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Abstract 

The clinical applicability of the whole-exome sequencing (WES) in estimating tumor mutational 
burden (TMB) is currently limited by high cost, time-consuming and tissue availability. And given to 
the differences in the mutational landscapes among different types of cancer, we aimed to develop a 
cancer-specific signature to estimate TMB for right-sided colon cancer patients (RCC). Using WES 
data of 315 RCC patients, we identified the exons in which the number of mutational sites of the 
coding DNA sequences associated with TMB through linear regression analysis. Then, among these 
exons, we extracted a signature composed by 102 exons (~0.13 Mbp) through a heuristic selection 
procedure. The TMB estimated by the signature was highly correlated with those calculated by WES 
in the discovery dataset (R2=0.9869) and three independent validation datasets (R2=0.9351, 
R2=0.8063 and R2=0.9527, respectively). And the performance of the signature was superior to a 
colorectal-specific TMB estimation model contained 22 genes (~0.24 Mbp). Moreover, between 
TMB-high and TMB-low RCC patients, there were significantly differences in the frequencies of 
microsatellite instability status, CpG island methylator phenotype, BRAF, KRAS and POLE/POLD1 
mutation status (p<0.01). However, the performances of the signature in other types of cancer 
were dramatically degraded (left-sided colon cancer, R2=0.7849 and 0.9407, respectively; rectum, 
R2=0.5955 and R2=0.965, respectively; breast cancer, R2=0.8444; lung cancer, R2=0.5963), 
suggesting that it was necessary to develop cancer-specific TMB estimated signatures to estimate 
precisely the TMB in different types of cancer. In summary, we developed an exon signature that can 
accurately estimate TMB in RCC patients, and the cost and time required for the assessment of TMB 
can be considerably decreased, making it more suitable for blood and/or biopsy samples. 

Key words: tumor mutational burden, the right-sided colon cancer, the coding DNA sequences, a cancer-specific 
signature  

Introduction 
Colorectal cancer is one of the most commonly 

diagnosed cancers worldwide. The incidence is about 
1.2 million per annum, and more than 600,000 patients 
die from this cancer every year [1, 2]. Currently, 
cancers originating from proximal/distal to the 
splenic flexure are classified as right/left-sided colon 
cancer (RCC/LCC). RCC tumors derive from the 
embryonic midgut, whereas LCC tumors derive from 

embryonic hindgut [3]. The different origins 
consequently contribute to tumors with a different 
gene expression and mutation profile. RCC patients 
are reported to be a higher incidence of BRAF, 
POLE/POLD1 mutation, CIMP, MSI and genome 
hypermutation [4-8]. Conversely, LCC tumors are 
characterized by higher frequency of KRAS mutation 
and chromosomal instability [9]. These differences 
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result in different prognoses for the two tumor types, 
and RCC tumors are associated with poorer patient 
outcome [3, 8, 9]. 

In recent years, immune checkpoint inhibitor 
therapy has shown great promise as a treatment for 
several cancers [10-12], and a few trials employed 
immunohistochemical (IHC) staining of PD-L1 
(programmed death-ligand 1) on tumor cells and/or 
immune cells as a predictive biomarker to separate 
responders from non-responders [13, 14]. However, 
there is accumulating evidence that the 
discriminatory power of PD-L1 expression has 
limitations [15, 16]. Alternatively, another emerging 
biomarker for response to immunotherapy is the 
overall number of mutations presented in a tumor 
specimen, termed as the tumor mutational load or 
tumor mutational burden (TMB). Indeed, the patients 
with highly TMB are more likely to harbor 
neoantigens, which makes them tend to benefit from 
immune checkpoint blockades [10, 17, 18]. Therefore, 
a refined assessment of TMB is critical for informing 
treatment recommendations. 

