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Abstract: Radiation therapy is one of the main modalities to treat cancer/tumor. The response to
radiation therapy, however, can be influenced by physiological and/or pathological conditions in the
target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor
tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not
only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia
could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR)
oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could
be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen
level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can
visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions
of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer
tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or
relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have
another possibility to link multiple functions. Functional imaging techniques individually developed
to date have been converged on the concept of theranostics.

Keywords: theranostics; multimodal imaging; functional imaging; oxygen mapping; redox imaging;
metabolic imaging

1. Introduction

Incidence of cancer/tumor is increased markedly with aging, and therefore the preva-
lence among elder people is high. Radiation therapy one of the three treatment modalities
including surgery and chemotherapy in treating cancer/tumor. Ionizing radiation ion-
izes/excites water molecule and generates highly reactive species, i.e., free radical species
and/or reactive oxygen species (ROS) [1–3]. Free radical species and/or ROS induced by
water radiolysis can reach a target molecule through chain reactions mediated by mem-
brane lipids, or form stable oxidizing species such as like H2O2. Free radicals and/or ROS
generated oxidize biologically important molecules such as DNA causing single and dou-
ble strand breaks [4,5]. Unrepaired DNA double strand breaks lead to cell death. Radiation
therapy kills cancer cells by generation of free radicals in cancer cells and damaging DNA.
This is so called indirect action of ionizing radiation. Though ionizing radiation can ionize
the target molecule directly, the direct action for photon is relatively low (20–30%) compare
to the indirect action (70–80%) [6–8]. Effects of radiation are essentially oxidative stress
mediated by free radical species and/or ROS.

Tumor microenvironment is different compared to the normal tissues and has formed
the basis for molecular imaging to detect and visualize these features [9,10]. Cancer/tumor
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tissues have hypoxia [11–13], low pH [14,15], higher glutathione concentrations [16,17],
elevated aerobic glycolytic metabolism [18,19], etc. Hypoxia in the tumor tissue is due to
immature vascular structure [13]. Energy production in such low pO2 environment in the
cancer/tumor tissue may induce glycolytic activity of cancer/tumor cells, consequently
causing a low pH environment as a result or lactate accumulation [20]. Visualizing such
microenvironmental characteristics in tumors would be a useful not only for planning
radiotherapy but also for early detection. Several medical imaging modalities emerged
including magnetic resonance, nuclear medicine, and ultrasonic techniques to profile the
tumor microenvironment.

Modern medical imaging techniques, such as X-ray computed tomography (CT),
positron emission tomography (PET), and MRI play an important role in theranostics.
The word theranostics suggests a technique or methodology with interface between the
therapy and the diagnosis. Therapeutic monitoring is simultaneously done with diagnosis
and is getting established as a new solid concept in a recent development of functional
imaging techniques.

Quantifying hypoxia and/or redox status in cancer/tumor tissue is an important
objective for theranostic medical imaging working with radiotherapy [21,22]. Radiation
therapy can be tailored based on the tumor oxygen tension and/or redox status. A priori
knowledge of tissue oxygen and/or redox status in the target and the surrounding tis-
sues/organs will be helpful for planning a safe and efficient radiation therapy. In addition,
visualizing metabolic changes in the cancer/tumor tissues can identify the target and
degree of malignancy [23].

Analysis of biological information using MRI, electron paramagnetic resonance imag-
ing (EPRI), and PET with a specific contrast agent have been developed to detect tumor
microenvironment for achieving theranostic radiation therapy. In this review, we describe
detection and visualization of tumor/cancer microenvironments, especially hypoxia, and
the factors influenced by the hypoxic environment. Recent developments of translational
multimodal imaging techniques using MRI, EPRI, and PET were introduced.

2. Historical Transitions of Modern Medical Imaging Techniques

Discovery of the X-ray made extraordinary contributions to the most fields of medical
sciences. Rapid development of computer science after invention of integrated circuit (IC)
has been absolutely imperative for the following development of medical imaging technol-
ogy. The invention of X-ray CT [24,25] has drastically and innovatively changed medical
image diagnostic systems. A clinical human X-ray CT was developed and commercialized
simultaneously in 1973. Following the X-ray CT, the invention of MRI by Lauterbur [26]
followed by the invention of pulsed MRI by Ernst and colleagues [27] revolutionized
medical imaging. The first human MRI was commercialized in 1980. The main purpose of
the CT and MRI at that time is observation of the anatomical information and the material
changes of target tissue in a patient body non-invasively. The X-ray and MRI can give clear
anatomical details inside the human body, especially hard issues by X-ray CT and soft
tissues by MRI, respectively.

A more recent aspect of medical imaging technique is the molecular imaging, such
as PET. PET imaging has been developed from early 1960. The PET scanner was com-
mercialized in 1976 with the development of 18F-labeled deoxyglucose (18F-DG) [28]. The
availability of 18F-DG-PET widely spread the concept of metabolic imaging. PET can map
only distribution of positron-emitting radionuclide. Therefore, the PET image completely
lacks anatomical information on it requiring a PET-CT system to provide anatomically
co-registered metabolic scans. After more than 10 years from PET-CT, PET-MRI system
was commercialized on 2015, and then the technical possibility of functional imaging has
been expanded.

Electron paramagnetic resonance (EPR) is similar to nuclear magnetic resonance tech-
nique, and can provide images of the distribution paramagnetic species using similar
strategies as in MRI with the use of magnetic field gradients for spatial encoding. Briefly
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EPR can detect paramagnetic species such as transition metal conplexes and free radicals.
EPR imaging can detect only distribution of free radical species and therefore anatomical
information is not available as is the case of PET. Development of EPR imaging also head
toward molecular imaging such as redox imaging [29–31], which is a kind of dynamic imag-
ing, and/or oxygen mapping [32–34], by application of spectral-spatial imaging [35–37].

After discovery of blood oxygen level dependent (BOLD) effect in 1990 [38–40], the
term “functional MRI” (fMRI) is now synonymous for BOLD MRI, which will be de-
scribed later. In next decades, MR spectroscopic imaging (MRSI) or also called chemical
shift imaging has been actively investigated for cancer assessment and/or tumor tissue
metabolism [41–43]. After the success of 13C hyperpolarized glycometabolic imaging [23],
MRSI allowed imaging of enzymatic fluxes such as LDHA. Visualizing biological function
has been the mainstream of recent developments of translational, preclinical, or clinical
MRI techniques for early detection and grade estimation of disorders [44,45].

Multimodality is necessary for associating a function with anatomical information
and for accurate diagnostics for tailored planning of therapeutics [21,46]. As described
later, a specific contrast agent for each modality is necessary for visualizing a specific
functional information, such as hypoxia, pO2, pH, redox status, and/or glycometabolisms.
In addition, contrast agents having medicinal effects would be coming in [47–49].

3. Imaging Hypoxia by PET

Mapping hypoxia will be useful in planning of radiotherpay. PET imaging can map
tumor hypoxia using positron-emission-nuclei-labeled contrast agent to image hypoxic
environments [50]. Chemical structures of those PET probes are shown in Figure 1. The
PET contrast agent is administered intravenously and its selective uptake in tissues is
imaged using a PET scanner. [64Cu]Copper(II)-diacetyl-bis(N4-methylthiosemicarbazone
(64Cu-ATSM) is a PET tracer used to map hypoxic tissue using PET [51]. Binding mecha-
nism of 64Cu-ATSM into the hypoxic cell is probably irreversible and may not visualize
dynamics of hypoxia in the tissue [52]. Whole body scans revealed uptake and retention of
64Cu-ATSM in the tumor-bearing leg, abdomen, and head region of the animals (Figure 2).
[18F]fluoromisonidazole (18F-FMISO) is another hypoxic marker used in PET imaging. The
tumor uptake of 18F-FMISO was clearly different from that of 64Cu-ATSM [52]. The tumor
uptake of 18F-FMISO showed an increasing trend according with on oxygen content in
breathing gas (10% oxygen > air > carbogen) in a mouse experiment, though no statistical
difference was demonstrated. Predictable changes in tumor uptake of 64Cu-ATSM were
unable to report on hypoxia when the oxygenation status of the tumor was modulated by
breathing gas with the SCCVII tumor model in mouse [52]. In addition, 64Cu has 7 times
long radioactive half-life (12.7 h), compared to the radioactive half-life of 18F (110 min).
[18F]fluoroazomycin arabinoside (18F-FAZA), which is a ribose-nucleoside analog con-
taining nitroimidazole ring in α-position of arabinose ring, hydrophilic hypoxia sensing
contrast agent for PET with improved clearance and hypoxia targeting properties [53].
[18F]1-[2-fluoro-1-(hydroxymethyl)ethoxy]methyl-2-nitroimidazole (18F-FRP-170) showed
uptake into viable hypoxic myocardium cells, and be expected to provide information for di-
agnosis of acute myocardial infarction [54]. Other hypoxic markers for PET, such as 18F-EF5
([18F]-2-(2-nitroimidazol-1[H]-yl)-N-(2,2,3,3,3-pen-tafluoropropyl)-acetamide) [55] and 18F-
HX4 (3-[18F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-
1-ol) [56], are developed to improve accuracy of hypoxic mapping on PET. Comparison of
hypoxic markers for PET imaging is still in progress, most studies used 18F-FMISO as a
comparable subject. An efficient hypoxic marker for PET image should be developed for
the use of PET hypoxic mapping generally and widely.
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Figure 1. Chemical structures of PET probes seeking tissue hypoxia. (A) 64Cu-ATSM has a chelated 
radioactive 64Cu2+ on the ATSM, which is a1 copper chelator. (B) 18F-FMISO, (C) 18F-FAZA, (D) 18F-
FRP-170, (E) 18F-HX4, and (F) 18F-EF5 were all labeled by a radioactive 18F and have a nitroimidazole 
ring on the molecule. 

 
Figure 2. Whole body distribution of 64Cu-ATSM. Coronal (left 3 panels) and sagittal (right 3 panels) 
whole body scans of a SCCVII tumor-bearing mouse. Top, center, and bottom images show X-ray 
CT image, 64Cu-ATSM PET image; fused 64Cu-ATSM/CT image, respectively. Uptake of 64Cu-ATSM 
was obtained in the tumor-bearing leg (upper arrow in coronal images), abdomen (liver and duo-
denum intestine), and head region of the animals. The figures were partly modified from our pre-
vious reports [52]. 

