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Abstract

Circular RNAs (circRNAs) are a large class of covalently closed RNA molecules originating by a process called back-splicing.
CircRNAs are emerging as functional RNAs involved in the regulation of biological processes as well as in disease and cancer
mechanisms. Current computational methods for circRNA identification from RNA-seq experiments are characterized by
low discovery rates and performance dependent on the analysed data set. We developed CirComPara2 (https://github.com/e
gaffo/CirComPara2), a new automated computational pipeline for circRNA discovery and quantification, which consistently
achieves high recall rates without losing precision by combining multiple circRNA detection methods. In our benchmark
analysis, CirComPara2 outperformed state-of-the-art circRNA discovery tools and proved to be a reliable and robust method
for comprehensive transcriptome characterization.
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Introduction
Recent research uncovered that eukaryotic transcriptomes com-
prise thousands of stable circular RNAs (circRNAs) originating
by a process called back-splicing, where the transcript 3′ and
5′ ends are covalently joined [1]. Rather than being transcrip-
tional by-products, circRNA molecules exert critical functions
in cell biology through different mechanisms [2]. By interacting
with microRNAs, circRNAs can regulate gene expression and
govern important oncogenic axes [3]; moreover, similar to long
non-coding RNAs, they can control diverse cellular processes
by decoying RNA-binding proteins and scaffolding molecular
complexes [4]. CircRNAs can also function as templates for trans-
lation to encode functional peptides [1, 5] and regulate the
transcription of their parental gene [6]. Nowadays, circRNAs are
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considered key players that can impact all cancer hallmarks [7,
8]. The discovery of circRNA regulatory roles and their poten-
tial as biomarkers given by higher stability compared to linear
RNAs [9] has actuated the integration of circRNA investigation
in conventional transcriptomics, especially in cancer research
and studies of pathological conditions [10, 11], including viral
infections [12].

Studies of circRNAs rapidly increased in pace thanks to the
development of bioinformatics tools that identify the sequences
spanning circRNA back-splice junctions from total RNA-seq
data. To date, several methods for circRNA identification have
been developed [13]; most of them select the back-splice
junction reads (BJR) by screening the output of read aligner
tools that allow chimeric spliced read mappings to the reference

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab418
http://orcid.org/0000-0001-6338-7677
http://orcid.org/0000-0001-8240-3070
https://github.com/egaffo/CirComPara2
https://github.com/egaffo/CirComPara2
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 Gaffo et al.

genome, such as TopHat-Fusion [14] (which is embedded in the
TopHat2 package), STAR [15], BWA-MEM [16], Segemehl [17] and
MapSplice [18]. Other strategies, including machine learning
and sequence feature-based ones, have been implemented
through the years and were recently reviewed by Jakobi and
Dieterich [19], Chen et al. [13] and Jiao et al. [20]. Still, none
of the methods outperforms the others since they all provide
either highly sensitive or highly precise predictions and highly
variable performance across benchmark data sets [13, 21–23].
Interestingly, Hansen [24] observed that circRNA detection
methods largely agreed on true predictions. In contrast, circRNAs
identified by single methods were enriched in false-positive
guesses (FPs) and suggested selecting circRNAs commonly
predicted by two or more methods to obtain dependable
results.

We formerly implemented CirComPara [25], an automated
computational pipeline combining four circRNA detection meth-
ods, including CIRCexplorer [26], CIRI2 [27], Findcirc [28] and
Segemehl [17]. CirComPara controlled the FP number by con-
sidering only the circRNAs commonly detected by two or more
methods.

In CirComPara2, we have considerably improved our tool
by: (i) including five additional circRNA detection methods,
(ii) updating the software of the already integrated tools, (iii)
implementing a more accurate counting of the back-spliced
reads, (iv) increasing the analysis pipeline flexibility and (v)
including the procedure to calculate the linear expression
related to the circRNAs.

In this work, we first show that nine widely used circRNA
detection tools could miss circRNAs of interest. Then, we con-
firm that CirComPara2 correctly reports circRNAs overlooked by
other methods and achieves significantly higher sensitivity with
no loss of precision. Moreover, assessment on simulated data
and 142 public RNA-seq samples demonstrated the consistent
higher performance of CirComPara2 compared with state-of-
the-art methods. Further, we show that the CirComPara2 expres-
sion estimates highly correlate with the true circRNA abundance
of simulated data. Finally, we discuss the computational cost of
the CirComPara2 approach.

Results
CircRNA detection methods could miss
abundant circRNAs

We simulated RNA-seq expression data of 5680 circRNAs from
the whole human genome (‘simulated data set’; see Methods) to
evaluate the characteristics of circRNA detection method false-
negative predictions (FNs), i.e. true circRNAs not identified as
such. We applied nine widely used computational pipelines for
circRNA discovery, including circRNA_finder (CF) [29], CIRI2 [27],
DCC [30], Findcirc (FC) [28], Segemehl (SE) and CIRCexplorer2 [31].
CIRCexplorer2 was coupled to each of BWA (C2BW), Segemehl
(C2SE), STAR (C2ST) and TopHat-Fusion (C2TH) aligners, thus
composing four different pipelines.

On average, 49% of FNs detected by each method showed
higher expression than the overall circRNA median expression
(Figure 1A), suggesting that nearly half of the missed circRNAs
had a considerable expression level no matter which method
was applied. Besides, the expression distribution of the FNs was
similar to the correctly identified circRNAs, i.e. the true-positive
findings (TPs), whereas the false-positive (FP) expression was
generally low.