Currently, whole-exome sequencing (WES) is a 
primary method to estimate TMB levels. And the TMB 
levels were divided into two groups according to the 
numbers of somatic mutation per megabase (Mbp) of 
genome coding area: low (<20 mut/Mbp) and high 
(≥20 mut/Mbp) [19, 20]. However, due to the 
infrastructure requirements, high cost, substantial 
turnaround time and excessive information about 
variants/genes of unknown significance, WES is not 
yet routinely available in the clinical practices [21, 22]. 
In contrast, next-generation sequencing (NGS) panels 
composed by ~200-600 oncogenes, tumor suppressor 
genes, and members of pathways deemed actionable 
by targeted therapies, such as FoundationOne panel 
[23, 24], UW-OncoPlex panel [25] and MSK-IMPACT 
panel [26, 27], are widely used to investigate the TMB 
levels of tumors nowadays. However, lacking of 
prioritization, those NGS panels that consist of genes 
known or suspected to be relevant to cancer may not 
perform better than expected by chance. And the cost 
of them with more than 200 genes is still high, which 
may be limited for the routine molecular diagnostics, 
especially for blood and/or biopsy specimens. More 
importantly, most of the current panels are derived 
from multiple types of tumor patients [23, 24, 26, 27], 
but on account of the considerable differences in 
mutational landscapes among different types of 
cancer, a cancer-specific estimation panel is necessary 
to estimate precisely TMB for a specific type of cancer. 
Recently, Lyu et al. has constructed a cancer-specific 
TMB estimated model, which was composed of 22 
genes, for colorectal cancer [28]. However, it is fairly 
inconvenient to clinical practice because of the large 

targeted sequencing territory and complex 
parameters. 

Therefore, in this study, we sought to develop a 
more cost-effective and clinically available signature 
to accurately predict the TMB of colon patients based 
on the coding DNA sequences (CDS). And given that 
the patients with RCC may be more sensitive to 
immunotherapy because of higher TMB-high rate 
compared to LCC patients [29, 30], we mainly concen-
trated on the RCC. The cancer-specific signature may 
allow the design of customized panels for the targeted 
sequencing of selected genome regions, instead of 
WES, to estimate TMB, decreasing the cost and time 
required for the assessment of mutational burden. 

Material and methods 
Data sources and preprocessing 

The WES mutational data was collected from the 
cBioPortal(http://www.cbioportal.org/data_sets.jsp) 
and The Cancer Genome Atlas (TCGA, https:// 
portal.gdc.cancer.gov/) databases. All datasets were 
described in detail in Table 1. The 315 RCC samples 
published by Giannakis et al. [31] were used for the 
construction of the exon signature. The WES somatic 
mutational data from three independent studies 
(n=225 for TCGA; n=57 for Vasaikar et al. and n=72 
for Seshagiri et al.) [32, 33] were retrieved to test the 
performances of the exon signature. Notably, there 
were no specific location information for patients in 
the Seshagiri dataset to distinguish RCC and LCC. 
Meanwhile, the LCC, rectum, breast cancer and lung 
cancer samples showed in Table 1 were utilized to 
investigate whether the exon signature trained using 
RCC samples can also be employed to estimate the 
TMB for patients with other cancer types. 

 

Table 1. Description of whole-exome sequencing mutational data 
analyzed in this study 

Cancer type Datasets 
 TCGA Giannakis Vasaikar Seshagiri 
 
 
 
Colorectal 
cancer 

Sample_number 512 618 57 72 
 
Location 

Right 225 315 57 - 
Left 150 166 - - 
Rectum 137 137 - - 

MSI status 
of RCC 
samples 

MSS - 182 39 - 
MSI - 82 18 - 
NA - 51 - - 

Breast 
cancer 

Sample_number 986 -  - 

Lung cancer Sample_number 537 -  - 
Note: the Vasaikar dataset only include missense mutations. 

 
The human reference genome (hg19 GRCh37 

and hg38 GRCh38) were downloaded from UCSC 
Genome Browser (http://genome.ucsc.edu/cgi-bin/ 
hgTables). Since there were many gene transcripts for 
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every gene, the CDS length of the longest transcript 
was selected for the corresponding gene. 

The TMB for each sample was calculated by 
measuring the total of somatic mutations occurring in 
the CDS regions in the sequenced gene. Of note, 
synonymous mutations were counted as well to 
reduce sampling noise and as an attempt to capture 
mutational processes contributing to neoantigen [23, 
34]. To normalized against mutations per megabase, 
we divided the number of somatic mutations by the 
total genomic territory sequenced [23, 35]. 

