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Abstract: LoRa is a long-range and low-power radio technology largely employed in Internet of
Things (IoT) scenarios. It defines the lower physical layer while other protocols, such as LoRaWAN,
define the upper layers of the network. A LoRaWAN network assumes a star topology where each
of the nodes communicates with multiple gateways which, in turn, forward the collected data to
a network server. The main LoRaWAN characteristic is the central role of the gateways; however,
in some application scenarios, a much lighter protocol stack, relying only on node capabilities and
without the presence of gateways, can be more suitable. In this paper, we present a preliminary study
for realizing a LoRa-based mesh network, not relying on LoRaWAN, that implements a peer-to-peer
communication between nodes, without the use of gateways, and extends node reachability through
multi-hop communication. To validate our investigations, we present a hardware /software prototype
based on low-power-consumption devices, and we preliminarily assess the proposed solution.

Keywords: LoRa; ad hoc networks; mesh networking; peer-to-peer networking

1. Introduction and Background

The Internet of Things (IoT) has become an essential and pervasive means in our
society. Nowadays, more and more industrial, commercial and customer applications rely
on data collected by a multitude of heterogeneous devices located at the extreme borders
of the network. Given their high density, their limited battery availability and their inacces-
sibility in most of the cases, the research community has struggled to design lightweight
solutions to ensure long-range, low-power and low-bitrate wireless transmissions to/from
those devices, opening the door to the deployment of the so-called LPWANSs (low-power
wide-area networks) [1].

A well-known wireless technology for LPWANS is LoRa (long range) [2]. LoRa imple-
ments a physical layer that combines the chirp spread spectrum (CSS) radio modulation
with integrated forward error correction (FEC) for enabling robust long-range communi-
cations on unlicensed industrial, scientific and medical (ISM) frequency bands. Given its
robustness and versatility, LoRa has quickly become the most widely adopted physical
layer for LPWANSs. Concerning the upper layers, the LoRa Alliance has then proposed
LoRaWAN [3], an open media access control (MAC) and network protocol that allows
LoRa-based devices to communicate and that inherently adopts a well-defined network
architecture [4].

A LoRaWAN network includes three architectural components: the end devices, the
gateways and a remote network server. These components are inter-connected in a “star-of-
stars” topology, where end devices communicate with one or more gateways (using LoRa
as the physical layer) and where each gateway dispatches LoRaWAN frames to the network
server using a higher-throughput backhaul interface (e.g., WiFi or 5G). Then, applications
interfacing with the server can make the best use of the collected data. LoRaWAN is the
most widely adopted L2/L3 protocol for LPWAN:Ss, although some limitations have been
identified [5,6].
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One of the strongest limitations of LoRaWAN is the adopted topology, where only
direct single-hop communication is allowed between end devices and gateways. Even
though this configuration is suitable for many applications, in some cases (e.g., when
data must be gathered/exchanged from/in difficult-to-access areas) it is far from being
the optimal solution. Many works in the literature have then dealt with enabling mesh
networking and multi-hop communication in LoRaWAN or on similar alternative LoRa-
based architectures, where end devices can act as relay nodes, to extend network coverage
and improve energy consumption [7].

Even though a significant step forward has been made by these works, we believe
that it is just an intermediate step. In fact, all of them still partially embrace a LoraWAN or
LoRaWAN:-like network architecture, and extend it towards supporting a “star-of-meshes”
topology. This means that gateways still play a central role as concentrators, and that data
need to be finally conveyed through Internet/broadband access, to a remote location before
being made accessible to applications. This is clearly not ideal in application scenarios
where it would be better to keep data local for privacy or performance reasons (e.g.,
in the case of emergency applications for disaster recovery or first responders support).
Additionally, also in the case of a privacy-preserving and high-speed private network
infrastructure where data collected by the gateway are not conveyed through the public
Internet but through dedicated backhaul links, the gateway is a single point of failure
whose malfunctioning would compromise the operation of the whole LPWAN network.

In this paper we pave the way towards filling this gap. We propose and preliminarily
evaluate a hardware/software LoRa-based solution that, being completely gateway-free,
enables peer-to-peer communication among LoRa end devices, while also preserving
multi-hop and mesh networking functionalities as proposed in previous works. The
solution, developed on top of the LoRa physical layer, is meant to provide a lighter network
stack than LoRaWAN, so that low-cost, flexible and easy-to-configure “out-of-Internet”
communication can be ensured wherever and whenever needed.