Multiple method combinations increase
the detection sensitivity

We further examined the 1945 circRNAs undetected by one or
more tools, referred to as the ‘FN set’ from now on, by counting
how many circRNAs in the FN set each method could detect.
Interestingly, only 4% circRNAs of the FN set were undetected
by all methods (Figure 1B), whereas 96% could be identified at
least by one among the nine tools. Specifically, 1% FNs were
detected individually by Segemehl, C2BW and C2TH, and 95%
were commonly identified by various combinations of two or
more tools. Almost half the FNs (48%) were conjointly detected
by eight out of nine methods, with Segemehl, DCC and C2SE pro-
viding the most inclusive predictions. Instead, Findcirc showed
the least number of recovered FNs. However, no method entirely
covered the predictions of Findcirc, indicating some specificity
of its algorithm.

Overall, this analysis suggested that algorithms with possibly
different and complementary features can compensate for each
other’s weak points and improve the detection rate if applied
together.

Workflow and features of CirComPara2

Following the observation reported in the previous paragraph,
we enhanced CirComPara by including more circRNA detection
methods to improve its sensitivity. Moreover, we introduced new
features that made CirComPara2 more flexible, computationally
efficient and resilient.

CirComPara2 implements a fully automated computational
pipeline for circRNA detection, quantification, annotation and
integration with linear gene expression data (Figure 2A). Several
parameters are available to customize the analysis workflow and
the integrated methods. The minimal input consists of the RNA-
seq reads in FASTQ format and a reference genome in FASTA
format. Optionally, the user can also provide the gene annotation
in GTF format. The software will then build the genome indexes
for each read aligner and perform the necessary file format con-
versions. Previously computed indexes can be reused as input to
save computing time.

The CirComPara2 workflow comprises an optional pre-
processing of the input raw reads by Trimmomatic [32] to trim
or discard low-quality reads. Statistics of the pre-processing
steps are produced with the FastQC tool [33]. Next, the reads are
aligned collinearly to the reference genome using HISAT2 [34]
to (i) identify the reads that are later used for linear transcript
analysis (Figure 2A) and (ii) extract the reads not collinearly
aligned, which are used to detect back-splices. The linear
gene and transcript expression analysis is performed with
StringTie [35] and produces files that can be easily imported
into packages for downstream expression analysis, such as
tximport [36] and tximeta [37]. The circRNA analysis aligns the
collinearly unmapped reads independently with five methods
allowing chimeric alignments, namely Bowtie2 [38], BWA-MEM,
Segemehl, STAR and TopHat-Fusion (Figure 2B). The chimeric
aligner outputs are subsequently parsed by six circRNA detection
tools, which compose the nine different circRNA detection
sub-pipelines presented in the previous paragraph. Of note,
the computationally expensive chimeric alignment step is
performed only once per aligner and reused by multiple circRNA
detection tools, boosting CirComPara2 efficiency. For instance,
the same alignments from STAR are passed to CIRCexplorer2,
circRNA_finder and DCC (Figure 2B). The outputs of the various
tools are automatically handled, converting them into a standard
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Figure 1. Commonly used circRNA detection methods may overlook some highly expressed circRNAs. A, The expression level of predicted circRNAs. BJR: back-splice

junction read counts; C2BW: CIRCexplorer2 on BWA; C2SE: CIRCexplorer2 on Segemehl; C2ST: CIRCexplorer2 on STAR; C2TH: CIRCexplorer2 on TopHat-Fusion; CF:

circRNA_finder; CIRI: CIRI2; FC: Findcirc; SE: Segemehl; FP: false-positive; FN: false-negative; TP: true-positive. B, Number of methods detecting circRNAs not detected

by other methods and the number of the FNs detected. Colour refers to the number of methods conjointly detecting circRNAs missed by other tools. The vertical bars

show the number of FN circRNAs detected by the methods indicated in the coloured dots below the bars. The bars denote disjoint circRNA sets. Grey dots indicate the

methods failing to detect the circRNAs considered in the bar chart on the top. The horizontal bars on the right represent the overall number of FN circRNAs detected

by the methods. The horizontal bar shows the percentage of detected FNs by grouping method combinations according to the number of combined methods.

format to compare the predicted back-splices. Moreover, the
identifiers of the back-spliced reads are collected while keeping
track of the predicting method to obtain non-redundant read
counts for each circRNA. Finally, the linear expression of circRNA
host genes is evaluated by counting the reads collinearly
mapped at each back-splice junction using bedtools [39], GNU
parallel [40] and custom scripts.

CirComPara2 has a modular and highly parallelized imple-
mentation that makes it computationally efficient and resilient.
By using custom parameters, CirComPara2 allows skipping
computation tasks that are not of interest to the user. For
instance, the user can select to run only the pipeline branch
computing the linear or the circular transcript analysis, the
collinear alignments (for instance, if they were previously
computed), or both the collinear alignment and the linear
transcript pipeline branch, therefore performing only the
circRNA detection from pre-filtered reads. Plus, the Scons (www.
scons.org) engine is leveraged to run independent tasks in
parallel, resume an interrupted analysis by performing only
uncompleted tasks and compute only the tasks dependent on
the modified parameters if the user changed some parameters
from a previous run.

CirComPara2 is available as stand-alone software (https://gi
thub.com/egaffo/circompara2) and Docker image (https://hub.
docker.com/r/egaffo/circompara2), which facilitates installation,
portability and reproducibility of the analysis.