Performance evaluation of the existing gene 
panels 

The MSK-IMPACT (n=341) [26] and 
FoundationOne (n=315) gene panel [24, 36], which 
developed from non-cancer-specific patients and 
contained all exons in the corresponding genes and 
were comparatively mature, are widely used in 
routine molecular diagnostics nowadays [36, 37]. 
Here, we adopted a stratified randomized resampling 
procedure to investigate whether the performances of 
the MSK-IMPACT (or FoundationOne) panel was 
significantly different from randomly selected panels 
with the same number of genes. The stratified 
randomized resampling procedure may ensure that 
the length of the randomly selected set was close to 
that of the MSK-IMPACT (or FoundationOne) panel. 

We firstly stratified all WES genes into 100 
subsets according to the CDS length of every gene and 
counted the number of genes of MSK-IMPACT (or 
FoundationOne) panel in each subset. Subsequently, 
we resampled the same number of genes as that of 
MSK-IMPACT (or FoundationOne) panel in the 
corresponding subset and recorded the randomly 
selected gene set. Then all the selected sets formed a 
random panel. The procedure was repeated 1000 
times, resulting in 1000 random panels. For each 
random panel, the R2 between estimated and WES 
TMB was calculated by linear regression analysis. 
Finally, we compared the average R2 that measured by 
randomly selected panels with the actual R2 
calculated by the MSK-IMPACT (or FoundationOne) 
gene panel. 

Development of the exon signature for 
approximating TMB 

For every exon, we determined whether the 
mutational values within the samples were associated 
with WES TMB by linear regression analysis. And 
then, the p-value was subjected to Benjamini- 
Hochberg multiple testing correction [38], and regions 
with false discovery rate (FDR)≤0.01 were taken as 
candidate exons for the following analysis. 

Next, based on the candidate exons, we applied a 

heuristic selection procedure to search a signature 
that achieved the maximum R2 value for estimating 
TMB in RCC samples. The candidate exon with 
maximal R2 was chosen as the seed and then added 
another candidate exon to a set one at a time until the 
R2 did not increase. Notably, when added an exon to 
the set, we also re-considered if there were better 
combinations in the set and deleted the exon that 
cannot improve R2. Finally, a set of exons with the 
maximal R2 was chosen as an estimated signature for 
TMB in RCC samples. 

Statistical analysis 
A two-tailed Fisher’s exact test was applied to 

estimate the molecular differences between TMB-high 
and TMB-low groups, such as MSI, CIMP phenotype, 
KRAS, BRAF and POLE/POLD1 mutational status. 
And linear regression analysis were used to deter-
mine the consistency between the estimated TMB and 
WES TMB. All statistical analyses were performed by 
using the R software package version 3.4.2. 

Results 
Evaluation of the non-cancer-specific gene 
panels 

We firstly applied the MSK-IMPACT panel with 
all coding exons from 341 genes to 315 RCC samples 
in the Giannakis WES dataset and found that the 
estimated TMB was highly correlated with that 
observed in WES (linear regression analysis, R2= 
0.9451). Then, randomly selected panels with the same 
number of genes as the MSK-IMPACT panel were 
structured through a stratified resampling procedure 
(see methods). After the procedure was repeated 1000 
times, we found that the average R2 measured by the 
randomly selected panels was 0.9465, which was not 
significantly different from that estimated by the 
MSK-IMPACT panel (R2=0.9451) (Figure 1A). 
Similarly, in the TCGA and Seshagiri datasets, we also 
demonstrated that measurements of TMB by the 
MSK-IMPACT panel were strongly reflective of 
measurements from WES (TCGA dataset, R2=0.9838; 
Seshagiri dataset, R2=0.9654), but the R2 of the panel 
was not dramatically different from that measured by 
the randomly selected panels as well (TCGA dataset, 
average R2=0.9842, Figure 1B; Seshagiri dataset, 
average R2=0.9887, Figure 1C). Similar results were 
observed for the FoundationOne gene panel (n=315) 
in these three WES datasets (Figure 1D-F). 

In summary, the above results showed that these 
two non-cancer-specific gene panels perform similarly 
to randomly selected panels with the same number of 
genes, and additional signature for approximating the 
TMB was needed. 
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Figure 1. Performance evaluation of the existing gene panels through 1000 times stratified randomized resampling procedure. (A-D) Empirical 
distribution of R2 between the estimated TMB and WES TMB for the randomly selected panels composed of 341 genes in Giannakis (A), TCGA (B) and Vasaikar (C) 
dataste, respectively. (D-F) Empirical distribution of R2 between the estimated TMB and WES TMB for the randomly selected panels composed of 315 genes in 
Giannakis (D), TCGA (E) and Vasaikar (F) dataste, respectively. 