Figure 1. Chemical structures of PET probes seeking tissue hypoxia. (A) 64Cu-ATSM has a chelated
radioactive 64Cu2+ on the ATSM, which is a1 copper chelator. (B) 18F-FMISO, (C) 18F-FAZA, (D) 18F-
FRP-170, (E) 18F-HX4, and (F) 18F-EF5 were all labeled by a radioactive 18F and have a nitroimidazole
ring on the molecule.
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Figure 2. Whole body distribution of 64Cu-ATSM. Coronal (left 3 panels) and sagittal (right 3 panels)
whole body scans of a SCCVII tumor-bearing mouse. Top, center, and bottom images show X-ray
CT image, 64Cu-ATSM PET image; fused 64Cu-ATSM/CT image, respectively. Uptake of 64Cu-
ATSM was obtained in the tumor-bearing leg (upper arrow in coronal images), abdomen (liver and
duodenum intestine), and head region of the animals. The figures were partly modified from our
previous reports [52].
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Recently, a new concept of PET oximetry, which is estimating the life-span of positro-
nium, was reported by Shibuya et al. [57]. Positronium is an unstable transitional state
like atom with no nucleus consisting of positron and electron orbit the common center of
mass. Some positrons released from positron-emission-nuclei capture an electron from
surrounding molecules to form positronium. The life-span of the positronium is sensitive to
coexisting molecular oxygen, i.e., paramagnetic species. Conversely, oxygen concentration
in the sample can be estimated by measuring the lifetime of positronium. To measure the
life-span of positronium, two signals, i.e., start and stop signals, of annihilation event are
detected. The start signal is the positron emission, which can be determined by monitoring
a prompt γ-ray using equipped Compton camera setting. The prompt γ-ray is emitted
immediately after the positron emission from some isotopes, such as 22Na or 44Sc. 44Sc will
be preferable label for biological/clinical use because of its shorter half-life (3.97 h) [58].
The stop signal is the positron annihilation, which can be determined by a pair of 511
keV photons. The method measures several ns time lag of the start and stop events. The
instrumental configuration is a combination of PET and Compton gamma imaging [58].
A cylinder setup of Compton semiconducting detectors was arranged inside the cylinder
of PET detectors. The prompt γ-ray is detected by a set of two detectors, inner Compton
semiconducting detectors and outer usual scintillation photometer for PET, and direction
of prompt γ-ray could be estimated as a solid angle based on Compton scattering angle
estimation. The annihilation γ-ray is detected by a pair of outer scintillation photometers
as usual PET detection, and linear direction of annihilation γ-ray could be estimated. Using
both γ-ray scattering data and PET data, the coordinate of 2 intersection points on the
surface of the cone and the line can be calculated. Final prediction of the image intensity
would be converged by deselecting the data outside the view and accumulating data
inside the view. This new technique can achieve a quantitative tissue pO2 imaging by
PET equipped by Compton camera, when a biologically suitable molecular probe would
be available.

The PET is a kind of auto-radiography using a positron-emission radio isotope nuclei,
such as 18F or 64Cu, labeled chemical compound. The PET instrument detects a pair of
511 keV annihilation photons emitted by the positron-electron pair annihilation. The PET
has big advantage to have multimodal detection of biological functions. What is sensing
by PET is fundamentally depending on the molecular probe used. In other words, PET can
detect not only for tissue glycodynamics or hypoxia but also have possibility to sense most
of everything adapting on the biochemical reactions of positron-emission nuclei labeled
molecular probes.

4. EPR Oxygen Mapping

The electron paramagnetic resonance (EPR) oxymetry technique is a non- or less-
invasive and quantitative method for measuring oxygen concentration in a sample. The
EPR oxymetry is based on measuring variation of relaxation time of electron spin on a
paramagnetic probe. The paramagnetic probe can be dissolved in an aqueous solution
or a solid paramagnetic probe can be implanted in a region of interest to monitor pO2
longitudinally. Molecular oxygen (O2) has two of unpaired electrons in its outermost
orbitals. The two unpaired electrons on O2 cause EPR line broadening through shorten-
ing the relaxation time of electron spin of the infused or implanted paramagnetic probes
through the spin-spin interaction. The pulsed EPR techniques can measure the T1, T2,
and T2

* relaxation time of electron spin on the molecular probe directly. The relaxation
time of electron spin is reflected on CW EPR linewidth. The relaxation time of electron
spin was affected also on power saturation behavior on EPR signal intensity. By suit-
able calibration of the O2 induced line broadening, in vivo pO2 can be determined and
imaged. EPR oxymetry techniques for in vivo oxygen mapping use several EPR based
imaging modalities combined with an i.v. injectable nontoxic paramagnetic probe [59–67]
including Overhauser MRI (OMRI) modality, which is also called as proton electron double
resonance imaging (PEDRI) or dynamic nuclear polarization (DNP) [68–70]. Those EPR
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based methods, however, currently are limited only for experimental animals, such as mice
or rats.

EPR oxygen mapping required a non-toxic and i.v. injectable paramagnetic probe,
which should has narrow EPR linewidth as possible. For example, 15N-labeled nitrox-
ides [33,34,70] and triarylmethyl radicals [61–69] have been used. Natural 14N nitroxides
show triplet line EPR spectrum having relatively broad linewidth, while 15N-labeled nitrox-
ides show narrower doublet line EPR spectrum (Figure 3A). Triarylmethyl radicals have
narrow single line EPR spectrum (Figure 3B). Deuteration of the oxygen probe molecule
makes the EPR linewidth narrower. Chemical structures of those oxygen probes were
shown in Figure 3. Recently, triarylmethyl radical labeled molecular probe for probing
membrane proteins, serum albumin are designed and reported [71–73].
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Figure 3. Chemical structures of oxygen probes using EPR based oxygen mapping. (A) [15N]PDT
(4-oxo-2,2,6,6-tetramethyl [1-15N]piperidine-D16-1-oxyl) is an 15N labeled and deuterated analog of a
nitroxyl radical called oxo-TEMPO or called TEMPONE. X-band EPR spectra of [15N]PDT showed
doublet resonance lines. (B) Triarylmethy radical has narrow single line EPR spectrum. Inserted
spectra are of Oxo63 measured under N2 gas flow or under air atmosphere. Oxo31 has narrower EPR
linewidth compared to that of Oxo63.

EPR oximetry monitors effects of O2 on the relaxation time of stable free radical on
the oxygen probe. The EPR linewidth is influenced by T1, T2, or T2* relaxation times.
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CW EPR spectral-spatial imaging (SSI) technique [33,34,61] reconstructs an image on a 3D
(1D spectral and 2D spatial) or 4D (1D spectral and 3D spatial) matrix and then directly
measures linewidth of reconstructed spectra (Figure 4). Pulsed EPR SSI working on single-
point imaging (SPI) theory can measure T2* [62,63] (Figure 5). In addition, pulsed EPR SSI
working on spin-echo theory can measure T2 [64], and repeating SSI or spin-echo correction
with varying TR can estimate both T1 and T2* [65] or T1 and T2 [66]. Figure 6A shows an
example of 3D oxygen mapping of a SCC tumor bearing mouse leg observed by SPI based
4D spectral-spatial imaging.
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Figure 4. Projection reconstruction of 2D, 3D, and 4D spectral-spatial image. (A) Theoretical scheme of
spectral-spatial 2D imaging in frequency domain. The projection data are collected using unidirection
but incrementing magnitude of field gradient. G, magnitude of field gradient (Gauss/cm); ∆H and
∆L, spectral and spatial window width of the pseudo spectral-spatial matrix; SW, sweep width; α,
viewing angle on the pseudo spectral-spatial matrix; H, magnetic field; L, spatial length. SW is varied
depending on the α. Rotating field gradient direction achieves (B) 3D spectral-spatial (1D spectral
and 2D spatial) or (C) 4D spectral-spatial (1D spectral and 3D spatial) imaging. The figures were
partly modified from our previous reports [74].
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Figure 5. Spectral-spatial imaging in time domain. (A) A schematic drawing of theory of SPI basis
2D spectral-spatial imaging. Spectra (FIDs) are collected using incrementing but unidirectional
field gradient strengths and a constant time window (sweep width in frequency domain). Fourier
transformation along G axis gives a spatial profile. The FOV of the spatial profile is varied depending
on the time. With combinations of two or three orthogonal field gradient set, 3D or 4D imaging is
available. (B) A schematic drawing of data manipulation of 3D spectral-spatial imaging. Left: A
set of FIDs measured under a 2D field gradient was placed on a 2D k-space and then the matrix
was zero-filled (2n × 2n) for FT. Center: A set of 2D SPI, but delayed time points represent larger
durations of the phase-encoding gradients and lead to lower Nyquist bandwidths corresponding
to smaller FOVs (i.e., “zoomed-in” images). Gray slices indicate regions of identical FOVs for each
time point. Right: All SPIs were rescaled to an identical FOV, and a 3D matrix (2D spatial and 1D
time domain) was obtained. (C) Estimation of pixel-wise pO2 from SPI data sets. An SPI data set was
reassembled from several SPI data sets obtained by using multiple Gmax settings, to obtain a certain
image resolution along the time axis. Pixels of reconstructed FID are replotted semilogarithmically,
and the slope of the semilogarithmical plot of the FID gives T2*. The EPR linewidth, and then pO2

can be calculated from the T2*. Finally, pO2 values are rearranged onto a matrix (oxygen mapping).
The figures were partly modified from our previous reports [74].
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Figure 6. Examples of EPR basis in vivo 3D oxygen mappings. (A) 3D oxygen mapping observed
by SPI based 4D EPR spectral-spatial imaging. The SPI data sets were obtained with three different
Gmax settings (1.5, 1.2, and 0.8 Gauss/cm) and 213 k-space samples were acquired in 18 min. The
FOV was encoded in 21 gradient steps corresponding to a slice thickness of 2.2 mm. A 3D image
was reconstructed on 643 matrix, giving a voxel resolution of 0.7 mm3. The numbers on the image
refer to the slice number. (B) In vivo power saturation 3D oxygen mapping of the tumor-bearing
mouse. Power saturation image obtained by two different radiofrequency power levels (0.25 and 130
mW) clearly depicts the hypoxic foci of the SCC tumor on the hind leg of a mouse. Both methods
using a triarylmethy radical, Oxo63, as the oxygen probe. The figures were partly modified from our
previous reports [63,67].