Our proposal is extremely cheap (no LoRaWAN gateway needs to be bought and
configured) and effective: each of the end devices acts as a simplified gateway, which can
be accessed through its USB serial port by a more powerful device (e.g., a laptop). In this
case, the limited computational capacity of the single node can be increased in order to
embrace more computational demanding application scenarios. Our preliminary results
have shown how, by exploiting different LoRa transmission setups (i.e., modulations), it is
possible to strike the most desirable balance between network coverage and end-to-end
transmission delay.

The remainder of this paper is structured as follows. Section 2 recalls the related work.
Section 3 describes the proposed architecture, while Section 4 summarizes our preliminary
results. Finally, Section 5 concludes the paper and reports on the planned future work.

2. Related Work

In this section we recall the related work that can be found in literature and to what
extent our work overcomes the state-of-the-art approaches. We first focus on existing
solutions for mesh and multi-hop networking in LoRa-based networks, then we report
some relevant use cases.

2.1. LoRa-Based Mesh and Multi-Hop Networking

One of the first works exploring LoRa capabilities to build a generic IoT mesh and
multi-hop networks is Reference [8]. The paper proposes LoraBlink, a protocol supporting
multi-hop communication. The adopted architecture includes multiple LoRa-based nodes
and a sink, which is the final destination of all the messages generated by the nodes. A
similar approach is proposed in References [9,10]. In these papers it is shown that the packet
delivery ratio can be improved by mesh networking with respect to simple star-topology
configurations, and the sink is explicitly called a gateway, adopting a similar nomenclature
as the one used for LoRaWAN. Similarly, Reference [11] demonstrates the capabilities of
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LoRa-based mesh/multi-hop networking in a city-wide testbed. Further, in this case, the
gateway plays a crucial role, being in charge of orchestrating the communication with
the LoRa-based nodes using a polling mechanism. A similar architecture is proposed in
Reference [12], but it is based on time-slotted event-driven communication to keep collision
rates low.

Even though we take inspiration from all of these works to design a solution ensuring
mesh networking capabilities and multi-hop communication, we eliminate the need of
defining a nodes” hierarchy, where a node with enhanced functionalities (i.e., the gateway) is
needed. We instead propose a flat and peer-to-peer solution, where all the nodes (or none
of them) can be seen as gateways that can be exploited as access points to external networks
(e.g., Internet). The only work that we found proposing a similar peer-to-peer architecture
is Reference [13]; however, it focuses on the definition of a stand-alone Lora-based IoT
network, and the possibility to interface the LoRa-based nodes to external networks is
not explored.

2.2. Use Cases

Some works focus on specific use cases of the architectures discussed above, including
forest fire detection [14], wild animals [15] and livestock [16] tracking, urban drainage [17]
and monitoring of underground environments (e.g., medieval aqueducts) [18]. In all these
cases, remote areas can be reached by multi-hop communication and/or mesh networking
capabilities, and collected data are finally conveyed towards a gateway for further routing
and processing.

However, the gateway is a single point of failure that, for some specific use cases,
should be avoided. This is especially true when the LoRa-based nodes need to be used in
emergency situations to monitor, e.g., natural disasters such as fires or floodings, where
the environment dynamically changes over time and where some areas (including the one
where the gateway is placed) can quickly become inaccessible. In this specific scenarios, a
set of cheap LoRa-based nodes (as the ones adopted in this paper) can be spread throughout
the territory, accepting the risk that they may be lost. Our gateway-free solution, where each
node can potentially be accessed by external networks, assures constant accessibility to the
mesh network and avoids the presence of a single point of failure, being thus more flexible.

3. System Architecture

In this section, we report the proposed layered system architecture for mesh, multi-hop
and peer-to-peer networking, including both design and high-level implementation choices.

3.1. Network Design and Configuration

The network stack proposed here considers three layers (see Figure 1): (i) a physical
layer based on the standard LoRa communication protocol; (ii) a link, network and trans-
port layer for addressing, routing and meshing; (iii) an application layer as interface with
real applications (possibly accessible by external networks), including a middleware that
enqueues and assigns priorities to the messages that need to be aired. The first two layers
are based on a public library designed for embedded microprocessors, named RadioHead
(https:/ /www.airspayce.com/mikem /arduino/RadioHead/ (accessed on 22 June 2021)).