Optimal method combination for circRNA detection

Concurrently to the improvement of CirComPara2 sensitivity,
we wanted to control the number of the introduced FPs to
preserve a high precision. As observed in a previous study [24],
the combination of specific methods does not ameliorate the
discovery of true circRNAs. Accordingly, our method combina-
tion assessment on the simulated data showed that combining
circRNA_finder or Segemehl with other methods increased the
FP number (Supplementary Figure S1 available online at http://bi
b.oxfordjournals.org/). For this reason, circRNA_finder and Sege-
mehl were excluded in the CirComPara2 default method com-
bination (Figure 2B); nevertheless, these two methods can be
included if enabled by the user.

Further, Hansen [24] observed that circRNAs predicted by
multiple methods were enriched in reliable findings and sug-
gested using the shared output from two (or more) algorithms.

www.scons.org
www.scons.org
https://github.com/egaffo/circompara2
https://github.com/egaffo/circompara2
https://hub.docker.com/r/egaffo/circompara2
https://hub.docker.com/r/egaffo/circompara2
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 2. The CirComPara2 workflow and approach. A, Boxes with dashed

contour indicate input and output data; boxes with solid-line contour indicate

computing tasks; the circular connector indicates merging data. Background

colours highlight the different pipeline branches (linear transcript analysis in

blue, full circRNA analysis in yellow and strict circRNA analysis in red). B, A detail

of the CirComPara2 strategy (‘CircRNA detection and quantification’ box in a)

showing the embedded circRNA detection methods (coloured rounded corner

boxes) with the respective chimeric read aligners (white boxes). The central

Venn diagram represents the optimized combination of method prediction

intersections implemented by CirComPara2 with circRNAs conjointly detected

by two or more methods (grey filled intersections) retained as default. Method

abbreviations as in Figure 1. C, Precision (red), recall (yellow) and F1-score (green)

for different numbers of methods that conjointly identified the circRNAs: ≥1

indicates that at least one method identified the circRNAs, or, in other words, it

represents the union of all single methods predictions; ≥2 indicates the circRNAs

conjointly predicted by two or more methods; ≥3 indicates the circRNAs com-

monly identified by any combination set of at least three methods; similar is for

the larger number of methods sharing the predictions. The ‘7’ indicates circRNAs

commonly predicted by all the methods. The grey-filled parts in Venn diagrams

show the intersections considered by the conjoint method combinations.

To determine an optimal default setting to use in CirComPara2,
we evaluated the amount of the recovered FNs against the intro-
duced FPs in relation to the number of methods sharing the pre-
dictions. As expected, considering the predictions from all meth-
ods resulted in the highest recall (0.99) and the lowest precision
(0.90) among the combination strategies (Figure 2C). Further,
excluding predictions from single methods, i.e. selecting only
the circRNAs commonly detected by two or more tools, showed
a slightly reduced recall (0.98) with a substantially increased
precision (0.99). This large precision gain indicated that most
of the FPs were predicted by single methods. Further increasing
the number of conjoint methods (i.e. from three-or-more to all-
seven conjoint methods) led to a considerable decrease of recall
(0.96–0.68) with only a modest gain in precision (0.99–1.00). In
summary, we confirmed that the larger the number of methods
sharing the output circRNAs, the more reliable the findings but
also observed that the amount of circRNAs discarded increased
accordingly.

To evenly weigh recall and precision in ranking the method
combination strategies, we calculated the F1-score for each
combination. The best trade-off between recall and precision,
indicated by the highest F1-score (0.99), was obtained with the
two-or-more method strategy (Figure 2C). Therefore, the default
CirComPara2 parameters have been set to simultaneously use
seven circRNA detection methods (C2BW, C2SE, C2ST, C2TH,
CIRI2, DCC and FC) and later discard the circRNAs not shared
between at least two of these methods.

CirComPara2 outperforms other methods
in simulated data

We next set CirComPara2 with the two-or-more method strategy
and compared it with the single methods on the simulated data
plus CIRI-full [41] (CIRFU) and the former implementation of Cir-
ComPara (CCP1) (Figure 3A). CirComPara2 obtained the highest
F1-score (0.99) by achieving the highest recall (0.98) while holding
a precision comparable to or higher than the other algorithms
(0.99 versus 0.92–1.00), confirming that CirComPara2 rectified
the true circRNAs missed by the other methods. Notably, Cir-
ComPara2 identified 7% additional true circRNAs compared to
its former implementation (Supplementary Figure S2 available
online at http://bib.oxfordjournals.org/).

To assess the extent of the annotation-guided method con-
tribution to CirComPara2 predictions, we performed the analysis
also with a pruned gene annotation input to the algorithms (see
Methods). As expected, the CIRCexplorer2 pipelines showed a
dramatic reduction (up to −0.14) of the recall and F1-scores (Sup-
plementary Figure S3 available online at http://bib.oxfordjourna
ls.org/). Instead, CirComPara2 maintained the highest F1-score
(0.98), suggesting that it can be efficient when applied to RNA-
seq data of organisms with incomplete or poor genome annota-
tion by leveraging the embedded annotation-independent tools.