Varying the relaxation times can also shift the saturation state of microwave/radio
frequency. Detecting signal loss by CW EPR power saturation can also mapping 3D O2
distribution [67]. This method is quite simple as a data acquisition process, which obtains
just 2 images at 2 different RF power, i.e., non-saturated and enough-saturated conditions.
Figure 6B shows an example of 3D oxygen mapping of a SCC tumor bearing mouse leg
observed by the power saturation method.

Since EPR imaging can detect only the paramagnetic probe, therefore co-registration of
EPR based oxygen map on the anatomical MRI observed on the corresponding position of
subjected animal will be required to accurate distribution of hypoxia in the tissues [75,76].
Co-registration technique for several images of one identical subject observed by several
different imaging modalities is necessary for achieving multimodal diagnosis and also
described below. Another review paper introduced more details of EPR oxymetric imaging
techniques and multimodal comparisons [74].
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OMRI [68] or PEDRI [69], which is an instrument for observing double resonance
of EPR and MRI, is detecting an enhancement of MRI signal through Overhauser effect,
which is also known as DNP effect. The OMRI and PEDRI can observe DNP effect in vivo.
Saturated the electron spin transition is necessary to obtain enhancement of tissue 1H
signals. However, the oxygen in the sample can induce relaxation and interrupt the
DNP process. Therefore, DNP MRI can reflect the oxygen concentration in the subject
sample onto the image intensity. From several images observed with different EPR power,
quantitative oxygen mapping can be obtained (Figure 7). Past studies reported in vivo
DNP based oxymetric imaging were working at relatively low magnetic field. The 8.1 mT
magnetic field for EPR excitation was immediately switched to the 15 mT magnetic field
for MRI scan in the OMRI instrument. PEDRI instrument employed fixed 20.1 mT for
both EPR and MRI. More details of DNP based oximetric imaging techniques have been
described in other review paper [77].
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Figure 7. An examples of DNP basis in vivo oxygen mapping. Top: The direction of the slice view
of OMRI image with respect to the subjected mouse. Bottom left: Spin-density image (raw OMRI
image) shows the differential accumulation of the paramagnetic oxygen probe, Oxo63. Bottom right:
Oxygen mapping of an axial slice of the tumor-bearing and normal legs of a mouse computed from
OMRI images taken at two different EPR power levels. The figures were partly modified from our
previous reports [78].

5. MRI Based Oxygenation Imaging

BOLD [38–40] signals can detect T2* and tissue oxygen level dependent (TOLD) [79]
signals can detect T1 contrast in MRI scans based on the variation of oxygen concentration
in the subject now known as Oxygen enhanced MRI. Though Oxygen enhanced MRI is
not able to quantify oxygen itself, the MR image intensity could be affected by oxygen
concentration in the subject.

For BOLD MRI, several review papers were already published and described technical
details with numerous applications in functional MRI [80–82]. Paramagnetic deoxyhe-
moglobin has a ferrous iron on the heme. The paramagnetic nature of deoxyhemoglobin
gives inhomogeneity of magnetic field and makes proton T2* shorten. When deoxyhe-
moglobin in blood is oxygenated to diamagnetic oxyhemoglobin, the inhomogeneity of
magnetic field would be diminished and the T2* getting longer. As a result, oxygenation in
the blood vessels gives enhanced intensity in a T2* weighted MRI scan. BOLD effect has
been utilized to investigate brain cortex functions due to that activation of brain functions
could increase the oxygen transportation to the corresponding region in the brain [83,84].
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Now the BOLD signal detection was applied not only for investigating brain function but
also sensing functions of other tissues, such as lung, heart, kidney, tumor, and, etc. [85–88].

On the other hand, the TOLD signal is direct T1 shortening by the paramagnetic O2. As
described above, molecular oxygen is a paramagnetic species with two unpaired electrons,
which has T1-shortening effect, and can serve as a contrast media for a T1-weighted
image. Increasing O2 concentration in the sample and/or subject, gives enhancement of T1-
weighted signal in a T1-weighted MRI scan. Exposing a mouse bearing SCC tumor on the
hind leg to the hyperbaric O2 atmosphere (2 atm) gives T1-weighted signal enhancement
in the tumor tissue, however decreasing T1-weighted signal was observed in the normal
muscle [79]. Figure 8 shows an example of TOLD MRI observed in tumor bearing mouse
leg under hyperbaric O2 challenge. Mechanism of the negative TOLD signal in the normal
tissue is still in progress.
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Figure 8. An example of TOLD MRI. (A) Comparison of T1 weighted MR images of SCC tumor
bearing and normal leg of an identical mouse under (left column) normobaric and (right column)
hyperbaric oxygen challenges. A mouse legs was scanned by GEFI sequence, and axial 2 mm slice
reconstructed on 64 × 64 matrix was obtained every 30 sec for 60 min. The gas condition was
switched from air to normobaric or hyperbaric oxygen 5 min after starting scan, kept for 35 min, and
then switched back to air. The normobaric and hyperbaric experiments were sequenced with 20 min
gap. Percent-changes of T1-weighted image intensities from baseline images were observed. No
signals are observed under air flow (top panels). Positive and negative signals are observed in the
center and periphery of tumor leg, respectively, under the tasks (center panels). Signals observed in
center of tumor dropped down to base line level when breathing gas was switched back to air (bottom
panels). (B) Time course of T1-weighted signal changes in tumor (ROI-1) and normal (ROI-2) legs
under normobaric (left) and hyperbaric (right) challenges. The values indicated the average ± SD of
results of 4 mice. The figures were partly modified from our previous reports [79].
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Recently, comparison studies of BOLD and TOLD response in tumor tissues to an
oxygen challenge have been continued by several groups [89–91]. For tumor tissue, it may
be due to immature vasculature in tumor tissue; TOLD signal may be more responsible
compared to BOLD signal. TOLD signal, which is variation of tissue T1-weighted signal, is
not a quantitative value; however, the variation of R1 value, which is the reciprocal of T1, is
quantitative [79,92].

6. Imaging Tissue Redox Status (Redox Imaging) Using Redox Sensitive Nitroxyl
Contrast Agents

Nitroxyl radicals, which are also called nitroxides conventionally or called aminoxyl
radicals formally on IUPAC, are relatively stable free radical species in solid form or
when dissolved in solvent. Nitroxyl radical compounds have an un-paired electron on the
molecule, with a π electron orbital formed on the nitrogen and oxygen. The nitroxyl radical
compounds readily react with other free radical species. The nitroxyl radicals are mainly
one-electron reduced to the corresponding hydroxyl amine form enzymatically in living
organisms (Figure 9). Excessively generated ROS in cells/tissues can modify the in vivo
reduction of nitroxyl radicals. Clinical and biological applications of nitroxyl radicals are
well summarized in several review papers [93–96].
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Figure 9. Redox transformations of nitroxyl radicals in (A) the free radical state, (B) the oxoammo-
nium cation, and (C) the hydroxylamine. The nitroxyl radical could be one-electron oxidized to
become the corresponding oxoammonium cation form. The oxoammonium cation could readily
be back to nitroxyl radical by one-electron reduction, or two-electron reduced to hydroxylamine
form by receiving a hydrogen atom from hydrogen donor, such as NAD(P)H and/or GSH. The
hydroxylamine could be one-electron oxidized to be nitroxyl radical form. The figures were partly
modified from our previous reports [97].

Redox imaging is a diagnostic imaging technique that use metabolically responsive T1
contrast agents to report on tissue redox status [78,98,99]. While Gd3+ based T1 contrast
agents do not participate in redox reactions and hence can be used for perfusion studies only,
nitroxyl radicals can act as T1 contrast agents and also participate in redox reactions to lose
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the T1 contrasting ability. Thus nitroxyl radicals, are used as a redox sensitive contrast agent
for the redox imaging technique by monitoring the kinetics of the loss of paramagnetism
while participating in intracellular redox reactions. Thus nitroxyl based redox imaging is a
kind of dynamic imaging in which the time course of nitroxyl radical signal is observed by
rapidly repeating the image acquisition. The redox imaging has initially developed in a
field of in vivo EPR imaging [30,100]. However, the spatial resolution of EPR imaging is
not high enough to distinguish particular organ/tissue due to relatively broad EPR line
width of nitroxyl contrast agent, lack of anatomical information, and difficulty for selecting
a particular slice as MRI and OMRI can do. The temporal resolution of EPR imaging was
minutes based on CW modality. In addition, the EPR technique is currently limited to
small animals only.

It has been known that nitroxyl radicals in an aqueous sample can be also detected
by MRI through enhanced T1-weitghted contrast due to its proton T1 shortening effect. In
fact, feasibility of nitroxyl radicals as T1 contrast agents in MRI has been examined in early
1980’s [101], that was before their use for EPR imaging. T1-weighted gradient echo MRI
can provide an in vivo redox mapping based on the reduction of nitroxyl radical with fine
spatial resolution and temporal resolution [102]. Using a combination of a nitroxyl contrast
agent and MRI, spatially and temporally high-resolution redox mapping of particular slice
of an animal can be achieved with excellent quality anatomical information. In addition,
this MRI based redox mapping technique can be easily applied to larger animals and/or
human patients.

Tumor tissue environment, i.e., low oxygen concentration, low pH, higher glutathione
concentrations, are favorable conditions to reduce nitroxyl radical. Low oxygen environ-
ment can suppress reoxidation of hydroxylamine, which is one-electron reduced form
of nitroxyl radical, back to nitroxyl radical, i.e., suppressing the left arrow on the base
of triangle in Figure 9. Low pH environment may exaggerate one-electron oxidation of
nitroxyl radical to oxoammonium cation, i.e., accelerating the up arrow on the left of
triangle in Figure 9. High levels of glutathione can facilitate two-electron reduction of
oxoammonium cation to hydroxylamine, i.e., accelerating the down arrow on the right of
triangle in Figure 9. Therefore, apparent in vivo one-electron reduction of nitroxyl radical
to hydroxylamine might be boosted in hypoxic tissue such as in tumors.

Mapping in vivo nitroxyl decay rate in SCC tumor loaded on a mouse thigh was
measured using MRI [102]. Figure 10A shows the location of the axial slices of a mouse
including the SCC tumor and the normal leg. T1-contrast was enhanced in both normal
and tumor tissues after the administration of carbamoyl-PROXYL, and then gradually
decreased (Figure 10B). The difference between tumor tissues and the normal tissues
remained around the tumor tissues can be also seen clearly (Figure 10C,D).