Our proposed LoRa-based network envisions a fully connected topology that permits
peer-to-peer communication between end devices (from now on simply called nodes) only
if their distance is less than D (see the dotted circles of Figure 2). Nodes at a distance higher
than D can communicate by exploiting multi-hop communication if they are connected to
other nodes that can convey the message (see the violet and the black nodes of Figure 2),
enhancing end-to-end node reachability. Clearly, each node embeds the aforementioned
network stack.


https://www.airspayce.com/mikem/arduino/RadioHead/

Sensors 2021, 21, 4314

40f12

NODE 1 NODE 2
Application Application
"""""""" ': i

Middleware | Middleware |
Transport, Transport,
Network, Link Network, Link
(RadioHead) (RadioHead)
Physical Layer Physical Layer
(LoRa) (LoRa)

-~ ~.
ke ~.
s N,
- . \
- _,7_\_\ \
~N
N \
N \
\ \\Multi—hop i
pz \ ,.\ .
s |
/ X \ .
/ \ \ !
/ \ \ /'
/ \ | :
/ \ | /
/ \ | 4
| Iy 7
[ 1y Prd
| ;7
\ =
\ L/
\
\ //
\ /
\\
N
\\\ \\/y\:___,///

Figure 2. Peer-to-peer LoRa-based mesh network with multi-hop capabilities.

Nodes are low-cost, low-power systems based on a microcontroller board embed-
ding a LoRa chip. For our implementation we use the ESP32 Heltec WiFi LoRa V2 board
(https:/ /heltec.org/project/wifi-lora-32/ (accessed on 22 June 2021)), which comes with
the Semtech SX1276 LoRa transceiver (https://www.semtech.com/products/wireless-rf/
lora-transceivers/sx1276 (accessed on 22 June 2021)) and costs around USD 20. Figure 3
shows a picture of the ESP32 Heltec WiFi LoRa V2 along with its external antenna, whose

gain is 3 dBi.
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Figure 3. One of the nodes of the network, complete with its antenna.

Moreover, given our hardware choice, the nodes of the network have adequate process-
ing capabilities to enable real applications (e.g., exchange of text messages and exchange
of collected sensors’ data) to run on the board. Additionally, the nodes are small and
lightweight enough to be adopted in diverse real-world scenarios: for instance, they could
be mounted on mobile devices, such as unmanned vehicles, so that dynamic and mobile
mesh networks can be created.

3.2. Physical Layer

The low-level access to the media channel is guaranteed by the RadioHead library, which
interacts with the chosen LoRa chip. The library supports LoRa with frequency hopping
spread spectrum (LR-FHSS) and provides access to different transmission modulations (i.e.,
setups). More details on supported and assessed setups are given in Section 4.

3.3. Link, Network and Transport Layer

Node addressing follows the specifications of the RadioHead library: 8-bit identifiers
are adopted, meaning that a maximum number of 28 — 1 nodes can be addressed, since the
255 address is used for broadcast transmission mode. For each node, a matrix-based routing
table is stored in memory: the relatively limited number of addressable nodes is strictly
related to the use of such table and to the board’s memory size. Increasing the number of
addressable nodes (e.g., 2'° or 232), would require larger memory, which is not compatible
with the low-power-consumption electronics adopted in our implementation. A custom
library specifying a different addressing strategy or more sophisticated strategies to store
only relevant addresses, such as the one proposed in [19], could be designed to overcome
this limitation, but this is out of the scope of this paper.

The RadioHead library also specifies a custom 4-bytes header (including to, from,
sequence number and flags fields). More in detail, the RadioHead library documentation re-
ports the following: “Each message sent and received by a RadioHead driver includes 4 headers: (1)
TO—The node address that the message is being sent to (broadcast RH_BROADCAST_ADDRESS
(255) is permitted); (2) FROM—The node address of the sending node; (3) ID—A message ID,
distinct (over short time scales) for each message sent by a particular node; (4) FLAGS—A bitmask
of flags. The most significant 4 bits are reserved for use by RadioHead. The least significant 4 bits are
reserved for applications.” The header includes the information for the routing and forwarding
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of unreliable (or reliable through retransmission, upon request) variable-length messages
in the form of datagrams, with an optional broadcast mode, as already specified above.
Multi-hop delivery of datagrams from a source to a destination node is guaranteed via zero
or more intermediate nodes, with automatic route discovery and re-discovery by means of
special route discovery request broadcast packets, generated by the source and conveyed to
the destination, which are followed by a unicast route discovery response.