A typical circRNA expression analysis usually involves post-
detection data cleaning to remove background noise signals or
mapping errors and poorly expressed circRNAs of little interest
[42]. Consequently, the circRNAs with small back-splice junc-
tion read counts (BJRs) are routinely filtered out. As shown in
Figure 1A, FPs generally have small BJRs, suggesting that more
reliable circRNAs can be retained by simply filtering according
to expression abundance. We applied this procedure to our
data, progressively filtering out circRNAs with less than 2 up
to 10 BJRs. We stress that removing circRNAs with ≤10 BJRs
was an extreme filter since it was close to the overall median
BJR (Figure 1A). As expected, by increasing the minimum-BJR

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 3. Performance of circRNA detection methods on the simulated data set.

A, Precision and recall of the circRNA detection methods (labels as in Figure 1),

including CirComPara2 (CCP2; green dot), CirComPara (CCP1; light green), and

CIRI-full (CIRFU; black); the dashed-line curves display plot areas for 0.85, 0.90,

0.95 and 0.98 F1-scores. B, CircRNA detection methods’ performance upon appli-

cation of filters from 2 to 10 minimum circRNA raw expression estimates (BJR:

back-splice junction read counts); dashed-line curves delimit F1-scores plot

areas from 0.92 to 0.98 with 0.01 increase steps; method colours as in (A). CCP1

was not included because it gives normalized expression estimates that are not

compatible with the filtering on BJR counts.

filter threshold, all methods scored higher precision but with a
corresponding reduced recall, indicating that true circRNAs were
discarded as well (Figure 3B; Supplementary Figure S4 available
online at http://bib.oxfordjournals.org/). Nevertheless, CirCom-
Para2 maintained the highest recall compared to other methods
at equal precision (Figure 3B; Supplementary Tables S1 available
online at http://bib.oxfordjournals.org/) and obtained the high-
est area under the precision–recall curve (Supplementary Table
S2 available online at http://bib.oxfordjournals.org/), suggesting

that the circRNAs recovered by CirComPara2 were valid findings
with a considerable abundance that may represent relevant
circRNAs in actual experiments.

Benchmark real data sets

The gold standard for evaluating circRNA detection methods
on real RNA-seq data is to compare ribosomal RNA-depleted
(ribo−) with circRNA-enriched sequencing libraries. The most
used technique is the additional treatment of the ribo− library
with RNase R to exploit the exonuclease degradation resistance
of circRNAs derived by their lack of a single-stranded 3′ end
[22–24, 27, 43]. Accordingly, we collected a total of 142 public
real RNA-seq data samples for which sample-matched ribo− and
RNase R-treated libraries were available (Table 1; Supplementary
Table S3 available online at http://bib.oxfordjournals.org/). This
validation data set comprised samples of human cell lines and
various human, Rhesus macaque and mice tissues from six
independent studies.

The matched RNase R-treated samples were used as a
control to define the TP circRNAs (see Methods). Assuming
that the RNase R treatment would deplete the linear more
than the circular transcripts, we considered TPs the circRNAs
having circular-to-linear expression proportion (CLP) higher or
equal in the RNase R-treated compared to the ribo− matched
samples according to at least one method. In this way, we
accounted for different sequencing library depths between the
matched samples. Moreover, each circRNA host–gene linear
expression was estimated commonly to all the detection tools
and independently of the circRNA abundance estimated by
each method, allowing to remove possible advantages given
by specific method quantification approaches.

CirComPara2 performs consistently better
than single methods

The performance of the methods on the real RNA-seq data
agreed with the analysis of simulated data and previous bench-
mark study results [23, 24]. We did not include CIRI-full because
it showed inferior performance than CIRI2 in the simulated data.
Segemehl showed high recall (median 0.75; Figure 4A) but the
lowest precision (median 0.92; Figure 4B), whereas C2BW, as
expected from annotation-based algorithms, showed the most
reliable predictions (median precision 0.97; Figure 4B). Similar
to the evaluation in the simulated data set, we computed the
F1-scores in the real data set. According to F1-score medians,
CirComPara2 had the highest (0.91) and significantly different
value (q < 0.001; Figure 4C), and substantially outperformed
the next best method, Segemehl (median F1-score 0.82), with
a 0.09 F1-score difference (Supplementary Table S4 available
online at http://bib.oxfordjournals.org/). The highest F1-score,
achieved by CirComPara2, resulted from a significantly larger
recall (median 0.86; q < 0.001; Figure 4A) and a negligible loss
of precision compared to the other methods (0.01 median
reduction to the most precise method; Figure 4B). Moreover,
CirComPara2 had the narrowest interquartile range of F1-scores
across the real data sets (0.11; Figure 4C; Supplementary Table
S4 available online at http://bib.oxfordjournals.org/), proving
that it is robust and almost unaffected by the experimental
scenario. CirComPara2 showed considerable and significant
improvements also compared to its former implementation (F1-
score q < 0.001; precision q = 1.0; recall q < 0.001; Supplementary
Table S4 available online at http://bib.oxfordjournals.org/),
identifying in average 47% more true circRNAs than its former

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
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Table 1. Real data sets of rRNA- and rRNA-/RNase R-treated matched pairs of samples used to benchmark the circRNA detection methods

SRA/GEO/BIGD ID Tissue(s)/cell line(s) Study reference

SRR3476956, SRR1636985, SRR1636986;
SRR3476958, SRR1637089, SRR1637090.
SRR3479244, SRR3479243

HeLa, HEK293 [27]
[44]

GSE130905 (10 samples) HeLa [45]∗
CRA001838 (8 samples) HeLa [46]
SRR444655, SRR444975; SRR445016, SRR444974 Hs68 [47]
GSE113120 (24 samples) 22Rv1, 42D, PC3, V16, LNCaP [48]
PRJCA000751 (88 samples) Homo sapiens (17 tissues) [49]

Mus musculus (14 tissues)
Macaca mulatta (13 tissues)

Tissues and cell lines are from humans unless specified. GEO: Gene Expression Omnibus [50], BIGD NGDC: National Genomics Data Center [51].
∗Data set GSE130905 used an improved protocol for circRNA enrichment [45].