Pharmacokinetics of three different nitroxyl contrast agents with different membrane
permeability were tested [103]. Figure 11 shows pharmacokinetic (reduction) profiles of
three nitroxyl contrast agents in SCC tumor, normal muscle, blood, and kidney observed
by T1-weighted MRI experiment (circles), and total, i.e., both reduced and oxidized forms,
contrast agent remaining in the tissues (diamonds). Reduction profile (T1-weighted MRI
signal decay) of membrane impermeable contrast agent, carboxy-PROXYL, showed almost
similar decay curve as the decay curve of total contrast agent. This result suggests that
the MR sigal decay of membrane impermeable contrast agent is due to the clearance.
The decays of the MR signal of membrane permeable nitroxyl contrast agents, TEMPOL
and carbamoyl-PROXYL, are faster than that of total contrast agent, and this fact suggest
that the decays of the MR signal of membrane permeable nitroxyl contrast agents reflect
reduction of nitroxyl radical to corresponding hydroxylamine form. Table 1 shows decay
rates of nytroxyl-induced T1-contrast in tumor and normal muscle. Membrane permeable
nitroxyl radicals are reduced faster in tumor compared to normal tissue. A combination
of a membrane permeable nitroxyl radical and a dynamic scanning T1-weighted MRI can
give tissue redox information on the image.
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Figure 10. An example of MR-based redox imaging. (A) Direction of the slice view of
MRI with respect to the subjected mouse. (B) Time course of ∆M% signal of T1-weighted
MRI and a scout T2-mapping for ROI selection. Time after injection was indicated in each
image. ROI-1 for normal leg and ROI-2 for tumor leg were estimated based on a previously
obtained T2-mapping. Field of view was 3.2 × 3.2 cm. (C) Time course of average ∆M%
signal in the ROI-1 and ROI-2. Logarithmic values of ∆M% signal in the ROIs are plotted
with time. Decay rate constants were obtained from the slope of linear decay after peak.
(D) Decay rate map overlapped on the corresponding multi-slice-multi-echo image can
show a distribution of decay rates with clear anatomic information. The figure was partly
modified from our previous report [102].
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Figure 11. Comparison of pharmacokinetic profiles of three nitroxyl contrast agents by T1-weighted MRI. The pharmacoki-
netic profiles of oxidized form and total (nitroxyl radical form + hydroxylamine form) TEMPOL (left), carbamoyl-PROXYL
(center), and carboxy-PROXYL (right). The time course of nitroxyl radical form in normal tissue (blue circle), tumor tissue
(purple circle), blood (red circle), and kidney (left kidney, dark green circle; right kidney, light green circle) were obtained
by T1-weighted MRI. The concentrations of total nitroxyl contrast agent (nitroxyl radical + hydroxylamine) measured by
X-band EPR spectroscopy in the corresponding tissues are indicated by gray diamond or except black diamond for tumor
tissue. The figure was partly modified from our previous report [103].

Table 1. Comparison of In Vivo Decay Rates of Nitroxyl-Induced T1-Weighted MRI Intensity in
Normal and Tumor Tissues.

Tissues TEMPOL
Decay Rate (min−1)

Carbamoyl-PROXYL
Decay Rate (min−1)

Carboxy-PROXYL
Decay Rate (min−1)

Normal muscle 0.319 ± 0.025 0.056 ± 0.013 0.029 ± 0.014
Tumor tissue 1.095 ± 0.203 ** 0.107 ± 0.20 * 0.020 ± 0.014

** and * indicates significant difference between normal and tumor tissue as p < 0.01 and p < 0.05, respectively.

Zhelev et al. [104] reported that normal tissues of tumor bearing mouse showed
degradation of redox status. The tissues of healthy mouse showed rapid MRI signal loss
of nitroxyl contrast agent, indicating a high reducing activity, however; that of tumor
bearing mouse was slow. They also demonstrated that the re-oxidation of hydroxylamine
to nitroxyl radical was faster in normal tissue of cancer bearing mouse compared with
health mouse. The normal tissues of cancer bearing mouse was in oxidative circumstance,
as a result the larger and sustained MRI signal could be observed in the normal tissues
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of cancer bearing mouse. They call this redox-imbalance. High cholesterol diet induced
redox-imbalance in kidney was visualized using MRI and mito-TEMPO as a contrast [105].
EPR spectroscopic analysis in cells using several type of nitroxyl radical probes would be
important to validate the phenomenon observed by MR redox imaging [106].

7. Nitroxyl Radical as Radioprotector (Contrast Agents Having a Medicinal Effect)

One of nitroxyl radicals, TEMPOL, was proposed as a normal tissue selective ra-
dioprotector. The nitroxyl radical form of TEMPOL can have the radioprotective effect,
however, the hydroxylamine form does not have radioprotective effect directly [107]. On
the other hand, an administration of TEMPOL-H to mice showed a similar radioprotec-
tive effect as TEMPOL [108]. This is because the TEMPOL-H is re-oxidized to TEMPOL
in vivo. The pharmacokinetic curves of free radical form in blood, after the administra-
tion of TEMPOL-H and that of TEMPOL, are similar 15 min after the administration and
later [108].

TEMPOL protected C3H mice against whole-body radiation-induced bone marrow
failure [109]. Tumor growth curves generated after 10 and 33.3 Gy doses of radiation
showed no difference in growth between the TEMPOL- and PBS-treated animals [110].
TEMPOL was evaluated for potential differential radiation protection of salivary glands
and tumor using fractionated radiation [111]. Reduction in saliva production caused by five
daily 6 Gy fractions to mouse head region was significantly protected by five daily treat-
ments of TEMPOL. However, TEMPOL treatment had no effect on the radiation-induced
inhibition of tumor regrowth. The hypothesis, how does the differential radioprotection
between normal and tumor tissues occur, is understood as that TEMPOL is reduced or
cleared from tumor tissue faster than normal tissues.

Contrast agent used in previous diagnosis imaging for planning radiotherapy may
have a chance to be a normal tissue selective radio protector for the ensuing radia-
tion therapy. This is one of application of theranostics, and possible applications were
described below.

8. Applications of Redox Sensitive Nitroxyl Contrast Agents and Multimodal
Contrast Agent

It has been already found that higher GSH content in tumor tissues accelerate reduc-
tion of nitroxyl radicals [112]. In addition, hypoxic environment in tumor tissues eliminate
reoxidation of a hydroxylamine to the corresponding niroxyl radical, and consequently
the apparent reduction rate markedly increased. The reduction rate of a nitroxyl radical
increased as a function of tumor size [113]. This aspect of the use of nitroxyl contrast agents
would be to exploit the markedly higher reduction rates in tumors compared to normal
tissues in terms of diagnosis.

This different redox environment of nitroxyl radicals between normal and tumor
tissues makes concentration of nitroxyl radicals between normal and tumor tissues different
after the administration. Concentration of the free radical form in the tumor tissue rapidly
decreased; however, concentration of the free radical form in the normal tissue was kept
slightly higher due to re-oxidation of hydroxylamine form. Therefore, the nitroxyl contrast
agents can be normal tissue selective radioprotector at the radiation therapy which may
be carried out after the diagnosis. Recently it was found that 100% oxygen breathing can
accelerate reduction rate of membrane permeable nitroxides in tumor tisse, and make large
difference of nitroxyl radical concentration between normal and tumor tissues [91].

Another possibility of nitroxyl contrast agents is in brain molecular imaging. There are
several nitroxyl radicals (Figure 12), which can go through the blood-brain-barrier [114–116].
Nitroxyl radical induced T1 contrast at a head part of mice show different distributions
of nitroxyl contrast agents in brain depending on its membrane permeability (Figure 13).
Highly permeable TEMPOL and methoxycarbonyl-PROXYL showed high T1 contrast
induction in whole brain area. Effect of irradiating X-ray or carbon-ion-beam to mouse
brain on the brain redox status was investigated [117]. Different redox responses in the
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brain were induced by X-ray and carbon-ion-beam irradiation. Functional brain imaging
experiments also have been performed using an EPR imaging scanner [118–120].
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An anti-cancer drug, lomustine, labeled by nitroxyl radical was synthesized as a BBB
permeable anti-cancer contrast agent, and distribution of this new drug in mouse brain
was visualized by MRI [121]. This nitroxyl radical labeled drug, spin-labeled nitrosourea
(SLENU), has an anticancer effect. The approach is applicable not only for non-invasively
visualizing distribution of the drugs in the target tissue/organ, but also for imaging redox
status in the target and surrounding tissues/organs. Another progress of development of
nitroxyl radical labeled theranostic compounds has been reported, such as nitroxyl labeled
ibuprofen, ketoprofen [122] and nitroxyl labeled theophylline [123]. Contras agent having
medicinal benefits can be a useful tool in theranostics approach, i.e., efficacy as a drug,
visualizing drug distribution, and may have an additional chance to make a diagnosis
based on the tissue redox status. In addition, anticancer effects have been established for
some of nitroxyl radical compounds itself [124].

Assessing the tumor microenvironment, such as pH, pO2, redox status, and con-
centrations of phosphate and glutathione, can be even performed on single instrument,
in vivo EPR, specific molecular probe for detecting each effect was required [125]. Future
development of a suitable specific contrast agent for each imaging modality will be a key
for the success of theranostics.

Actually, a nitoxyl radical is a kind of multimodal contrast agent, which can be detected
by either EPR or MRI as described above. A polymer loaded by both dense nitroxyl radicals
for MRI and a near-infrared fluorophore for optical imaging were synthesized, and in vivo
dynamics and imaging ability was demonstrated [126]. Tobacco mosaic virus as a core
modified by both nitroxyl radicals outside and by fluorophores inside was reported as a
superoxide sensor working eather on MRI and EPR [127]. Gold nanorod loading nitroxyl
radicals for dual imaging of X-ray CT and MRI was developed for redeeming insufficient
contrast in soft tissue by X-ray and contrast stability of MRI [128].