4. Experimental Evaluation

In this section we provide some details on the adopted hardware equipment, including
its configuration, and we report our experimental and numerical evaluation. We first focus
on delivery time assessment and single-node transmission efficiency in the presence of
multiple messages to be aired /received. We then present our evaluation single and multi-
hop communication efficiency and delivery times.

4.1. Hardware Equipment and Transmission Setups

The adopted ESP32 controller (see Figure 3) offers a micro USB port for serial com-
munications, a 0.96 inch OLED screen, a JST 1.25 2-pin battery connector and, as al-
ready said, an on-board SX1276 LoRa transceiver; it comes with a Li-ion battery man-
agement circuitry that eases the deployment when working with LoRa. The board is
particularly suitable for mesh networking because it has a good computational capability
and very low power consumption; it is equipped with a two-cores Xtensa CPU (https:
/ /www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (ac-
cessed on 22 June 2021)) with 512 KB of RAM and a 4 MB on-board flash memory. The
micro USB serial port can be used to connect the board to more powerful data sources (e.g.,
a laptop or a smartphone) or to sensors for data gathering.

The RadioHead library supports several transmission setups on the SX1276 chip that
differ in terms of bandwidth (BW), coding rate (CR) and spreading factor (SF): the CR
refers to the proportion of transmitted bits that actually carry information, the SF is the
number of bits per symbol, while BW refers to the difference between the upper and lower
frequencies occupied by the chirp. In spread-spectrum modulation techniques, a chirp is
a sinusoidal signal with increasing frequency over time. Table 1 reports the transmission
setups considered in this paper, compliant with EU regulations. In all the cases CR is set
to 4/5, while BW and SF vary. Among all the possible transmission setups that could be
chosen by varying BW and SF, we chose those that make it possible to best explore the
different trade-offs investigated in this paper, as we demonstrate in the following section.

Table 1. Transmission setups and delivery time (with 95% confidence interval) for single-hop communi-
cation between A and B (Figure 4) and two-hop communication between A and C (Figure 5).

Delivery Time (ms)

Transseril;;swn BW (KHz) SF Single-Hop Two-Hop
BroadBand 250 7 524 +93 863 + 109
NarrowBand 125 7 678 + 202 1362 4+ 430
NarrowBand+ 125 11 5358 + 57 10,774 £91
NarrowBand++ 125 12 9315+ 56 18,636 + 308
VeryNarrowBand 31.25 9 6721 £ 95 13,438 + 229

Since the employed controller only permits half-duplex communication, the overall
transceiver system should be designed to spend as much time as possible in an active listen
state so that expensive retransmissions, due to missing payloads or acknowledgments
(ACKs), are avoided. This is guaranteed by a carefully weighted software solution that
leverages both the cores of the ESP32 Xtensa CPU. As also shown in Figure 6, a core
is dedicated to handling the SX1276 LoRa transceiver (network core or Core(), while the
other one is left to applications’ use (application core or Corel). The former core is also
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entitled for handling the JSON encoding and decoding of the aired payloads, so that
the entire network stack is kept out of the application core. As shown in Section 4.3,
in our tests, the application core runs a simple web server; however, nothing prevents
us from running some custom logic implementing a different and even more complex
distributed application, depending on the target application scenario. Since messages
between cores are exchanged using FreeRTOS (https:/ /freertos.org/ (accessed on 22 June
2021)) synchronization primitives, where a thread-safe unbounded FreeRTOS queue is
employed, the application core constructs a string pointer and pushes it to the multicore-
aware queue along with a recipient address. The network core then takes care of airing the
enqueued message and ensures that it is delivered to the right node.

4.2. Delivery Time Assessment

As a first evaluation, we assessed in a lab the delivery times in the case of single or
two-hop communication in the LoRa-based mesh network.