Figure 4. Performance of circRNA detection methods on the real RNA-seq data set. Results of the analysis on the 71 pairs of samples of the real RNA-seq data set.

Density plots of (A) recall, (B) precision and (C) F1-score; distribution quartiles are indicated by white vertical lines. On the right-hand side of each plot, the Bonferroni

adjusted P-values of Wilcoxon paired tests contrasting each method with CirComPara2. Methods’ abbreviations as in Figure 1; CCP2: CirComPara2.

version. In light of the more challenging nature of real compared
to simulated data [21, 43], these results further confirmed the
advantage of CirComPara2 over the methods here assessed.

Quantification of circRNA expression

Most circRNA expression quantification tools, including CIRC-
explorer2, circRNA_finder, CIRI2, DCC and Findcirc, consider BJR
counts to estimate the circular transcript abundance. However,
different sets of BJRs may contribute to the expression esti-
mates, especially if the tools were based on different chimeric
aligners (Figure 5A). The method combination strategy, which we
demonstrated to have superior detection performance, poses the
question of which tool expression estimate should be considered
or how to combine multiple expression estimates.

The former version of CirComPara estimated the circRNA
abundance as the library-size normalized BJR median across the
methods detecting a circRNA. Instead, CirComPara2 extracts the
BJR from each method and for each circRNA to count only the
non-redundant BJR identifiers (Figure 5B). By this approach, the
information brought by each method is preserved.

Recent tools such as CIRIquant, Sailfish-cir and CircAST pro-
posed a circRNA sequence reconstruction followed by read re-
alignment to improve circRNA expression estimation. These
methods have been devised for quantification purposes and
require external tools for circRNA detection.

To evaluate the quantification accuracy of CirComPara2,
we compared the true BJR counts of the simulated circRNAs
with the expression estimates. We also compared the estimates
from the other tools, plus CIRIquant, Sailfish-cir and CircAST.

As in Zhang et al. [46], we computed the Pearson correlation
coefficient between the estimated and the simulated BJR of
each circRNA (Figure 5C). CirComPara2 achieved the highest cor-
relation (r = 0.76), followed by Segemehl (r = 0.75), C2SE (r = 0.73),
CIRIquant (r = 0.73) and DCC (r = 0.72). Notably, CirComPara2
largely improved over its former implementation (r = 0.63) and
showed overall the most accurate expression estimates without
requiring additional re-alignment steps.

Computation time and memory requirements

When running the circRNA detection methods on the simulated
data, we observed that the chimeric alignment steps were the
most computational-resource demanding tasks of the pipelines.
In contrast, parsing the chimeric alignment output required <1%
of the resources used in the alignment step in both computation
time and peak memory. Only CIRI2 showed more memory usage
to process the alignments (∼30 GB compared to the ∼6 GB of
BWA-MEM) because it ran with eight parallel processes.

CirComPara2 inherited from and extended the CirComPara1
parsimonious computational design that does not repeat tasks
in common between the integrated methods. For instance,
the linear read alignment is common to all the circRNA sub-
pipelines and is performed only once. Further, the chimeric
alignments of BWA-MEM are used for both CIRI2 and CIRC-
explorer2. Likewise, the STAR alignments are shared by three
parsers, i.e. DCC, CF and C2ST. CirComPara2 runtime and mem-
ory requirements are comparable to its former implementation
since the most computational-resource demanding tools (STAR
and Segemehl) were already included in CirComPara1.
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Figure 5. CircRNA expression estimates from CirComPara2. A, The overlap between the different sets of the back-splice junction reads (BJRs) identified by four chimeric

aligners (BWA-MEM, Segemehl, STAR and TopHat-Fusion/TopHat2). B, The CirComPara2 BJR count approach: the upper panel shows the non-redundant BJR count of

CirComPara2 (CCP2) compared to other methods (for simplicity, only three methods are displayed), which is based on unique BJR identifiers (BJR IDs); the lower panel

highlights how CCP2 can preserve the information even when no BJRs are in common between circRNA detection methods. C, The estimated circRNA expression in

BJRs compared to the true expression from the simulated data set. The Pearson correlation coefficient (r) values are reported in the boxes. CIRIquant, CircAST and

Sailfish-cir were inputted with the circRNAs predicted by CirComPara2.

When processing the simulated data set (∼3.7 million paired-
end reads, 100 bp long, from the whole human genome), CirCom-
Para2 saved ∼20% computation time compared to the sequen-
tial independent running of the seven method full pipelines

(SeqMet; Figure 6). Besides, CirComPara2 provides concurrent
running of independent tasks, including the circRNA detec-
tion methods, which can reduce the computation time. Setting
CircComPara2 to run multiple (up to seven) tasks in parallel
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Figure 6. Computation time and memory requirements of circRNA detection methods. F1-scores of 14 circRNA detection pipelines compared to their computing

time in seconds (s) and peak random access memory (in GigaBytes) required to process ∼3.7 million paired-end (PE) reads of 100 bp length, mapped to the human

genome (GRCh38) and using eight CPU threads for each tool. Plus, one hypothetical pipeline running sequentially the seven methods used in CirComPara2 (SeqMet)

and CirComPara2 set with maximal parallelization settings (mpCCP2) allowing to run up to seven tasks in parallel, for peak usage of 56 CPU threads in total.

