the system and solves the
problems of the high computational cost of the traditional
matching and pursuit algorithm, difficulties in running the
embedded microprocessor system, and low accuracy rate. +is
paper also transforms the proposed algorithms into practical
applications for use embedded in microprocessor systems. It
was verified that the algorithm could meet the requirements of
some of themid-to-high-endmicroprocessor chips that exist in
the market today for computing. +erefore, the FM signal
recognition algorithm proposed in this paper has a high ap-
plication value in micro-wearable FM monitoring devices
based on acceleration sensors.
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