 
Identification and validation of the exon 
signature for estimating TMB 

Figure 2 described the flowchart for identifying 
and validating the exon signature. For each exon, we 
assessed the association of its mutations with WES 
TMB by linear regression analysis. With FDR≤0.01, we 
identified 9104 candidate exons in which the number 
of mutational sites of the CDS regions were 
significantly associated with TMB in the 315 RCC 
samples in Giannakis WES dataset. Then, we took the 
exon with maximal R2 as a seed and utilized a 
heuristic selection procedure to identify a signature 
for estimating the TMB (see methods). Finally, 102 
exons of 101 genes were extracted as the signature 
(Supplementary Table 1), termed as 102-exon 
signature, and the estimated TMB was highly 
correlated with those measured by WES (R2=0.9869, 
Figure 3A) in the Giannakis dataset. Notably, the 
102-exon signature with ~0.13 Mbp of coding genome 
was much shorter than the MSK-IMPACT (~0.92 
Mbp) and FoundationOne gene panel (~1.1 Mbp), 
which may be a more cost-effective solution for the 
TMB estimation of blood and/or biopsy specimens. 

In order to test the performances of the 102-exon 
signature, we applied it to three independent 
validation datasets. Compared to WES TMB, the 

relative number of identified mutations by the 
102-exon signature was lower as indicated by a more 
gentle slope of the linear regression compared to the 
expected correlation plot. For the 225 RCC samples in 
TCGA dataset and 57 RCC samples in Vasaikar 
dataset, the correlations of the TMB detected by the 
102-exon signature and WES TMB were R2=0.9351 
(Figure 3B) and R2=0.8063 (Figure 3C), respectively. A 
similar result was observed in the Seshagiri dataset 
with 72 colorectal cancer samples (R2=0.9527, Figure 
3D), indicating that the 102-exon signature is precise 
for estimating TMB. What’s more, we also found that 
the performances of the 102-exon signature were quite 
similar to the MSK-IMPACT and FoundationOne 
gene panel. 

We next further determined whether the 
performance of the 102-exon signature was superior 
to randomly selected panels with 102 exons. After 
1000 times stratified randomized resampling 
procedure, we found that the R2 of our signature was 
shown to be far higher than all R2 measured by 
randomly selected exon models in the Giannakis 
dataset (Figure 3E). Meanwhile, similar results were 
obtained in the TCGA, Vasaikar and Seshagiri 
datasets (Figure 3F-H), which demonstrated that the 
exon signature outperforms than expected by chance. 
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Figure 2. The process of the development and analysis of the exon signature for patients with RCC. 

 

 
Figure 3. Precision of TMB estimation for the 102-exon signature. (A-D) Estimated TMB vs. WES TMB in Giannakis (A), TCGA (B), Vasaikar (C) and 
Seshagiri (D) dataste, respectively. (E-H) Empirical distribution of R2 between the TMB estimated by the exon-sginature and WES TMB for the randomly selected 
panels composed of 102 exon in Giannakis (E), TCGA (F), Vasaikar (G) and Seshagiri (H) dataste, respectively. 

 
Function analysis of the genes within 102-exon 
signature  

The 102 exons of the signature are contained in 
101 genes, among which many genes are cancer driver 
genes and some may contribute to the accumulation 
of somatic mutations. For instance, RNF43, PTCH1, 
MN1 and MDM2 are known as oncogenes or tumor 

suppressor genes documented in the Catalogue of 
Somatic Mutations (COSMIC, version 89, released on 
May 15, 2019) database [39]. Activated DPYD is 
crucial to enhance the repair of DNA double-strand 
breaks to maintain euploidy [40]. Similarly, MUC16 
mutations are associated with immune response and 
DNA replication and repair pathways [41, 42], 
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implicating that MUC16 mutations may affect TMB 
and guide immunotherapy treatment [42]. NOS3, 
TTI1, RPS6KA3 and ATP6V1B1 are mapped to 
PI3K-Akt-mTOR pathway. This pathway can regulate 
PD-L1 and inhibition of it may enhance CD8+ T cell 
infiltration within tumor tissue, resulting in reduced 
tumor burden [43]. Additionally, some genes 
involved in our signature, such as TAP1 and NGF, are 
linked to immunodeficiency [44, 45], whose mutations 
may destroy the immune system and drive the 
aberrant mutation accumulation in somatic cells. 
While some other genes are not well-recognized and 
the correlation of them and TMB may merit further 
investigation. 