(mpCCP2) saved ∼74% computing time compared to the SeqMet,
and ∼68% compared to CirComPara2 with no augmented paral-
lelization (Figure 6). The mpCCP2 setting reduces the computa-
tion time up to the longest program execution (C2TH) but at the
cost of higher peak memory and CPU cores requirements: 56 CPU
cores and up to 120 GB of random access memory were used to
run in parallel all the aligners on the human genome, and CIRI2
with eight parallel processes.

Finally, the CirComPara2 running time scaled linearly with
the number of input sequencing reads (Supplementary Figure S5
available online at http://bib.oxfordjournals.org/). CirComPara2,
set with the mpCCP2 parameters and applied to a multiple-
sample batch, showed a runtime bounded only by the analysis of
the sample having the largest input size (Supplementary Figure
S5 available online at http://bib.oxfordjournals.org/). This result
demonstrates that the CirComPara2 augmented parallelization
harnessed the system’s computational power by consuming
multiple short tasks concurrently to longer ones also from dif-
ferent samples, eventually saving computation time.

Discussion
In the early days after circRNA discovery, bioinformaticians put
significant effort into developing circRNA detection methods
with highly precise predictions. To this aim, the current cir-
cRNA detection algorithms apply filtering procedures to remove
FPs, but that may also reject true circRNAs [21–24], increasing
the number of FNs and the risk of overlooking circRNAs of
interest, as suggested by our analysis. Moreover, the frequent
practice of filtering out low-count circRNAs to improve precision
may result in the loss of differentially expressed elements in
comparative studies, as demonstrated by systematic studies
on gene expression [52, 53]. Notably, unlike FPs, experimental
validations cannot amend the bias derived by FN errors. These
considerations prompted us to consider a method evaluation
metric that equally weighted precision and recall, such as the
F1-score.

Interestingly, the evaluation by F1-score in our simulated data
analysis highlighted that some methods with diverging preci-
sion and recall, such as CIRI2 and Segemehl (Figure 3A), were
equally ranked. Moreover, the real data set analysis showed an
ample recall variation of each method across the samples, while
precision scores were tighter both between and within methods.
These results confirmed that choosing a single method for cir-
cRNA discovery is problematic since no single best performing
method exists. We showed that an approach leveraging the
advantages brought by each of the integrated methods allows
CirComPara2 to perform better than the single methods consis-
tently in different experimental contexts. Besides, we showed
that CirComPara2 predictions are more inclusive and robust than
single-method ones, even upon low-count filtering, indicating
that the recovered circRNAs missed by other methods are not
merely of low abundance.

To our knowledge, CirComPara has been the first bioinfor-
matics tool to combine multiple circRNA detection methods in
an automated software pipeline. Since its former implementa-
tion, the continuous upgrade of CirComPara evolved into a sub-
stantially improved new tool, CirComPara2, with an efficacious
method combination strategy. Other computational pipelines
that employed multiple circRNA detection tools, such as RAISE
[54] and circRNAwrap [55], considered the circRNAs predicted by
the union or the intersection of all methods, respectively, with-
out validating which method combination was best. Our data
show that those two approaches could be suboptimal as they
suffer either low precision or sensitivity, whereas the best trade-
off between precision and recall is achieved with predictions of
methods taken pairwise.

Recently, large circRNA databases have been compiled using
method combination strategies [56]. For instance, circAtlas2.0
[57] retained circRNAs identified by at least two methods among
CIRI2, CIRCexplorer2, Findcirc and DCC; the same combination
but replacing DCC with circRNA_finder has been used in
CircRic [58]. Applying these two approaches to our real data
sets analysis, we observed that they performed better than
most of the algorithms except CirComPara2 (Supplementary

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
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Table S4 available online at http://bib.oxfordjournals.org/),
which achieved similar precision but slightly more than 0.2
better recall. Such a result suggests that CirComPara2 could
be employed to compile comprehensive and reliable circRNA
databases in future works.

Importantly, the computational pipelines used to compile
circAtlas2.0 and CircRic were not implemented as software
tools available to the scientific community. Instead, we made
the automated and computationally efficient CirComPara2
pipeline ready-to-use and portable through a Docker container,
freeing bioinformaticians from the several difficulties posed by
implementing a computational pipeline, such as installation of
multiple tools, software portability, code maintenance and
documentation [59].

CirComPara2 is the only tool that aggregates various method
expression estimates into unified values that eliminate redun-
dant counts of BJR identified by multiple tools without relying
on additional re-alignment of the reads. CircRNAwrap, RAISE
and CircAtlas2.0 applied a quantification step downstream of
circRNA detection to estimate the circRNA expression. They
considered the re-alignment of the reads onto pseudo-reference
circRNA sequences through Sailfish-cir [60], RAISE itself and
CIRIquant [46], respectively, thus increasing the computational
requirements of the pipeline. We applied CircAST, Sailfish-cir
and CIRIquant to the CirComPara2 predictions. The additional
computational load was modest for Sailfish-cir and CIRIquant,
but we did not obtain a better quantification of the expression
than the BJR counts reported by CirComPara2. Moreover, CircAST
and Sailfish-cir failed to quantify some circRNAs, which eventu-
ally reduced the accuracy of CirComPara2 predictions. Notably,
in our test, CirComPara2 reported the best correlation with
the true BJR counts with no need for additional re-alignment
steps.