Nitroxyl radical labeled polymer type contrast agent for MRI called organic-radical
contrast agents (ORCAs), which is structured by dendrimer core and lapping polyethylene
glycol chains, has been proposed by Rajca et al. [129]. For next development design of
ORCA, nitroxyl radical, fluorophore, prodrug was loaded on the lapping polymer and the
polymers were conjugated on core [130–132]. In other words, this assemble type contrast
agent is working as drug carrier simultaneously, and then, monitoring of the loaded drug
from the assembled compound were reported [132]. Nitroxyl radical labeled contrast agents
as protein [133] and amino-acid type [134] for achieving simultaneous drug delivery and
tumor imaging has been reported. A nitroxyl radical labeled proteolysis probe for OMRI
has been also proposed [135]. The nitroxyl radical connected on big protein molecule
can not give OMRI enhancement, but free nitroxyl molecules released can give OMRI
enhancement. Such nitroxyl labeled polymer and/or proteins are expected as a theranostic
contrast agent.

9. Metabolic Imaging and Multimodal Comparison

In aerobic energy production process, pyruvate generated from glucose is converted to
acetyl-CoA, and then acetyl-CoA is metabolized to CO2 and H atoms in the citric acid cycle.
Therefore, O2 is required to maintain reactions in the citric acid cycle. However, in hypoxic
condition, pyruvate is metabolized to lactate instead of getting into the citric acid cycle.
The glucose breakdown to lactate through pyruvate is so called hypoxic glycolysis. During
aerobic energy production process, also called oxidative phosphorylation, working with
the citric acid cycle, 38 ATP can be generated with consuming 1 glucose, however; through
hypoxic glycolysis, only 2 ATP can be generated from 1 glucose. Therefore, hypoxic tumor
cells need more glucose to make energy to survive.

Excess glucose uptake of tumor/cancer tissues has been visualized using 18F-DG
PET [28]. On the other hand, 13C-DNP MRI can visualize glycometabolism of tumor/cancer
tissues [23]. Hyperpolarized 13C-labeled pyruvate was metabolized to lactate by the
dominant glycolytic system in the hypoxic tumor tissue. Lactate or other metabolite of
pyruvate can separately visualized by chemical shift of resonance peaks. The pyruvate
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showed the single line at 173 ppm, and the lactate showed the line at 185 ppm (right panel
of Figure 14B).
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Figure 14. Comparison of the hypoxic region and glycometabolic shift in a SCCVII tumor on a
mouse leg. (A) The pO2 map obtaine by pulsed EPR oxygen imaging shows a hypoxic core (blue)
in the central part of the tumor. (B) Chemical shift imaging obtained by 13C-DNP MRI 12 sec after
hyperpolarized 13C-labeled pyruvate injection is overlaid on the T2-weighted image. Each signal peak
(green line) corresponds to pyruvate (right) and lactate (left), respectively. (C) The lactate/pyruvate
ratio map shows higher lactate/pyruvate ratio area dominantly exists in the hypoxic region on EPRI.
The figure was partly modified from our previous report [136].

It can be expected that the hypoxic region and glycolytic region of tumor tissue should
be overlapped. Experimentally it was confirmed that hypoxic region and glycolytic region
was actually overlapped by co-registering the pulse EPR pO2 mapping and 13C-labeled
pyruvate metabolic image [136]. In this study, local metabolic changes in hypoxic area
induced by radiation were investigated by co-registration analysis of EPR oxygen mapping
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and metabolic MRI by hyperpolarized 13C-labeled pyruvate (Figure 14). Hypoxic region
showed elevated hypoxic metabolism, i.e., more lactate generation.

In vivo mechanisms of the anti-angiogenic drug sunitinib to transiently improve
oxygenation by vascular renormalization was investigated by multimodal imaging [137].
Administration of sunitinib, suppressed tumor growth, suppressed blood volume in tumor
tissue measured by using MRI with blood pooling T2 contrast agent USPIO, increased
Gd-DTPA uptake into tumor tissue observed by T1-weighed MRI, and improved tumor
oxygenation visualized by EPR oxygen mapping. It was also observed by the metabolic 13C
MRI that the sunitinib suppressed glycolytic metabolism of pyruvate to lactate (Figure 15).
In addition, sunitinib-induced oxidative shift, i.e., make reduction of nitroxyl radical slower,
in tumor tissue was observed by MR redox imaging. The normalization of tumor blood
flow by sunitinib made pathophysiological function of tumor tissue shifted to normal side.
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Figure 15. Effect of anti-angiogenic drug sunitinib treatment on tumor blood volume, Gd-DTPA
uptake, pO2, and glycometabolism. (A) Blood volume images in SCCVII tumor on a mouse leg
observed by MRI with blood pooling T2 contrast agent USPIO before and after 2 and 4 days of
daily sunitinib treatment. (B) Area under the curve (AUC) images of the first minute after Gd-DTPA
injection. (C) EPR oxygen images obtained before and after 2 and 4 days of daily sunitinib treatment.
(D) The 13C labeled lactate/pyruvate ratio images calculated from the 13C chemical shift images. The
figure was partly modified from our previous report [137].

Multimodal imaging analysis can provide a correlation among a treatment given
and relation of resulted biological effects clear. Information obtained from single imaging
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modality is limited. Most of imaging modality can detect only specific information ded-
icated to the instrument used. However, the pathological condition being monitored is
probably a complexing condition of several biological effects. The fusion/co-registration of
three digital imaging techniques, MR redox imaging, EPR oxygen mapping, and hyper-
polarized 13C MRI techniques in the magnetic resonance field, can widely contribute to
the theranostics.

10. Future Directions

Translational or preclinical multimodal imaging techniques combining PET, EPRI,
and/or MRI, would be useful to monitor abnormal tissue/cell microenvironments such as
tumor hypoxia, oxygenation ability, redox status, and/or glycolmetabolism. Not only accu-
rate co-registration technique among several different modalities using fiducial markers
but also combined system of different instruments will be a valid and feasible way. Com-
bination system of PET and MRI is already commercialized for clinically. The PET/MRI
combination may have grate advantage to detect multiple biological functions, such as
disordered redox status, hypoxia, glycolmetabolism, , etc., with clear anatomical mapping.

Another expected development is probably a multimodal contrast agent, which can be
worked as a drug itself or a drug carrier, and simultaneously detect one or more biological
events after a single dose. A hybrid contrast agents, which can detected by two or more
instrumental combination will be also useful tool for achieving theranostics.

Development of medical imaging techniques is an optimal combination of multi-
ple fields. Instrumental development requires physical, physical-chemical, and medical
knowledge and technologies. Development of a contrast agent requires physical-chemical,
bio-chemical, pharmacological, and medical knowledges, technologies, and the pharma-
ceutical approving procedures. Development of experimental models requires medical,
veterinary, and pharmacological approaches. The greatest need at the present stage of most
medical imaging techniques for future theranostic use may be development of a highly
specific contrast agent for visualizing target biological phenomenon efficiently. Multimodal
analysis with multiple perspectives will be also important for finding a solution from a
complex system.

11. Conclusions

Imaging technique with multimodarity of detection is required to visualize both
biological effects making the cause of the disorders and the response of the cells/tissue
systems with accurate anatomical information, simultaneously or sequencialy. PET is
sensitive imaging method probing by contrasting positron-emission radioisotopes. PET
can detect not only for tissue glycodynamics or hypoxia but also have possibility to
sense most of everything adapting on positron-emission nuclei labeled probes. EPRI is
the only imaging modality which enable us a quantitative in vivo oxygen mapping in
preclinical animal models. Magnetic resonance imaging is kind of multimodal tool to
detect multiple biological functions, such as disordered redox status, hypoxia, oxygenation,
glycolmetabolism, , etc. Multimodal combinations of imaging techniques, such as PET,
EPRI, and/or MRI, would be a useful tool to make an analytic and accurate diagnosis for
future theranostics.

Author Contributions: Writing—original draft preparation, K.-i.M.; writing—review and editing,
M.C.K.; supervision, J.B.M.; funding acquisition, J.B.M. and M.C.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the intramural Research Program, Center for Cancer Research,
National Cancer Institute, NIH.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Molecules 2021, 26, 1614 22 of 27

Acknowledgments: The authors appreciate staffs in Radiation Biology Branch, National Cancer
Institute, NIH and staffs in MRI Research Facility, National Institute of Neurological Disorder
and Stroke, NIH for experimental helps and suggestions. The authors also appreciate staffs in
Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages,
National Institute of Radiological Sciences, Quantum Medical Science Directorate, QST.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spitz, D.R.; Buettner, G.R.; Petronek, M.S.; St-Aubin, J.J.; Flynn, R.T.; Waldron, T.J.; Limoli, C.L. An integrated physico-chemical

approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue
responses. Radiother. Oncol. 2019, 139, 23–27. [CrossRef]

2. Kesarwala, A.H.; Krishna, M.C.; Mitchell, J.B. Oxidative stress in oral diseases. Oral Dis. 2016, 22, 9–18. [CrossRef] [PubMed]
3. Citrin, D.; Cotrim, A.P.; Hyodo, F.; Baum, B.J.; Krishna, M.C.; Mitchell, J.B. Radioprotectors and mitigators of radiation-induced

normal tissue injury. Oncologist 2010, 15, 360–371. [CrossRef] [PubMed]
4. Alizadeh, E.; Sanz, A.G.; García, G.; Sanche, L. Radiation damage to DNA: The indirect effect of low energy electrons. J. Phys.

Chem. Lett. 2013, 4, 820–825. [CrossRef] [PubMed]
5. Hall, E.J. Scientific view of low-level radiation risks. Radiographics 1991, 11, 509–518. [CrossRef] [PubMed]
6. Hirayama, R.; Ito, A.; Tomita, M.; Tsukada, T.; Yatagai, F.; Noguchi, M.; Matsumoto, Y.; Kase, Y.; Ando, K.; Okayasu, R.; et al.

Contributions of direct and indirect actions in cell killing by high-LET radiations. Radiat. Res. 2009, 171, 212–218. [CrossRef]
7. Hirayama, R.; Matsumoto, Y.; Kase, Y.; Noguchi, M.; Ando, K.; Ito, A.; Okayasu, R.; Furusawa, Y. Radioprotection by DMSO in

nitrogen-saturated mammalian cells exposed to helium ion beams. Radiat. Phys. Chem. 2009, 78, 1175–1178. [CrossRef]
8. Hirayama, R.; Ito, A.; Noguchi, M.; Matsumoto, Y.; Uzawa, A.; Kobashi, G.; Okayasu, R.; Furusawa, Y. OH radicals from the

indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect. Radiat. Res. 2013, 180,
514–523. [CrossRef]

9. Gillies, R.J.; Raghunand, N.; Karczmar, G.S.; Bhujwalla, Z.M. MRI of the tumor microenvironment. J. Magn. Reson. Imaging 2002,
16, 430–450. [CrossRef] [PubMed]

10. Mason, R.P.; Zhao, D.; Pacheco-Torres, J.; Cui, W.; Kodibagkar, V.D.; Gulaka, P.K.; Hao, G.; Thorpe, P.; Hahn, E.W.; Peschke, P.
Multimodality imaging of hypoxia in preclinical settings. Q. J. Nucl. Med. Mol. Imaging 2010, 54, 259–280.