Taken together, many genes within our 
signature can contribute to somatic mutation burden. 

Comparison with an existing 
colorectal-specific TMB estimation model 

We then compared our 102-exon signature with 
a colorectal-specific TMB estimation model [28], 
which is composed of 22 genes (~0.24 Mbp) and their 
corresponding parameters. We applied the 22-gene 
model to the four datasets as described above. In the 
Giannakis dataset with 315 RCC samples, R2 between 
the estimated TMB and WES TMB was shown to be 
0.7601 (Figure 4A). Similarly, the TMB estimated by 
the 22-gene model was moderately correlated with 
that assessed by WES in the Vasaikar dataset 
(R2=0.7586) (Figure 4C). Whereas in the TCGA 
dataset, which was used as the training data to 
construct the 22-gene model, the correlation between 

the estimated TMB and WES TMB was far increased 
(R2=0.9181, Figure 4B). And a strong correlation was 
also observed in the Seshagiri dataset (R2=0.9439, 
Figure 4D). But compare to our 102-exon signature, 
the performances of the 22-gene model were much 
worse (Figure 4E), especially in Giannakis and 
Vasaikar datasets. Moreover, without complex 
parameters, our exon signature may be more 
convenient and have higher clinical applicability in 
comparison with the 22-gene model. 

Molecular differences between TMB-high and 
TMB-low samples 

In order to investigate the molecular 
characteristics of patients with different TMB levels, 
the tumors were divided into two groups according to 
the TMB discriminated threshold of 20 mut/Mbp of 
sequenced DNA [17, 46-48] (Table 1). After 
normalized against mutations per megabase, the 
range of TMB as detected by 102-exon signature was 
0-252.75 mut/Mbp (Giannakis dataset), 0-380.15 
mut/Mbp (TCGA dataset) and 0-289.92 mut/Mbp 
(Seshagiri dataset). The mean TMB values for the two 
groups in Giannakis dataset were 3.25 mut/Mbp (<20 
mut/Mbp, TMB-low) and 62.95 mut/Mbp (≥20 
mut/Mbp, TMB-high). And statistically significant 
was observed between the two groups (Wilcoxon 
rank sum test, p<2.2E-16). Similarly, differences were 
significant beween TMB-low and TMB-high groups in 
the TCGA (4.48 mut/Mbp vs 75.37 mut/Mbp), Vasai-
kar (2.89 mut/Mbp vs 116.11 mut/Mbp) and Sesha-
giri (1.70 mut/Mbp vs 63.93 mut/Mbp) datasets. 

 

 
Figure 4. Correlation of the TMB measured by the 22-gene model and WES TMB. (A-D) WES TMB versus estimated TMB measured by the 22-gene 
model in Giannakis (A), TCGA (B), Vasaikar (C) and Seshagiri (D) dataste, respectively. (E) The performance comparison between the 102-exon signature and the 
22-gene model. 
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Table 2. Molecular differences between TMB-high and TMB-low 
patients 

Giannakis dataset TMB-low 
(N=219) 

TMB-high 
(N=96) 

p value 

  
MSI* 

MSI 6 76 <2.2E-16 
MSS 178 4 

 NA 35 16  
CIMP* CIMP_High 27 59 <2.2E-16 

CIMP_Low 147 17 
 NA 45 20  
BRAF mutation 41 64 3.64E-16 

wild-type 178 32 
KRAS mutation 88 86 3.76E-08 

wild-type 131 10 
 POLE mutation 4 25 8.73E-11 
  wild-type 215 71  
 POLD1 mutation 8 14 1.12E-03 
  wild-type 211 82  
TCGA dataset TMB-low 

(N=156) 
TMB-high 
(N=69) 

 