The various tools integrated into CirComPara2 determine
its computational requirements. As pointed out by Jakobi and
Dieterich [19], the read mapping phase is the limiting factor in
terms of memory requirements, and the genome size of the
target organism determines the amount of memory requested.
For mammalian genomes, Segemehl bounds CirComPara2 to
require at least 50 gigabytes (GB) of random access memory
(RAM). Future development of CirComPara2 could reduce the
peak memory by splitting the Segemehl and STAR indexes into
chromosomes and allow CirComPara2 to run also on lower-end
hardware. On the other hand, the task parallelization of Cir-
ComPara2 allows modulating the computational requirements
to exploit higher-end hardware fully. Nevertheless, we think that
the computational needs of CirComPara2 are compensated by its
asset of detecting and quantifying circRNA expression.

CircRNA studies are likely to grow in several branches of
biology, both on model [61] and non-model organisms and
beyond the biomedical field [62–64], prompting the development
of improved tools allowing more extensive circRNA investigation
to unravel circRNA-related condition peculiarities, such as
differential circRNA expression [65–67], imbalances of the
CLP [53] and prevailing circular transcript isoform expression
[68]. CirComPara2 is a resource tool meeting these needs, as
already proved by the successful application of its embryonic
implementations in several studies of human diseases and of
other species, including plants [53, 65, 69, 70].

In this work, we described the main features of CirComPara2,
our automated and computationally efficient software pipeline
for circRNA expression characterization that also allows tra-
ditional gene expression analysis and the computation of cir-
cRNA to host–gene linear transcript abundance. Importantly, we

demonstrated the asset given by the CirComPara2 method com-
bination strategy for circRNA discovery, which provides robust
and inclusive predictions in diverse biological contexts. With
CirComPara2, we aim to provide a helpful bioinformatics tool
to obtain a more comprehensive picture of transcriptomes and
boost the understanding of circRNA features, biological and
pathogenetic roles.

Methods
Simulated data set

CircRNA reads were simulated with the CIRI_simulator from the
CIRI2 tool suite using the whole GRCh38 human genome and
Gencode v29 gene annotation.

The parameters used in CIRI_simulator were: -C 20 -LC 0 -R 1
-LR 1 -L 101 -E 1 -CHR1 0 -M 250 -M2 450 -PM 0 -S 70 -S2 0 -SE 0
-PSI 10.

A total of 10% (30% for the highly pruned annotation simu-
lation) of the gene annotation for the simulated circRNA parent
genes was removed from the annotation file and used as input
to circRNA detection methods and to simulate linear transcript
reads with Polyester (the reads_per_transcript parameter was set
to 300). The linear transcript read files were then concatenated
to the circRNA read files.

Code for generating the simulated data is available as a
software tool CCP_simulator at https://github.com/egaffo/CCP_si
mulator. The parameter ANNOPARTS used in CCP_simulator for
the two filters on gene annotation (standard and high pruning)
was set to ‘85,4,5,1,0,0,0’ and ‘60,15,10,2.5,6,3.5,3’, respectively.

Real data sets

Overall, 71 samples with matched rRNA depletion and rRNA
depletion followed by RNase R treatment libraries from six stud-
ies (Table 1), for a total of 142 samples processed, were retrieved
from Gene Expression Omnibus (GEO) or the National Genomics
Data Center (NGDC) databases.

Reads from PRJCA000751 were trimmed to 150 bp in the pre-
processing phase, as reported in the original work.

Method predictions in genomic scaffolds or from the mito-
chondrial genome were not considered. CircRNAs predicted with
a length shorter than the library read length or longer than the
longest gene expressed in the sample (computed as genes with
TPM ≥ 1 computed by StringTie v2.1.4) were filtered out.

CircRNA detection methods’ parameters

The following genome and gene annotations from the Ensembl
database were used in the analyses: GRCh38 human genome and
v97 gene annotation, Mmul 10 Macaca mulatta genome and v101
gene annotation, and GRCm38 Mus musculus genome and v101
gene annotation.

CirComPara2 default parameters were set for the analy-
ses, which are as follows: adaptors from the Trimmomatic
v0.39 TruSeq3-PE-2.fa file; PREPROCESSOR = ‘trimmomatic’;
PREPROCESSOR_PARAMS = ‘MAXINFO:40:0.5 LEADING:20 TRAIL-
ING:20 SLIDINGWINDOW:4:30 MINLEN:50 AVGQUAL:26’. For the
PRJCA000751 data sets, the CROP:150 option was appended
to the parameter. STAR_PARAMS = ‘—runRNGseed 123 —
outSJfilterOverhangMin 15 15 15 15 —alignSJoverhangMin 15 —
alignSJDBoverhangMin 15 —seedSearchStartLmax 30 —outFilter
ScoreMin 1 —outFilterMatchNmin 1 —outFilterMismatchNmax
2 —chimSegmentMin 15 —chimScoreMin 15 —chimScore
Separation 10 —chimJunctionOverhangMin 15’. CIRCRNA_