11. Busk, M.; Overgaard, J.; Horsman, M.R. Imaging of tumor hypoxia for radiotherapy: Current status and future directions. Semin.
Nucl. Med. 2020, 50, 562–583. [CrossRef]

12. Lee, C.T.; Boss, M.K.; Dewhirst, M.W. Imaging tumor hypoxia to advance radiation oncology. Antioxid. Redox Signal. 2014, 21,
313–337. [CrossRef]

13. Krishna, M.C.; Matsumoto, S.; Yasui, H.; Saito, K.; Devasahayam, N.; Subramanian, S.; Mitchell, J.B. Electron paramagnetic
resonance imaging of tumor pO2. Radiat. Res. 2012, 177, 376–386. [CrossRef] [PubMed]

14. Anemone, A.; Consolino, L.; Arena, F.; Capozza, M.; Longo, D.L. Imaging tumor acidosis: A survey of the available techniques
for mapping in vivo tumor pH. Cancer Metastasis Rev. 2019, 38, 25–49. [CrossRef]

15. Hashim, A.I.; Zhang, X.; Wojtkowiak, J.W.; Martinez, G.V.; Gillies, R.J. Imaging pH and metastasis. NMR Biomed. 2011, 24,
582–591. [CrossRef]

16. Tang, H.; Li, C.; Zhang, Y.; Zheng, H.; Cheng, Y.; Zhu, J.; Chen, X.; Zhu, Z.; Piao, J.G.; Li, F. Targeted Manganese doped silica nano
GSH-cleaner for treatment of liver cancer by destroying the intracellular redox homeostasis. Theranostics 2020, 10, 9865–9887.
[CrossRef]

17. Yoshida, M.; Kamiya, M.; Yamasoba, T.; Urano, Y. A highly sensitive, cell-membrane-permeable fluorescent probe for glutathione.
Bioorg. Med. Chem. Lett. 2014, 24, 4363–4366. [CrossRef]

18. Hadavand, M.A.; Mayer, D.; Chen, W.; Wnorowski, A.; Siddiqui, M.M. Role of metabolic imaging in diagnosis of primary,
metastatic, and recurrent prostate cancer. Curr. Opin. Oncol. 2020, 32, 223–231. [CrossRef]

19. von Morze, C.; Merritt, M.E. Cancer in the crosshairs: Targeting cancer metabolism with hyperpolarized carbon-13 MRI technology.
NMR Biomed. 2019, 32, e3937. [PubMed]

20. Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol.
Cell Biol. 2020, 21, 268–283. [CrossRef] [PubMed]

21. Kishimoto, S.; Brender, J.R.; Chandramouli, G.V.R.; Saida, Y.; Yamamoto, K.; Mitchell, J.B.; Krishna, M.C. Hypoxia-activated
prodrug evofosfamide treatment in pancreatic ductal adenocarcinoma xenografts alters the tumor redox status to potentiate
radiotherapy. Antioxid. Redox Signal. 2020; Online ahead of print.

22. Ahn, K.H.; Scott, G.; Stang, P.; Conolly, S.; Hristov, D. Multiparametric imaging of tumor oxygenation, redox status, and
anatomical structure using Overhauser-enhanced MRI-prepolarized MRI system. Magn. Reson. Med. 2011, 65, 1416–1422.
[CrossRef]

23. Golman, K.; Zandt, R.I.; Lerche, M.; Pehrson, R.; Ardenkjaer-Larsen, J.H. Metabolic imaging by hyperpolarized 13C magnetic
resonance imaging for in vivo tumor diagnosis. Cancer Res. 2006, 66, 10855–10860. [CrossRef]

24. Hounsfield, G.N. Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol. 1973, 46,
1016–1022. [CrossRef]

http://doi.org/10.1016/j.radonc.2019.03.028
http://doi.org/10.1111/odi.12300
http://www.ncbi.nlm.nih.gov/pubmed/25417961
http://doi.org/10.1634/theoncologist.2009-S104
http://www.ncbi.nlm.nih.gov/pubmed/20413641
http://doi.org/10.1021/jz4000998
http://www.ncbi.nlm.nih.gov/pubmed/24976899
http://doi.org/10.1148/radiographics.11.3.1852943
http://www.ncbi.nlm.nih.gov/pubmed/1852943
http://doi.org/10.1667/RR1490.1
http://doi.org/10.1016/j.radphyschem.2009.07.006
http://doi.org/10.1667/RR13368.1
http://doi.org/10.1002/jmri.10181
http://www.ncbi.nlm.nih.gov/pubmed/12353258
http://doi.org/10.1053/j.semnuclmed.2020.05.003
http://doi.org/10.1089/ars.2013.5759
http://doi.org/10.1667/RR2622.1
http://www.ncbi.nlm.nih.gov/pubmed/22332927
http://doi.org/10.1007/s10555-019-09782-9
http://doi.org/10.1002/nbm.1644
http://doi.org/10.7150/thno.46771
http://doi.org/10.1016/j.bmcl.2014.08.033
http://doi.org/10.1097/CCO.0000000000000625
http://www.ncbi.nlm.nih.gov/pubmed/29870085
http://doi.org/10.1038/s41580-020-0227-y
http://www.ncbi.nlm.nih.gov/pubmed/32144406
http://doi.org/10.1002/mrm.22732
http://doi.org/10.1158/0008-5472.CAN-06-2564
http://doi.org/10.1259/0007-1285-46-552-1016


Molecules 2021, 26, 1614 23 of 27

25. Ambrose, J. Computerized transverse axial scanning (tomography). 2. Clinical application. Br. J. Radiol. 1973, 46, 1023–1047.
[CrossRef] [PubMed]

26. Lauterbur, P.C. Image formation by iInduced local interactions: Examples employing nuclear magnetic resonance. Nature 1973,
242, 190–191. [CrossRef]

27. Kumar, A.; Welti, D.; Ernst, R.R. NMR Fourier zeugmatography. J. Magn. Reson. 1975, 18, 69–83. [CrossRef]
28. Reivich, M. Application of the deoxyglucose method to human cerebral dysfunction. The use of [2-18F] fluoro-2-deoxy-D-glucose

in man. Neurosci. Res. Program. Bull. 1976, 14, 502–504.
29. Yamada, K.; Kuppusamy, P.; English, S.; Yoo, J.; Irie, A.; Subramanian, S.; Mitchell, J.B.; Krishna, M.C. Feasibility and assessment

of non-invasive in vivo redox status using electron paramagnetic resonance imaging. Acta Radiol. 2002, 43, 433–440. [CrossRef]
[PubMed]

30. Yokoyama, H.; Itoh, O.; Ohya-Nishiguchi, H.; Kamada, H. Reducing ability of the striatum and cerebral cortex in rats following
acute administration of risperidone or haloperidol: An estimation by in vivo electron paramagnetic resonance imaging. Neurochem.
Res. 2002, 27, 243–248. [CrossRef] [PubMed]

31. Kuppusamy, P.; Wang, P.; Zweier, J.L.; Krishna, M.C.; Mitchell, J.B.; Ma, L.; Trimble, C.E.; Hsia, C.J. Electron paramagnetic
resonance imaging of rat heart with nitroxide and polynitroxyl-albumin. Biochemistry 1996, 35, 7051–7057. [CrossRef] [PubMed]

32. Panagiotelis, I.; Nicholson, I.; Foster, M.A.; Hutchison, J.M. T*1e and T*2e maps derived in vivo from the rat using longitudinally
detected electron spin resonance phase imaging: Application to abdominal oxygen mapping. Magn. Reson. Med. 2001, 46,
1223–1232. [CrossRef]

33. Kuppusamy, P.; Chzhan, M.; Vij, K.; Shteynbuk, M.; Lefer, D.J.; Giannella, E.; Zweier, J.L. Three-dimensional spectral-spatial EPR
imaging of free radicals in the heart: A technique for imaging tissue metabolism and oxygenation. Proc. Natl. Acad. Sci. USA
1994, 91, 3388–3392. [CrossRef] [PubMed]

34. Kuppusamy, P.; Chzhan, M.; Samouilov, A.; Wang, P.; Zweier, J.L. Mapping the spin-density and lineshape distribution of free
radicals using 4D spectral-spatial EPR imaging. J. Magn. Reson. B 1995, 107, 116–125. [CrossRef] [PubMed]

35. Bernardo, M.L.; Lauterbur, P.C. Rapid medium- resolution 3-D NMR zeugmatographic imaging of the head. Eur. J. Radiol. 1983, 3
(Suppl. 1), 257–263.

36. Maltempo, M.M. Differenciation of spectral and spatial components in EPR imaging using 2-D image reconstruction algorithms.
J. Magn. Reson. 1986, 69, 156–161.