 BRAF mutation 10 40 <2.2E-16 
wild-type 146 29 

KRAS mutation 91 22 2.90E-04 
wild-type 65 47 

 POLE mutation 1 22 6.12E-12 
  wild-type 155 47  
 POLD1 mutation 4 21 6.59E-09 
  wild-type 152 48  
Vasaikar dataset TMB-low TMB-high 
 (N=36) (N=21) 
 MSI MSI 0 18 4.29E-12 
  MSS 36 3  
 BRAF mutation 1 14 1.92E-07 
  wild-type 35 7  
 KRAS mutation 23 1 6.97E-06 
  wild-type 13 20  
 POLE mutation 0 8 1.23E-04 
  wild-type 36 13  
 POLD1 mutation 1 7  
  wild-type 35 14 2.66E-03 
Note: *A sample was assigned to NA group if its MSI status (or CIMP phenotype) 
information was not obtained in the Giannakis dataset. The MSI and CIMP 
phenotype information were not available in the TCGA dataset. And the Vasaikar 
dataset missed the CIMP phenotype information as well. The Seshagiri dataset was 
not used to perform the molecular differences because of the lack of specific 
location information. p value was calculated by a two-tailed Fisher’s exact test. 

 
In line with previous studies [4-8], we observed 

that the TMB-high groups have significantly higher 
prevalences of MSI status and CIMP phenotype than 
the TMB-low groups (Fisher’s exact test, p<0.01) in the 
RCC datasets. And tumors with TMB-high exhibited 
higher BRAF and lower KRAS mutation rate than the 
TMB-low patients as well. Additionally, we also 
found that TMB-high patients were enriched for 
defects in two mismatch repair pathway genes, POLE 
and POLD1 (Table 2 and Figure 5A-C), which was 
consistent with the study reported by Campbell et al. 
[49]. 

Cancer-specific for the exon signature 
In order to investigate whether the 102-exon 

signature developed from RCC patients can also be 
employed to estimate TMB for patients with other 

cancer types, we firstly applied it to two cohorts of 
LCC samples. In the Giannakis dataset with 166 LCC 
patients, R2 between the estimated TMB with the WES 
TMB was shown to be 0.7849 (Figure 5D). In the 
TCGA dataset with 150 LCC patients, the linear 
correlation was shown to be 0.9407 (Figure 5E). 

Then, the 102-exon signature was further applied 
to rectum, breast cancer and lung cancer patients, 
respectively. We observed that R2 between the 
estimated TMB and WES TMB were 0.5955 (Figure 5F) 
and 0.965 (Figure 5G) for the LCC samples in the 
Giannakis (n=137) and TCGA (n=137) dataset, 
respectively. In the breast cancer cohort with 986 
samples and lung cohort with 567 patients, we also 
found that the linear correlations dramatically 
decreased (breast cancer, R2=0.8444, Figure 5H; lung 
cancer, R2=0.5963, Figure 5I), indicating that a 
cancer-specific TMB estimated signature for a specific 
cancer type is necessary. 

Discussion 
To the best of our knowledge, almost all of 

gene-based panels, which are developed to estimate 
TMB, are derived from multiple types of tumor 
patients. In this study, through a stratified random-
ized resampling procedure, we firstly demonstrated 
two non-cancer-specific and widely used gene panels 
(MSK-IMPACT and FoundationOne panels) 
performed similarly to randomly selected panels with 
the same number of genes, which suggested that those 
panels should be further optimized. Then, given that 
the considerable differences in mutational landscapes 
among different types of cancer and many of the 
exons of a gene are irrelevant with cancer, we directly 
selected a singature from the coding DNA sequences 
to estimate TMB for RCC patients. The exon signature 
allowed the precise estimation of the TMB in three 
independent WES RCC datasets and performed better 
than randomly selected panels with the same number 
of exons. Also, it has better performances than a 
colorectal-specific mutational burden estimation 
model contained 22 genes. The exon signature has 
only a total 134,522 bases, which is much shorter than 
that in the the commercial or institutional gene panels 
[23, 26, 50]. Therefore, it can considerably decrease the 
cost and time required for the assessment of TMB, 
which will further accelerate the establishment of 
diagnosis and medical decisions. 