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab418#supplementary-data
http://bib.oxfordjournals.org/
https://github.com/egaffo/CCP_simulator
https://github.com/egaffo/CCP_simulator
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METHODS = ‘circexplorer2_bwa, circexplorer2_segemehl, circ-
explorer2_star, circexplorer2_tophat, ciri, dcc, findcirc’ (‘cir-
crna_finder’ and ‘testrealign’ values were used in additional
runs to obtain CircRNA_finder and Segemehl predictions);
CPUS = 12; BWA_PARAMS =’-T 19′; SEGEMEHL_PARAMS =’-D 0′;
BOWTIE2_PARAMS =’—reorder —score-min = C,-15,0 -q —seed
123′; DCC_EXTRA_PARAMS =’-fg -M -F -Nr 1 1 -N’; TESTRE-
ALIGN_PARAMS = ‘q median_1’; FINDCIRC_EXTRA_PARAMS
=’—best-qual 40 —filter-tags UNAMBIGUOUS_BP —filter-tags
ANCHOR_UNIQUE’ (this setting implements the optimization
suggested by Hansen [24]). MIN_METHODS = 2; MIN_READS = 2;
CIRC_MAPPING = “{’SE’:[’STAR’,’TOPHAT’,’BOWTIE2’],’PE’:[’BWA’,’
SEGEMEHL’]}”; HISAT2_PARAMS = ‘—seed 123’.

Segemehl predictions reported in the sngl.bed and trns.txt
files were merged to include spliced reads spanning >20 000 bps.
The same approach has been implemented in CirComPara2.

Read alignment and circRNA detection methods’ parameters
were set as the value in the corresponding CirComPara2 param-
eters. All other parameters not mentioned were left with default
values.

Details of the CirComPara2 method

CircRNA expression estimates in CirComPara2 are represented
as the sum of all unique BJRs identified by the circRNA methods.
Then, the number of BJR fragments is counted while keeping
track of the number of methods detecting each circRNAs. Finally,
circRNAs with at least two reads identified by two or more meth-
ods are reported. The MIN_METHODS and MIN_READS options
can be used to modify the required minimum reads and meth-
ods.

The CirComPara2 pipeline considers a preliminary alignment
step that maps the reads linearly on the genome. Linearly
aligned reads are then used to characterize canonical gene
and transcript expression and count the linearly spliced reads
spanning the back-splice junctions. Instead, linearly unmapped
reads are used as input to the circRNA detection methods.

Evaluation metrics and statistical tests

In evaluating method predictions, to compare samples with their
matched control libraries, the different sequencing depths of the
control library and the biochemical variability of the exoribonu-
clease in RNase R treatment have been adjusted by considering
the proportion between the expression of the predicted circRNAs
and the linear transcripts sharing the back-spliced exons. In
each sample and for each method, we computed the circular-to-
linear expression proportion (CLP) of each predicted circRNA by
counting the number of reads back-spliced (BSreads) and linearly-
spliced (LSreads) on the circRNA back-splice junctions, respec-
tively. Then, the CLPs were calculated as BSreads/(BSreads + LSreads).
Szabo and Salzman [43] also suggested using the ratio between
the expression of circRNAs and their linear counterparts to over-
come the evaluation issues deriving by RNase R-treated control
samples.

Assuming that RNase R should degrade linear transcripts
more than circRNAs regardless of its efficiency in different sam-
ples, circRNAs with an equal or increased CLP in the control
samples were deemed true-positives (TPs); false-positives (FPs)
otherwise. Only circRNAs detected in the control libraries were
considered to limit incorrect FP calls due to a lower sequencing
depth of the control sample and to RNase R-sensitive circRNAs
[47].

The precision was defined as TP/(TP + FP). The recall was
computed as TP/(TP + FN) and F1-score as (2 × Precision ×
Recall)/(Precision + Recall), where TP and FN denote the
true-positive and false-negative numbers.

Wilcoxon one-tailed paired tests were used to compare Cir-
ComPara2 greater recall and F1-score or lower precision with
each method. Bonferroni multiple test correction was applied
to compute adjusted P-values (q-values). The q-values reported
in the main text refer to the highest value among the pairwise
comparisons for recall and F1-score, whereas to the lowest value
for precision comparisons.

Software versions

The following software versions of the circRNA detection meth-
ods and chimeric read aligners were used in this study: CIRC-
explorer2 [31] v2.3.8, CircRNA_finder [29] v1.1, CIRI2 [27] v2.0.6,
DCC v0.4.8 [30], Findcirc [28] v1.2, Segemehl [17] v0.3.4 (used also
by CIRCexplorer2), BWA MEM [16] v0.7.15 (used by CIRI2 and
CIRCexplorer2), STAR [15] v2.6.1e (used by circRNA_finder, DCC
and CIRCexplorer2) and TopHat2 [14] v2.1.0 (used for the TopHat-
Fusion algorithm by CIRCexplorer2). CirComPara2 v0.1.2.1 was
used to run the analysis. Other method versions used were
as follows: CirComPara v0.1.3, CIRI-full v2.0 (the embedded
CIRI-vis had to be replaced with an updated version CIRI-
vis v1.4), CIRIquant v1.1.2, CircAST v1.0.2 [71] and Sailfish-cir
v0.11a.

Key Points
• Current circRNA detection methods achieve either

high precision or high recall, possibly overlooking
circRNAs of interest.

• Extensive tests on simulated RNA-seq expression data
determined the optimal method integration strategy
for circRNA detection.

• CirComPara2 achieves high detection recall with no
loss of precision by combining seven circRNA detec-
tion methods.

• At benchmarking on 142 real data sets, CirComPara2
consistently outperforms other methods regardless
of the biological context and the genome annotation
quality.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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