4.2.1. Experimental Settings

For each transmission setup, we evaluated the delivery time when a 240-bytes payload
message is sent. The maximum payload that can be sent by the SX1276 transceiver is
255 bytes, including 4 bytes of the RadioHead header: this means that the maximum net
payload size that can be transmitted is 251 bytes. We have chosen a smaller message
size of 240 bytes (244 if the RadioHead header is included in the count) so that it can
be ensured that an (up to) 11-bytes nonce can be appended to the header in the case of
payload ciphering, which we did not perform in our experiments. This choice puts us
in the worst-case scenario in terms of message size. In these experiments we relied on
one-way transmissions. Figures 4 and 5 show the network setup, where up to three nodes
(A, B and C) belong to the LoRa-based mesh. We considered single-hop and two-hop
communication as shown in those figures. In the case of two-hop communication, the node
B is able to correctly route traffic between A and C nodes. The computed delivery time
refers to the difference between the time when the last byte of the message was correctly
elaborated by node B or C (depending on the test) at the application layer and the time
when the application layer at node A generated the message to be aired. We ensured that
nodes clock times were synchronized. Propagation times can be considered negligible.

Delivery time

G

Figure 4. Single-hop delivery time evaluation (Table 1).

Delivery time

Ye (B ) O
O, O, :

Figure 5. Two-hop delivery time evaluation (Table 1).

4.2.2. Results

Table 1 shows the results of this evaluation. For each delivery time value, we report
the average value along with its 95% confidence interval. Since propagation times are
negligible, only physical transmission/reception (through LoRa transceivers) and elab-
oration/routing times on the ESP32 boards are assessed with these experiments. It is
clear that SF plays a key role: the higher the SF is, the higher the delivery time. Another
important consideration is that the delivery time for two-hop communication is around
twice the delivery time for single-hop communication in all the cases. This means that the
routing/elaboration time in the intermediate node is almost negligible and that the overall
delivery time is dominated by the time needed to send/receive the message through the
LoRa transceivers. We thus expect that the delivery time, in the case of an m-hop commu-
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nication with m > 2, will be around m times the delivery time of the single-hop case (see
Section 4.4).

SX1276 :
—

%—)[FreeRTOS queue]—,) ArduinoJson

=
[©)
(on
(2
[}
=
<
[}
=

Figure 6. Experimental configuration for transmission efficiency assessment.

4.3. Single-Node Transmission Efficiency Assessment

We then emulated and assessed, in a lab, a typical load condition of a node: multiple
messages generation (or sensor readings) and their subsequent transmission on the LoRa-
based mesh network.

4.3.1. Experimental Setting

We used the Locust HTTP testing framework (https://locust.io/ (accessed on 22 June
2021)) to produce multiple HTTP requests from an external IP network to an HTTP Web
Server running on the application layer of the node. Figure 6 shows the experimental con-
figuration: the Locust software, running on an external device, makes a request including
the 240-bytes payload message; the web server sends a 200 OK message back to Locust
if the message has been successfully forwarded to the mesh through LoRa, or a 500 Inter-
nalServerError otherwise. As explained in Section 4.1, we exploited the dual-core-based
architecture of the ESP32. The HTTP web server runs on Corel (we used the Arduino-ESP32
standard library (https:/ /github.com/espressif/arduino-esp32 (accessed on 22 June 2021))
to implement it), while the JSON parsing and the transmission operations run on Core0. To
alleviate the load of Core0, we adopted a FreeRTOS queue with variable size to enqueue
messages coming from Corel to be transmitted. We configured Locust to send 1, 3 and
5 parallel requests at different times, with FreeRTOS queue size ranging from 1 to 20, and
we evaluated the ratio of requests per second that are successfully handled by the node
(i.e., which generate a 200 OK) against the number of Locust-generated requests in the
same time frame: we call this metric transmission efficiency. The NarrowBand transmission
setup, which is the default one in the RadioHead library, was adopted.