37. Subramanian, S.; Devasahayam, N.; Murugesan, R.; Yamada, K.; Cook, J.; Taube, A.; Mitchell, J.B.; Lohman, J.A.; Krishna, M.C.
Single-point (constant-time) imaging in radiofrequency Fourier transform electron paramagnetic resonance. Magn. Reson. Med.
2002, 48, 370–379. [CrossRef] [PubMed]

38. Ogawa, S.; Lee, T.M.; Nayak, A.S.; Glynn, P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high
magnetic fields. Magn. Reson. Med. 1990, 14, 68–78. [CrossRef]

39. Ogawa, S.; Lee, T.M. Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image
simulation. Magn. Reson. Med. 1990, 16, 9–18. [CrossRef]

40. Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation.
Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [CrossRef]

41. Ikehira, H.; Girard, F.; Obata, T.; Ito, H.; Yoshitomi, H.; Miyazaki, M.; Nakajima, N.; Kamei, H.; Kanazawa, Y.; Takano, H.; et al. A
preliminary study for clinical pharmacokinetics of oral fluorine anticancer medicines using the commercial MRI system 19F-MRS.
Br. J. Radiol. 1999, 72, 584–589. [CrossRef]

42. Arias-Mendoza, F.; Brown, T.R. In vivo measurement of phosphorous markers of disease. Dis. Markers 2004, 19, 49–68. [CrossRef]
43. Narazaki, M.; Kanazawa, Y.; Koike, S.; Ando, K.; Ikehira, H. Quantitative 17O imaging towards oxygen consumption study in

tumor bearing mice at 7 T. Magn. Reson. Imaging 2013, 31, 643–650. [CrossRef] [PubMed]
44. Pak, R.W.; Hadjiabadi, D.H.; Senarathna, J.; Agarwal, S.; Thakor, N.V.; Pillai, J.J.; Pathak, A.P. Implications of neurovascular

uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors. J. Cereb. Blood Flow Metab. 2017, 37, 3475–3487.
[CrossRef] [PubMed]

45. Zhang, J.L.; Lee, V.S. Renal perfusion imaging by MRI. J. Magn. Reson. Imaging 2020, 52, 369–379. [CrossRef] [PubMed]
46. Gallez, B.; Neveu, M.A.; Danhier, P.; Jordan, B.F. Manipulation of tumor oxygenation and radiosensitivity through modification of

cell respiration. A critical review of approaches and imaging biomarkers for therapeutic guidance. Biochim. Biophys. Acta Bioenerg.
2017, 1858, 700–711. [CrossRef]

47. Doi, Y.; Shimmura, T.; Kuribayashi, H.; Tanaka, Y.; Kanazawa, Y. Quantitative 19F imaging of nmol-level F-nucleotides/-sides
from 5-FU with T2 mapping in mice at 9.4T. Magn. Reson. Med. 2009, 62, 1129–1139. [CrossRef] [PubMed]

48. Zhelev, Z.; Bakalova, R.; Aoki, I.; Matsumoto, K.; Gadjeva, V.; Anzai, K.; Kanno, I. Nitroxyl radicals as low toxic spin-labels for
non-invasive magnetic resonance imaging of blood-brain barrier permeability for conventional therapeutics. Chem. Commun.
2009, 2009, 53–55. [CrossRef] [PubMed]

49. Raufman, J.P.; Xu, S.; Cheng, K.; Khurana, S.; Johnson, D.; Shao, C.; Kane, M.A.; Shi, D.; Gullapalli, R.; Polli, J. In vivo magnetic
resonance imaging to detect biliary excretion of 19F-labeled drug in mice. Drug Metab. Dispos. 2011, 39, 736–739. [CrossRef]

50. Lopes, S.I.L.; Ferreira, S.; Caetano, M. PET/CT in the evaluation of hypoxia for radiotherapy planning in head and neck tumors:
Systematic literature review. J. Nucl. Med. Technol. 2020; Online ahead of print.

http://doi.org/10.1259/0007-1285-46-552-1023
http://www.ncbi.nlm.nih.gov/pubmed/4757353
http://doi.org/10.1038/242190a0
http://doi.org/10.1016/0022-2364(75)90224-3
http://doi.org/10.1034/j.1600-0455.2002.430418.x
http://www.ncbi.nlm.nih.gov/pubmed/12225490
http://doi.org/10.1023/A:1014840722626
http://www.ncbi.nlm.nih.gov/pubmed/11958523
http://doi.org/10.1021/bi952857s
http://www.ncbi.nlm.nih.gov/pubmed/8679530
http://doi.org/10.1002/mrm.1320
http://doi.org/10.1073/pnas.91.8.3388
http://www.ncbi.nlm.nih.gov/pubmed/8159757
http://doi.org/10.1006/jmrb.1995.1067
http://www.ncbi.nlm.nih.gov/pubmed/7599947
http://doi.org/10.1002/mrm.10199
http://www.ncbi.nlm.nih.gov/pubmed/12210946
http://doi.org/10.1002/mrm.1910140108
http://doi.org/10.1002/mrm.1910160103
http://doi.org/10.1073/pnas.87.24.9868
http://doi.org/10.1259/bjr.72.858.10560341
http://doi.org/10.1155/2004/419095
http://doi.org/10.1016/j.mri.2012.10.009
http://www.ncbi.nlm.nih.gov/pubmed/23295148
http://doi.org/10.1177/0271678X17707398
http://www.ncbi.nlm.nih.gov/pubmed/28492341
http://doi.org/10.1002/jmri.26911
http://www.ncbi.nlm.nih.gov/pubmed/31452303
http://doi.org/10.1016/j.bbabio.2017.01.002
http://doi.org/10.1002/mrm.22075
http://www.ncbi.nlm.nih.gov/pubmed/19780181
http://doi.org/10.1039/B816878D
http://www.ncbi.nlm.nih.gov/pubmed/19081996
http://doi.org/10.1124/dmd.110.037358


Molecules 2021, 26, 1614 24 of 27

51. Lewis, J.S.; McCarthy, D.W.; McCarthy, T.J.; Fujibayashi, Y.; Welch, M.J. Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic
tumor model. J. Nucl. Med. 1999, 40, 177–183.

52. Matsumoto, K.; Szajek, L.; Krishna, M.C.; Cook, J.A.; Seidel, J.; Grimes, K.; Carson, J.; Sowers, A.L.; English, S.; Green, M.V.;
et al. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or
[18F]Fluoromisonidazole positron emission tomography. Int. J. Oncol. 2007, 30, 873–881. [CrossRef]

53. Piert, M.; Machulla, H.J.; Picchio, M.; Reischl, G.; Ziegler, S.; Kumar, P.; Wester, H.J.; Beck, R.; McEwan, A.J.; Wiebe, L.I.; et al.
Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J. Nucl. Med. 2005, 46, 106–113.

54. Kaneta, T.; Takai, Y.; Kagaya, Y.; Yamane, Y.; Wada, H.; Yuki, M.; Iwata, R.; Tsujitani, M.; Takahashi, S.; Yamada, S. Imaging of
ischemic but viable myocardium using a new 18F-labeled 2-nitroimidazole analog, 18F-FRP170. J. Nucl. Med. 2002, 43, 109–116.

55. Dolbier, W.R., Jr.; Li, A.R.; Koch, C.J.; Shiue, C.Y.; Kachur, A.V. [18F]-EF5, a marker for PET detection of hypoxia: Synthesis of
precursor and a new fluorination procedure. Appl. Radiat. Isot. 2001, 54, 73–80. [CrossRef]

56. van Loon, J.; Janssen, M.H.; Ollers, M.; Aerts, H.J.; Dubois, L.; Hochstenbag, M.; Dingemans, A.M.; Lalisang, R.; Brans, B.;
Windhorst, B.; et al. PET imaging of hypoxia using [18F]HX4: A phase I trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1663–1668.
[CrossRef] [PubMed]

57. Shibuya, K.; Saito, H.; Nishikido, F.; Takahashi, M.; Yamaya, T. Oxygen sensing ability of positronium atom for tumor hypoxia
imaging. Commun. Phys. 2020, 3, 173. [CrossRef]

58. Yoshida, E.; Tashima, H.; Nagatsu, K.; Tsuji, A.B.; Kamada, K.; Prrodi, K.; Yamaya, T. Whole gamma imaging: A new concept of
PET combined with Compton imaging. Phys. Med. Biol. 2020, 65, 125013. [CrossRef] [PubMed]

59. Matsumoto, K.; English, S.; Yoo, J.; Yamada, K.; Devasahayam, N.; Cook, J.A.; Mitchell, J.B.; Subramanian, S.; Krishna, M.C.
Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn. Reson. Med. 2004, 52, 885–892.
[CrossRef]

60. Subramanian, S.; Matsumoto, K.; Mitchell, J.B.; Krishna, M.C. Radio frequency continuous-wave and time-domain EPR imaging
and Overhauser-enhanced magnetic resonance imaging of small animals: Instrumental developments and comparison of relative
merits for functional imaging. NMR Biomed. 2004, 17, 263–294. [CrossRef] [PubMed]

61. Elas, M.; Williams, B.B.; Parasca, A.; Mailer, C.; Pelizzari, C.A.; Lewis, M.A.; River, J.N.; Karczmar, G.S.; Barth, E.D.; Halpern, H.J.
Quantitative tumor oxymetric images from 4D electron paramagnetic resonance imaging (EPRI): Methodology and comparison
with blood oxygen level-dependent (BOLD) MRI. Magn. Reson. Med. 2003, 49, 682–691. [CrossRef] [PubMed]

62. Matsumoto, K.; Chandrika, B.; Lohman, J.A.B.; Mitchell, J.B.; Krishna, M.C.; Subramanian, S. Application of continuous-wave EPR
spectral-spatial image reconstruction techniques for in vivo oxymetry: Comparison of projection reconstruction and constant-time
modalities. Magn. Reson. Med. 2003, 50, 865–874. [CrossRef] [PubMed]

63. Matsumoto, K.; Subramanian, S.; Devasahayam, N.; Aravalluvan, T.; Murugesan, R.; Cook, J.A.; Mitchell, J.B.; Krishna,
M.C. Electron paramagnetic resonance imaging of tumor hypoxia: Enhanced spatial and temporal resolution for in vivo pO2
determination. Magn. Reson. Med. 2006, 55, 1157–1163. [CrossRef]

64. Mailer, C.; Sundramoorthy, S.V.; Pelizzari, C.A.; Halpern, H.J. Spin echo spectroscopic electron paramagnetic resonance imaging.
Magn. Reson. Med. 2006, 55, 904–912. [CrossRef] [PubMed]

65. Matsumoto, K.; Kishimoto, S.; Devasahayam, N.; Chandramouli, G.V.R.; Ogawa, Y.; Matsumoto, S.; Krishna, M.C.; Subramanian,
S. EPR-based oximetric imaging: A combination of single point-based spatial encoding and T1 weighting. Magn. Reson. Med.
2018, 80, 2275–2287. [CrossRef] [PubMed]

66. Epel, B.; Sundramoorthy, S.V.; Barth, E.D.; Mailer, C.; Halpern, H.J. Comparison of 250 MHz electron spin echo and continuous
wave oxygen EPR imaging methods for in vivo applications. Med. Phys. 2011, 38, 2045–2052. [CrossRef] [PubMed]

67. Hama, Y.; Matsumoto, K.; Murugesan, R.; Subramanian, S.; Devasahayam, N.; Koscielniak, J.W.; Hyodo, F.; Cook, J.A.; Mitchell,
J.B.; Krishna, M.C. Continuous wave EPR oximetric imaging at 300 MHz using radiofrequency power saturation effects. Antioxid.
Redox Signal. 2007, 9, 1709–1716. [CrossRef] [PubMed]