When we applied the 102-exon signature to other 
types of cancer patients, its performance was 
dramatically degraded. Since there are considerable 
differences in the mutational landscapes between 
different types of cancer, a cancer-specific TMB 
estimation signature was shown to be necessary to 
estimate precisely the TMB in a specific type of cancer. 
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Therefore, using the same methods as the one used for 
the RCC patients, we then utilized the somatic 
mutational data of LCC patients obtained from the 
Giannakis dataset (n=166) to train a LCC TMB 
estimated signature. The constructed LCC signature 
contained eight exons of eight genes (a total length of 
10,641 bases). And R2 between the estimated TMB and 
WES TMB was 0.9691. However, when we applied it 
to 150 LCC patients in the TCGA dataset, R2 between 
the estimated TMB and WES TMB was only 0.5472. 
Indeed, there were few samples with high mutation 
rate in LCC patients (Supplementary Figure 1), which 
resulted in overfitting and a small number of exons 
could reach an optimal R2 value when we identified 
the LCC signature. To solve this issue, we could set a 
threshold for the number of exon regions when we 
develop the signature, which will be further studied 
in the follow-up work. 

To date, there is no common ground which 
mutation types and regions should be included, and 
including all mutations instead of only missense 

mutations in the calculation of TMB has been debated 
[23, 24, 26, 27, 36, 51]. Therefore, we analyzed if the 
number of other mutations is proportional to the 
number of missense mutations in the Giannakis, 
TCGA and Seshagiri datasets. For the Giannakis 
dataset, the linear correlation between non-missense 
and missense mutations was only 0.6567, which may 
be resulted from few non-missense mutations. But in 
the TCGA and Seshagiri dataset, higher correlations 
were observed (TCGA, R2=0.9978; Seshagiri, 
R2=0.9948), which indicated that include all point 
mutations in the calculation of TMB may even 
enhance the precision of the estimation to some 
extent. And there also is no agreed on the objective 
cut-points for TMB, so we defined TMB-high as ≥17 
mut/Mbp [29, 52] and ≥12 mut/Mbp [4, 53] to 
investigate the molecular characteristics of patients 
with different TMB levels. Unexpectedly, similar 
molecular differences were found between the 
TMB-high and TMB-low group (Supplementary Table 
S2 and Table S3). 

 

 
Figure 5. Molecular differences between TMB-high and TMB-low groups and RCC-specific for the exon signature. (A-C) The distributions of MSI, 
CIMP, BRAF, KRAS, POLE and POLD1 between TMB-high and TMB-low samples in Giannakis (A), TCGA (B) and Vasaikar(C) dataset. (D) and (E) WES TMB versus 
estimated TMB of the LCC patients in Giannakis (D), TCGA (E) dataset, respectively. (F) and (G) WES TMB versus estimated TMB in the rectum patients of Giannakis 
(F) and TCGA dataset, respectively. (H) and (I) WES TMB versus estimated TMB in breast cancer cohort and lung cancer cohort, respectively. high, TMB-high group; 
low, TMB-low group. 
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We certainly acknowledge that our study have 
several limitations. For example, the R2 values of our 
102-exon signature were slightly lower than that of 
the MSK-IMPACT and FoundationOne gene panel in 
the Vasaikar, TCGA and Seshagiri datasets. It may be 
attributed to that our analysis did not include the 
differences of wet-lab factors that will influence TMB 
measurement between datasets, such as DNA quality 
and quantity, coverage and read depth of sequencing 
platforms and so on, which contributed to 10, 45 and 
49 of the 102 exons were without a mutation in the the 
TCGA, Vasaikar and Seshagiri datasets, respectively. 
Furthermore, the immunotherapy response data for 
these colon cancer samples was not available, the 
treatment response prediction accuracy of the exon 
signature cannot be evaluated. Therefore, the 
performance of predicting the immunotherapy 
treatment response for RCC patients need to be 
delineated in future studies. 

In summary, we have successfully constructed a 
mathematical signature using only 102 coding exons 
(~0.13 Mbp) that can be used to estimate the TMB in 
RCC samples precisely. The signature was much 
shorter than the existing gene panels, which could 
make the cost and time needed for the assessment of 
the TMB considerably decrease. Therefore, a 
customized panel for the targeted sequencing of these 
selected genes can be designed, instead of 
whole-exome sequencing. 

Supplementary Material  
Supplementary figures and tables.  
http://www.jcancer.org/v11p0883s1.pdf  
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