4.3.2. Results

Figure 7a shows the transmission efficiency when no acknowledgment is required. A
single request per second can be handled with a very high efficiency (i.e., higher than 0.8)
with any queue size. Two parallel requests per second can be handled with an efficiency of
about 0.6 with a queue size of at least 3, while five parallel requests per second are always
handled with a very low efficiency, below 0.4. Figure 7b shows the transmission efficiency
when an acknowledgment is required for each aired message. A single request per second
can be handled with a very high efficiency (i.e., higher than 0.9) with any queue size. Two
parallel requests per second can be handled with a good efficiency, higher than 0.6 with a
queue size of at least 5. Five parallel requests per second are instead always handled with
a very low efficiency, below 0.4 with a a queue size of at least 5. These results show that the
adopted hardware is suitable for applications that require few parallel transmissions, as it
happens in most IoT scenarios.
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Figure 7. Transmission efficiency with different FreeRTOS queue sizes. (a) Without acknowledgment.
(b) With acknowledgment.

4.4. Single and Multi-Hop Performance Assessment

In our last evaluation, we measured the single-hop communication efficiency between
two nodes placed at a variable distance, defined as the ratio between the number of
correctly received messages against the total number of sent messages. We also numerically
evaluated the expected performance in the case of multi-hop communication.

4.4.1. Experimental Setting

The receiver was placed near to the window of a room at the 6th floor of a building
while the transmitter moved in the surrounding area, covering a distance ranging from 400
to 2300 m. Figure 8 illustrates a Google Maps Satellite glimpse of the environment, showing
the urbanization level where the test took place; all the transmission setups were tested.

4.4.2. Results

Figure 9 shows that the various transmission setups lead to very different single-
hop communication efficiencies. A clear trade-off between communication efficiency and
delivery time exists (see Table 1): for instance, BroadBand accounts for short delivery times
(~500 ms) but communication efficiency degrades very fast (less than 0.5 after 800 m).
The best compromise appears to be offered by the NarrowBand+ setup, with an efficiency
greater than 0.9 at 1600 m and delivery time of around 5.3 s, but this clearly depends on
the application scenario.

To assess the impact of multi-hop communication in data delivery, we considered the
scenario where a source and a destination are far enough to be able to communicate only if
their messages are routed and forwarded by a chain of intermediate nodes. We assume that
intermediate nodes are always placed at the maximum distance D, ensuring no message
loss (i.e., with efficiency equal to 1), where D,;;x depends on the transmission setup and
can be retrieved from Figure 9. We consider no acknowledgment and we consider, as
single-hop delivery times, the values reported in Table 1, which obviously depend on the
transmission setup too. Given the considerations in Section 4.2, it can be safely assumed
that the end-to-end delivery time in the case of m-hop communication is around m times
the single-hop delivery time for any transmission setup. Figures 10 and 11 report on the
expected number of intermediate nodes and end-to-end delivery time when source and
destination nodes are placed at different distances. In this case, a trade-off also exists: for
instance, BroadBand and NarrowBand can ensure fast communication on high end-to-end
distances only if a huge number of intermediate nodes is deployed.
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Figure 8. Urbanization of the northern Milan area, where the test took place.
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Figure 9. Single-hop communication efficiency at different distances.
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Figure 11. End-to-end delivery time in the case of no-loss multi-hop communication.

5. Conclusions and Future Work

In this paper we proposed a novel low-cost, peer-to-peer, multi-hop and gateway-
free LoRa-based mesh LPWAN where the participating nodes are not just data-collecting
endpoints, but can process the relatively computationally intensive applications on-site,
including network-based tasks such as routing and forwarding. The proposed lightweight
solution could be adopted by widely different applications requiring or benefiting from
“out-of-Internet” communication, being a perfect fit for emergency scenarios. Since LoRa
technology is not adapted for real time applications, the emergency scenarios we are
thinking about are all those where the time constraints are comparable with the LoRa time
scale. Our solution is also very flexible, since it foresees the possibility to interface the
nodes (e.g., through the USB serial port) to more powerful devices directly connected to the
Internet. The obtained results, although preliminary, confirm the feasibility of the approach:
nodes can transmit a few parallel received /generated messages through multiple hops, and
the choice of the most suitable LoRa transmission setup strictly depends on the application
functional requirements.

As future work we plan to extend our experimental results to include a more exten-
sive on-the-field evaluation of multi-hop communication, while assessing the network
capabilities through some real applications. We also plan to extend the implementation
to (i) support multiple applications on a single node and (ii) make the nodes interact with
more complex applications running on more powerful external devices.
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