68. Krishna, M.C.; English, S.; Yamada, K.; Yoo, J.; Murugesan, R.; Devasahayam, N.; Cook, J.A.; Golman, K.; Ardenkjaer-Larsen, J.H.;
Subramanian, S.; et al. Overhauser enhanced magnetic resonance imaging for tumor oximetry: Coregistration of tumor anatomy
and tissue oxygen concentration. Proc. Natl. Acad. Sci. USA 2002, 99, 2216–2221. [CrossRef]

69. Li, H.; Deng, Y.; He, G.; Kuppusamy, P.; Lurie, D.J.; Zweier, J.L. Proton electron double resonance imaging of the in vivo
distribution and clearance of a triaryl methyl radical in mice. Magn. Reson. Med. 2002, 48, 530–534. [CrossRef]

70. Grucker, D.; Chambron, J. Oxygen imaging in perfused hearts by dynamic nuclear polarization. Magn. Reson. Imaging 1993, 11,
691–696. [CrossRef]

71. Chubarov, A.; Spitsyna, A.; Krumkacheva, O.; Mitin, D.; Suvorov, D.; Tormyshev, V.; Fedin, M.; Bowman, M.K.; Bagryanskaya, E.
Reversible dimerization of human serum albumin. Molecules 2020, 26, 108. [CrossRef] [PubMed]

72. Tormyshev, V.M.; Chubarov, A.S.; Krumkacheva, O.A.; Trukhin, D.V.; Rogozhnikova, O.Y.; Spitsyna, A.S.; Kuzhelev, A.A.; Koval,
V.V.; Fedin, M.V.; Godovikova, T.S.; et al. Methanethiosulfonate derivative of OX063 trityl: A promising and efficient reagent for
side-directed spin labeling of proteins. Chemistry 2020, 26, 2705–2712. [CrossRef]

73. Ketter, S.; Gopinath, A.; Rogozhnikova, O.; Trukhin, D.; Tormyshev, V.M.; Bagryanskaya, E.G.; Joseph, B. In situ labeling and
distance measurements of membrane proteins in E. coli using finland and OX063 trityl labels. Chemistry 2021, 27, 2299–2304.
[CrossRef]

http://doi.org/10.3892/ijo.30.4.873
http://doi.org/10.1016/S0969-8043(00)00102-0
http://doi.org/10.1007/s00259-010-1437-x
http://www.ncbi.nlm.nih.gov/pubmed/20369236
http://doi.org/10.1038/s42005-020-00440-z
http://doi.org/10.1088/1361-6560/ab8e89
http://www.ncbi.nlm.nih.gov/pubmed/32348968
http://doi.org/10.1002/mrm.20222
http://doi.org/10.1002/nbm.897
http://www.ncbi.nlm.nih.gov/pubmed/15366027
http://doi.org/10.1002/mrm.10408
http://www.ncbi.nlm.nih.gov/pubmed/12652539
http://doi.org/10.1002/mrm.10594
http://www.ncbi.nlm.nih.gov/pubmed/14523974
http://doi.org/10.1002/mrm.20872
http://doi.org/10.1002/mrm.20849
http://www.ncbi.nlm.nih.gov/pubmed/16526015
http://doi.org/10.1002/mrm.27182
http://www.ncbi.nlm.nih.gov/pubmed/29582458
http://doi.org/10.1118/1.3555297
http://www.ncbi.nlm.nih.gov/pubmed/21626937
http://doi.org/10.1089/ars.2007.1720
http://www.ncbi.nlm.nih.gov/pubmed/17696765
http://doi.org/10.1073/pnas.042671399
http://doi.org/10.1002/mrm.10222
http://doi.org/10.1016/0730-725X(93)90011-2
http://doi.org/10.3390/molecules26010108
http://www.ncbi.nlm.nih.gov/pubmed/33383640
http://doi.org/10.1002/chem.201904587
http://doi.org/10.1002/chem.202004606


Molecules 2021, 26, 1614 25 of 27

74. Kishimoto, S.; Matsumoto, K.; Saito, K.; Enomoto, A.; Matsumoto, S.; Mitchell, J.B.; Devasahayam, N.; Krishna, M.C. Pulsed
electron paramagnetic resonance imaging: Applications in the studies of tumor physiology. Antioxid. Redox Signal. 2018, 28,
1378–1393. [CrossRef] [PubMed]

75. Matsumoto, S.; Hyodo, F.; Subramanian, S.; Devasahayam, N.; Munasinghe, J.; Hyodo, E.; Gadisetti, C.; Cook, J.A.; Mitchell, J.B.;
Krishna, M.C. Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice. J. Clin. Investig.
2008, 118, 1965–1973. [CrossRef]

76. Yasui, H.; Matsumoto, S.; Devasahayam, N.; Munasinghe, J.P.; Choudhuri, R.; Saito, K.; Subramanian, S.; Mitchell, J.B.; Krishna,
M.C. Low-field magnetic resonance imaging to visualize chronic and cycling hypoxia in tumor-bearing mice. Cancer Res. 2010, 70,
6427–6436. [CrossRef] [PubMed]

77. Kishimoto, S.; Krishna, M.C.; Khramtsov, V.V.; Utsumi, H.; Lurie, D.J. In vivo application of proton-electron double-resonance
imaging. Antioxid. Redox Signal. 2018, 28, 1345–1364. [CrossRef]

78. Matsumoto, K.; Subramanian, S.; Murugesan, R.; Mitchell, J.B.; Krishna, M.C. Spatially resolved biologic information from in vivo
EPRI, OMRI, and MRI. Antioxid. Redox Signal. 2007, 9, 1125–1141. [CrossRef] [PubMed]

79. Matsumoto, K.; Bernardo, M.; Subramanian, S.; Choyke, P.; Mitchell, J.B.; Krishna, M.C.; Lizak, M.J. MR assessment of changes of
tumor in response to hyperbaric oxygen treatment. Magn. Reson. Med. 2006, 56, 240–246. [CrossRef]

80. Englund, E.K.; Langham, M.C. Quantitative and dynamic MRI measures of peripheral vascular function. Front. Physiol. 2020,
11, 120. [CrossRef]

81. Niendorf, T.; Seeliger, E.; Cantow, K.; Flemming, B.; Waiczies, S.; Pohlmann, A. Probing renal blood volume with magnetic
resonance imaging. Acta Physiol. 2020, 228, e13435. [CrossRef]

82. Chaudhry, A.A.; Naim, S.; Gul, M.; Chaudhry, A.; Chen, M.; Jandial, R.; Badie, B. Utility of preoperative blood-oxygen-level-
dependent functional MR imaging in patients with a central nervous system neoplasm. Radiol. Clin. N. Am. 2019, 57, 1189–1198.
[CrossRef]

83. Koopmans, P.J.; Yacoub, E. Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies.
Neuroimage 2019, 197, 668–676. [CrossRef]

84. Gore, J.C.; Li, M.; Gao, Y.; Wu, T.L.; Schilling, K.G.; Huang, Y.; Mishra, A.; Newton, A.T.; Rogers, B.P.; Chen, L.M.; et al. Functional
MRI and resting state connectivity in white matter—A mini-review. Magn. Reson. Imaging 2019, 63, 1–11. [CrossRef]

85. Breuer, K.; Weick, S.; Ströhle, S.P.; Breuer, F.A.; Kleine, P.; Veldhoen, S.; Richter, A.; Lapa, C.; Flentje, M.; Polat, B. Feasibility of 4D
T2

* quantification in the lung with oxygen gas challenge in patients with non-small cell lung cancer. Phys. Med. 2020, 72, 46–51.
[CrossRef]

86. Ando, K.; Nagao, M.; Watanabe, E.; Sakai, A.; Suzuki, A.; Nakao, R.; Ishizaki, U.; Sakai, S.; Hagiwara, N. Association between
myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: Analysis by T2

* BOLD and T1 mapping MRI. Eur. Radiol. 2020,
30, 4327–4336. [CrossRef]

87. Periquito, J.S.; Starke, L.; Santos, C.M.; Freitas, A.C.; Loução, N.; Polo, P.G.; Nunes, R.G.; Niendorf, T.; Pohlmann, A. Analysis
protocols for MRI mapping of the blood oxygenation-sensitive parameters T2

* and T2 in the kidney. Methods Mol. Biol. 2021, 2216,
591–610.

88. Virani, N.; Kwon, J.; Zhou, H.; Mason, R.; Berbeco, R.; Protti, A. In vivo hypoxia characterization using blood oxygen level
dependent magnetic resonance imaging in a preclinical glioblastoma mouse model. Magn. Reson. Imaging 2021, 76, 52–60.
[CrossRef] [PubMed]

89. Bane, O.; Besa, C.; Wagner, M.; Oesingmann, N.; Zhu, H.; Fiel, M.I.; Taouli, B. Feasibility and reproducibility of BOLD and
TOLD measurements in the liver with oxygen and carbogen gas challenge in healthy volunteers and patients with hepatocellular
carcinoma. J. Magn. Reson. Imaging 2016, 43, 866–876. [CrossRef] [PubMed]

90. Mason, R.P. Oxygen breathing challenge- the simplest theranostic. Theranostics 2017, 7, 3873–3875. [CrossRef] [PubMed]
91. O’Connor, J.P.B.; Robinson, S.P.; Waterton, J.C. Imaging tumour hypoxia with oxygen-enhanced MRI and BOLD MRI. Br. J. Radiol.

2019, 92, 20180642. [CrossRef]
92. Matsumoto, K.; Mitchell, J.B.; Krishna, M.C. Effects of oxygen challenging to tissue redox and pO2 status. Free Radic. Biol. Med.

2019, 130, 343–347. [CrossRef]
93. Soule, B.P.; Hyodo, F.; Matsumoto, K.; Simone, N.L.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. The chemistry and biology of

nitroxide compounds. Free Radic. Biol. Med. 2007, 42, 1632–1650. [CrossRef]
94. Soule, B.P.; Hyodo, F.; Matsumoto, K.; Simone, N.L.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. Therapeutic and clinical applications

of nitroxide compounds. Antioxid. Redox Signal. 2007, 9, 1731–1743. [CrossRef]
95. Davis, R.M.; Mitchell, J.B.; Krishna, M.C. Nitroxides as cancer imaging agents. Anticancer Agents Med. Chem. 2011, 11, 347–358.

[CrossRef]
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